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In what follows, you can use intuitions coming from Process Calculi
(concurrent processes and their semantics), or Transition systems.
There will be some discussion of linearity and branching as well.
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Recursion and Corecursion in Logic Programming

Example

nat(0) ←
nat(s(x)) ← nat(x)

list(nil) ←
list(cons x y) ← nat(x), list(y)
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Recursion and Corecursion in Logic Programming

Example

bit(0) ←
bit(1) ←

stream(cons (x,y)) ← bit(x), stream(y)
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SLD-resolution (+ unification and backtracking) behind
LP derivations.

Example

nat(0) ←
nat(s(x)) ← nat(x)

list(nil) ←
list(cons x y) ← nat(x),

list(y)

← list(cons(x, y))

← nat(x), list(y)
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SLD-resolution (+ unification) is behind LP derivations.

Example

nat(0) ←
nat(s(x)) ← nat(x)

list(nil) ←
list(cons x y) ← nat(x),

list(y)

← list(cons(x, y))

← nat(x), list(y)

← list(y)

← �
The answer is x/O, y/nil , but we can get more substitutions by
backtracking. We can backtrack infinitely many times, but each time
computation will terminate.
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Things go wrong

Example

bit(0) ←
bit(1) ←
stream(scons x y) ←

bit(x), stream(y)

No answer, as derivation never
terminates.
Semantics may go wrong as well.

← stream(scons(x, y))

← bit(x), stream(y)

← stream(y)

← bit(x1), stream(y1)

← stream(y1)

← bit(x2), stream(y2)

← stream(y2)

...
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Coalgebraic Analysis of derivations in Logic Programs

Given a variable-free logic program P, let At be the set of all atoms
appearing in P. Then P can be identified with a Pf Pf -coalgebra (At, p),
where p : At −→ Pf (Pf (At)) sends an atom A to the set of bodies of
those clauses in P with head A, each body being viewed as the set of
atoms that appear in it.
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Coalgebraic Analysis of derivations in Logic Programs

Taking p : At −→ Pf Pf (At), the corresponding C (Pf Pf )-coalgebra where
C (Pf Pf ) is the cofree comonad on Pf Pf is given as follows: C (Pf Pf )(At)
is given by a limit of the form

. . . −→ At× Pf Pf (At× Pf Pf (At)) −→ At× Pf Pf (At) −→ At.

This chain has length ω.
We inductively define the objects At0 = At and Atn+1 = At× Pf PfAtn,
and the cone

p0 = id : At −→ At(= At0)

pn+1 = 〈id ,Pf Pf (pn) ◦ p〉 : At −→ At× Pf PfAtn(= Atn+1)

and the limit determines the required coalgebra p : At −→ C (Pf Pf )(At).
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Lawvere theories and the first-order signature Σ

A signature Σ consists of a set of function symbols f , g , . . . each equipped
with a fixed arity. The arity of a function symbol is a natural number
indicating the number of its arguments. Nullary (0-ary) function symbols
are allowed: these are called constants.

Given a signature Σ, construct the Lawvere theory LΣ:

Define the set ob(LΣ) to be the set of natural numbers.

For each natural number n, let x1, . . . , xn be a specified list of distinct
variables.

Define ob(LΣ)(n,m) to be the set of m-tuples (t1, . . . , tm) of terms
generated by the function symbols in Σ and variables x1, . . . , xn.

Define composition in LΣ by substitution.
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Example of Lawvere theory generated by a LP

Example

The constants O and nil are modelled by maps from 0 to 1 in LΣ, s is
modelled by a map from 1 to 1, and cons is modelled by a map from 2 to
1. The term s(0) is therefore modelled by the map from 0 to 1 given by
the composite of the maps modelling s and 0; similarly for the term
s(nil), although the latter does not make semantic sense.
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We use Lawvere Theory LΣ intead of set At

Some modifications are needed:

we need to extend Set to Poset,

natural transformations to lax natural transformations, and

replace the outer instance of Pf by Pc - the countable powerset
functor (as recursion generates countability).

Then p : At −→ PcPf At gives a Lax(LopΣ ,PcPf )-coalgebra structure on
At; and p determines a Lax(LopΣ ,C (PcPf ))-coalgebra structure
p̄ : At −→ C (PcPf )(At).
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Coinductive trees and forests

I will use a convenient structure (and also graphical representation) to
illustrate the colagebraic model just defined. And that is of a

Coinductive tree

... and corresponding notion coinductive forest (a set of coinductive trees).

We also use these constructions in the proofs of adequacy, soundness, and
completeness.
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Examples of first-order coinductive trees determined by the
semantics:

A(x , y) ∈ At(2)

Then apply At to the map
(s, s) : 1→ 2 in LΣ

list(cons(x, cons(y, x)))

nat(x) list(cons(y, x))

nat(y) list(x)

A(z) ∈ At(1)

At((s, s))(A(x , y)) is an element
of PcPf At(1).

list(cons(s(z), cons(s(z), s(z))))

nat(s(z))

nat(z)

list(cons(s(z), s(z)))

nat(s(z))

nat(z)

list(s(z))
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�
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�
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Adequacy

For any logic program P and for any atom A generated by the predicate
symbols of P and k distinct variables x1, . . . , xk , p̄(k)(A) expresses
precisely the same information as that given by a coinductive forest F for
the goal A. That is, the following holds:

pn(k)(A) is isomorphic to the coinductive forest of depth n and
breadth k .

