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Resolution rule

I Propositional:

C ∨A ¬A∨D
C ∨D

I First-order:
C ∨A ¬B ∨D

θ(C )∨θ(D)
,

if θ is a unifier of A and B (i.e., θ(A) = θ(B).
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Restricted Resolution by term-matching
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where θ is a matcher of A and B (i.e., θ(A) = B).

... incomplete relative to the usual resolution rule...
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Structural Resolution

1. (the “term-matching rule”):

C ∨A ¬B ∨D
θ(C )∨D

,

where θ is a matcher of A and B (i.e., θ(A) = B).

2. plus the rule

C ∨A ¬B ∨D
C ∨A, θ(¬B)∨θ(D)

,

where θ is a unifier of A and B.
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SLD-resolution

... is an instance of standard resolution rule:

C1∨ . . .∨Cn∨A ¬B ∨¬D1∨ . . .∨¬Dk

θ(C1∨ . . .∨Cn)∨θ(¬D1∨ . . .∨¬Dk)
,

if θ is a unifier of A and B (i.e., θ(A) = θ(B).



Example 1

Example

1.nat(0) ←
2.nat(s(x)) ← nat(x)

Computes x 7→ 0, and other
natural numbers with the use
of backtracking.

← nat(x)

�



Example 2

Nat2:

Example

1.nat(s(x)) ← nat(x)

2.nat(0) ←

Computes x 7→ s(s(s . . .))), the
first limit ordinal.

← nat(x)

← nat(x′)

← nat(x′′)

. . .



Example 3

Program Stream:

Example

1.bit(0) ←
2.bit(1) ←
3.stream(scons(x,y)) ←

bit(x), stream(y)

Computes an infinite stream.

← stream(scons(x,y))

← bit(x),stream(y)

← stream(y)

← bit(x1),stream(y1)

← stream(y1)

...



Problems...

What does it mean if your program does not terminate?

I May be it is a corecursive program, like Stream...

I May be it is a recursive program, but badly ordered, like
Nat2...

I Or may be it is a recursive program with coinductive
interpretation? (again, Nat2)

I Or may be it is just some bad loop without particular
computational meaning:

bad(x)← bad(x)

We are missing a theory to talk about such things...
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Nat in S-resolution

1.nat(0) ←
2.nat(s(x)) ← nat(x)

?← nat(X)

X1 X2

X1→
?← nat(0)

1 X2



Nat2 in S-resolution

1.nat(0) ←
2.nat(s(x)) ← nat(x)

?← nat(x)

X1 X2

X2→
?← nat(s(x))

X1 2

nat(x)

X3 X4

X4→
?← nat(s(s(x)))

X1 2

nat(s(x))

X3 2

nat(x)

X5 X6

. . .



Streams in S-resolution

0. bit(0) ←
1. bit(1) ←
2. stream(scons(x,y)) ← bit(x),stream(y)

stream(scons(X,Y))

X1 X2 2

bit(X)

X3 X4 X5

stream(Y)

X6 X7 X8

X3→
stream(scons(0,Y))

X1 X2 2

bit(0)

0 X4 X5

stream(Y)

X6 X7 X8

X8→

stream(scons(0,scons(X′,Y′)))

X1 X2 2

bit(0)

0 X4 X5

stream(scons(X′,Y′))

X6 X7 2

bit(X′)

X9 X10 X11

stream(Y′)

X12 X13 X14

X9→ . . .



New theory of universal productivity for resolution

A program P is productive, if it gives rise to rewriting trees of
finite size.

In the class of Productive LPs, we can further distinguish:

I finite LP that give rise only to finite derivations,

I inductive LPs for which derivations can be finite or infinite;

I coinductive LPs all derivations for which are infinite

Nat and Nat2 Infinite streams. Bad recursion.

nat(s(x)) ← nat(x)
nat(0)←

stream(scons(x,y)) ←
stream(y)

bad(x)← bad(x)

inductive definition coinductive definition non-well-founded

Productive inductive pro-
gram

Productive coinductive
program

Non-productive pro-
gram

finite rewriting trees, pos-
sibly infinite derivations

finite rewriting trees, nec-
essarily infinite derivations

infinite rewriting trees



New theory of universal productivity for resolution

A program P is productive, if it gives rise to rewriting trees of
finite size.

In the class of Productive LPs, we can further distinguish:

I finite LP that give rise only to finite derivations,

I inductive LPs for which derivations can be finite or infinite;

I coinductive LPs all derivations for which are infinite

Nat and Nat2 Infinite streams. Bad recursion.

nat(s(x)) ← nat(x)
nat(0)←

stream(scons(x,y)) ←
stream(y)

bad(x)← bad(x)

inductive definition coinductive definition non-well-founded

Productive inductive pro-
gram

Productive coinductive
program

Non-productive pro-
gram

finite rewriting trees, pos-
sibly infinite derivations

finite rewriting trees, nec-
essarily infinite derivations

infinite rewriting trees



New theory of universal productivity for resolution

A program P is productive, if it gives rise to rewriting trees of
finite size.

In the class of Productive LPs, we can further distinguish:

I finite LP that give rise only to finite derivations,

I inductive LPs for which derivations can be finite or infinite;

I coinductive LPs all derivations for which are infinite

Nat and Nat2 Infinite streams. Bad recursion.

nat(s(x)) ← nat(x)
nat(0)←

stream(scons(x,y)) ←
stream(y)

bad(x)← bad(x)

inductive definition coinductive definition non-well-founded

Productive inductive pro-
gram

Productive coinductive
program

Non-productive pro-
gram

finite rewriting trees, pos-
sibly infinite derivations

finite rewriting trees, nec-
essarily infinite derivations

infinite rewriting trees



Theory of universal Productivity in LP!

Logic programs

Non-productive Productive

Coinductively
defined

Inductively
defined

Finitely
defined

Syntactic semi-decision
via guardedness

YY
&&��
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++

This and more

... in my poster session
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