Structural Resolution

Katya Komendantskaya (joint work with Patricia Johann)
School of Computing, University of Dundee, UK

02 September 2015

Resolution rule

» Propositional:

CVA -AVD
cvD

Resolution rule

» Propositional:

CVA -AVD
cvD

» First-order:
CVvVA —-BvD

6(C)vo(D) ’
if 6 is a unifier of A and B (i.e., 0(A) = 0(B).

Restricted Resolution by term-matching

CVA —-BvVD
6(C)vD
where 0 is a matcher of A and B (i.e., 6(A) = B).

Restricted Resolution by term-matching

CVA —-BvVD
6(C)vD
where 0 is a matcher of A and B (i.e., 6(A) = B).

. incomplete relative to the usual resolution rule...

Structural Resolution

1. (the “term-matching rule”):

CVA —-BVD
o(C)vD ’
where 6 is a matcher of A and B (i.e., 6(A) = B).

Structural Resolution

1. (the “term-matching rule”):
CVA -BVD
o(C)vD ’
where 6 is a matcher of A and B (i.e., 6(A) = B).
2. plus the rule
CvA -BVvVD
CVA, 6(-B)ve(D)’

where 6 is a unifier of A and B.

SLD-resolution

.. Is an instance of standard resolution rule:

CiV..VC,VA —BV=DiV...V—Dy
O(CLV...VC)VO(=D1V...v=Dy) ’

if 0 is a unifier of A and B (i.e., 0(A) = 6(B).

Example 1

Example

1.nat(0) «

2.nat(s(x)) < nat(x) ¢ nat(x)
U

Computes x +— 0, and other
natural numbers with the use
of backtracking.

Example 2

Nat2:

< nat(x)
Example |
l.nat(s(x)) < nat(x) + nat(x)
2.nat(0) «+

+ nat(x”)

Computes x — s(s(s...))), the ‘
first limit ordinal.

Example 3

Program Stream:
Example

1.bit(0) <
2.bit(1) <+
3.stream(scons(x,y)) <

bit(x), stream(y)

Computes an infinite stream.

+ stream(scons(x,y))

+ bit(x),stream(y)

< strean(y)

< bit(x1),stream(y;)

<+ strean(y;)
\

Problems...

What does it mean if your program does not terminate?

Problems...

What does it mean if your program does not terminate?

» May be it is a corecursive program, like Stream...

Problems...

What does it mean if your program does not terminate?

» May be it is a corecursive program, like Stream...

» May be it is a recursive program, but badly ordered, like
Nat2...

Problems...

What does it mean if your program does not terminate?

» May be it is a corecursive program, like Stream...

» May be it is a recursive program, but badly ordered, like
Nat2...

» Or may be it is a recursive program with coinductive
interpretation? (again, Nat2)

Problems...

What does it mean if your program does not terminate?

» May be it is a corecursive program, like Stream...

» May be it is a recursive program, but badly ordered, like
Nat2...

» Or may be it is a recursive program with coinductive
interpretation? (again, Nat2)

» Or may be it is just some bad loop without particular
computational meaning:

bad(x) « bad(x)

Problems...

What does it mean if your program does not terminate?

» May be it is a corecursive program, like Stream...

» May be it is a recursive program, but badly ordered, like
Nat2...

» Or may be it is a recursive program with coinductive
interpretation? (again, Nat2)

» Or may be it is just some bad loop without particular
computational meaning:

bad(x) « bad(x)

We are missing a theory to talk about such things...

Nat in S-resolution

1.nat(0) «
2.nat(s(x)) < nat(x)

X
X,
? « nat(X) ? < nat(0)
;o

X1 Xo 1 X

Nat2 in S-resolution

1.nat (0) <«

2.nat(s(x)) < nat(x)
s}

? < nat(x) ? + nat(s(x))

Xi X X, o
|
nat(x)

X3 Xa

? +nat(s(s(x)))

X T
nat(s(x))
! N
X3 2

nat(x)

X5 Xo

Streams in S-resolution

0. bit(0) «+
1. bit(1) «
2. stream(scons(x,y)) < bit(x),stream(y)
5 a
stream(scons(X,Y)) stream(scons(o Y))
X1 Xy 2 XXy 2
bit(X) stream(Y) bit(0) stream(Y)
X3 Xe X5 Xe Xo X 0 Xo X5 Xo X7 Xa

stream(scons(o scons(X Y)))
X1 X2 2
blt(O) stream(scons(X/ Y"))
0 Xo X5 Xo Xy 2 _
bit(X) stream(Y’)
Xo Xio Xu1 Xi2 X1z Xua

New theory of universal productivity for resolution

A program P is productive, if it gives rise to rewriting trees of
finite size.

New theory of universal productivity for resolution

A program P is productive, if it gives rise to rewriting trees of
finite size.

In the class of Productive LPs, we can further distinguish:
» finite LP that give rise only to finite derivations,
» inductive LPs for which derivations can be finite or infinite;

» coinductive LPs all derivations for which are infinite

New theory of universal productivity for resolution

A program P is productive, if it gives rise to rewriting trees of

finite size.

In the class of Productive LPs, we can further distinguish:

» finite LP that give rise only to finite derivations,

» inductive LPs for which derivations can be finite or infinite;

» coinductive LPs all derivations for which are infinite

Nat and Nat2

Infinite streams.

Bad recursion.

nat(s(x)) <« nat(x)
nat(0)

inductive definition

stream(scons(x,y)) <«
strean(y)
coinductive definition

bad(x) ¢ bad(x)

non-well-founded

Productive inductive pro-
gram

Productive coinductive

program

Non-productive
gram

pro-

finite rewriting trees, pos-
sibly infinite derivations

finite rewriting trees, nec-
essarily infinite derivations

infinite rewriting trees

Theory of universal Productivity in LP!

[
. S oinductively
(Syntactlc semn-decmorD

via guardedness

B = Inductively
(Non-productive) CPr?)ductivej/? defined

;
[Logic programs | defined

P —

Theory of universal Productivity in LP!

[
. S oinductively
(Syntactlc semn-decmorD

via guardedness

B = Inductively
(Non-productive) CPr?)ductivej/? defined

;
[Logic programs | defined

P —

This and more

. in my poster session

	Motivation