F has the finite depth n if and only if p̄(k)(A) = pn(k)(A).

F has infinite depth if and only if p̄(k)(A) is given by the element of
the limit of the infinite chain.
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Adequacy

Proof.

For every atomic formula A:

p0(k)(A) = A

p1(k)(A) = (A, {{B1θ, . . . ,Bmθ}, such that B ← B1, . . . ,Bm is a
clause in P with Bθ = A and B1θ, . . . ,Bmθ have variables among
x1, . . . , xk .})
p2(k)(A) = (A, {{(B1θ, {{C 1

1 θ1θ, . . . ,C
m1
1 θ1θ} such that

C ← C 1
1 , . . . ,C

m1
1 is a clause in P with Cθ1 = B1}), . . . and

C 1
1 θ1θ, . . . ,C

m1
1 θ1θ have variables among x1, . . . , xk .}})

The limit of the sequence is precisely (the extension of) the structure
described by Proposition ??. For each atomic formula A, p0(k)(A)
corresponds to the root of a coinductive derivation tree, and, more
generally, each pn(k)(A) corresponds to the coinductive forest of breadth
k , as far as depth n.
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Soundness and completeness of SLD-resolution relative to
coinductive derivation trees.

Let P be a logic program, and G be a goal.

1 Soundness. If there is an SLD-refutation for G in P with computed
answer θ, then there exists a coinductive derivation tree for Gθ that
contains a success subtree.

2 Completeness. If a coinductive derivation tree for Gθ contains a
success subtree, then there exists an SLD-refutation for G in P, with
computed answer λ such that there exists substitution σ such that
λ = σθ.

Corollary

Given a logic program P, SLD-refutations in P are sound and complete
with respect to the Lax(LopΣ ,PcPf )-coalgebra determined by P.
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The Theory of Observables, Observational equivalence

One of the main purposes of giving a semantics to logic programs is its
ability to observe equal behaviors of logic programs and distinguish logic
programs with different computational behavior. Therefore, the choice of
observables and semantic models is closely related to the choice of
equivalence relation defined over logic programs.

Definition

Let P1 and P2 be ground logic programs. Then we define P1 ≈ P2 if and
only if, for any goal G , the following four conditions hold:

1 G has a refutation in P1 if and only if G has a refutation in P2;

2 G has the same set of computed answers in P1 and P2.

3 G has the same set of (correct) partial answers in P1 and P2.

4 G has the same set of call patterns in P1 and P2.
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Example of different behavior of model-theoretically
”equal” programs

Example

A ← B

B ←
B ← B

← A

← B

�

Example

A ← B

B ← B

B ←

← A

← B

← B

...
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Example of different behavior of model-theoretically
”equal” programs

Example

A ← false,B

B ← B

B ←

← A

fail

Example

A ← B, false

B ← B

B ←

← A

← B

← B

...
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Example of different programs with identical behavior

Example

A ← B, false,C ,D

B ←

← A

← B

�

Example

A ← B, false

B ←

← A

← B

�
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Correctness of coalgebraic semantics relative to
observational semantics for sequential programs

Theorem

For logic programs P1 and P2, if coinductive tree for P1 is equal to the
coinductive tree for P2, then P1 ≈ P2.

Full abstraction result?

The converse of the Theorem does not hold. That is, there can be
observationally equivalent programs that have different and-or parallel
trees.

Example

Consider two logic programs, P1 and P2, whose clauses are exactly the
same, with the exception of one clause: P1 contains
A← B1, . . . ,Bi , false, . . . ,Bn; and P2 contains the clause
A← B1, . . .Bi , false instead.
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Concurrent programming

The failure of full abstraction result signposts a more fundamental
mismatch between the coalgebraic (comonadic) semantics (akin process
calculi, and concurrent processes), and traditional sequential method of
SLD-resolution in logic programs.

Solution?

... Derivations by coinductive trees instead of SLD-resolution.
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Coinductive derivation for the goal stream(x)

stream(x)

θ1→

stream(scons(z, y))

bit(z) stream(y)

θ2→ . . .
θ3→

stream(scons(0, scons(y1, z1)))

bit(0)

�

stream(scons(y1, z1))

bit(y1) stream(z1)

Answers for x: cons(z , y) and cons(0, cons(y1, z1)). It’s a different
(corecursive) approach to what a “terminating derivation” is.
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Main theorems:

Coinductive derivations yeild the following results:

Soundness and completeness relative to the Coalgebraic semantics

Correcteness and full abstraction result relative to the theory of
observables.
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Conclusions

Finite and Infinite
SLD-derivations

Greatest fixed
point of TP

Coalgebraic
fibrational
semantics

Coalgebraic
Logic programming

__

��

KK
88

xx

Important note: all these results were related to the theory of
observables and tested for observational equivalence.
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Applications:

Concurrent programming

Automated Proofs for propositions/statements about infinite
structures (e.g.streams)

Type inference (recursive/corecursive types )

Cyclic proofs

Statistical analysis of automated proofs in Machine learning.

More?..
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Thank you!
Questions?
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