Structural Resolution

Katya Komendantskaya (joint work with Patricia Johann)

School of Computing, University of Dundee, UK

02 September 2015

Resolution rule

Propositional:

 $\frac{C \vee A \neg A \vee D}{C \vee D}$

Resolution rule

Propositional:

 $\begin{array}{c} \frac{C \lor A \quad \neg A \lor D}{C \lor D} \\ \bullet \text{ First-order:} \\ \frac{C \lor A \quad \neg B \lor D}{\theta(C) \lor \theta(D)}, \\ \text{if } \theta \text{ is a unifier of } A \text{ and } B \text{ (i.e., } \theta(A) = \theta(B). \end{array}$

Restricted Resolution by term-matching

$$-\frac{C\vee A \quad \neg B\vee D}{\theta(C)\vee D},$$

where θ is a matcher of A and B (i.e., $\theta(A) = B$).

Restricted Resolution by term-matching

$$\frac{C \vee A \quad \neg B \vee D}{\theta(C) \vee D},$$

where θ is a matcher of A and B (i.e., $\theta(A) = B$).

... incomplete relative to the usual resolution rule...

Structural Resolution

1. (the "term-matching rule"):

$$\frac{C \vee A \quad \neg B \vee D}{\theta(C) \vee D},$$

where θ is a matcher of A and B (i.e., $\theta(A) = B$).

Structural Resolution

1. (the "term-matching rule"):

$$\frac{C \vee A \neg B \vee D}{\theta(C) \vee D},$$

where θ is a matcher of A and B (i.e., $\theta(A) = B$). 2. plus the rule

$$\frac{C \lor A \neg B \lor D}{C \lor A, \ \theta(\neg B) \lor \theta(D)},$$

where θ is a unifier of A and B.

... is an instance of standard resolution rule:

$$\frac{C_1 \vee \ldots \vee C_n \vee A \quad \neg B \vee \neg D_1 \vee \ldots \vee \neg D_k}{\theta(C_1 \vee \ldots \vee C_n) \vee \theta(\neg D_1 \vee \ldots \vee \neg D_k)},$$

if θ is a unifier of A and B (i.e., $\theta(A) = \theta(B)$.

Example 1

Example

 $1.nat(0) \leftarrow$ $2.nat(s(x)) \leftarrow nat(x)$

$$\begin{array}{c} \leftarrow \texttt{nat}(\texttt{x}) \\ | \\ \Box \end{array}$$

Computes $x \mapsto 0$, and other natural numbers with the use of backtracking.

Example 2

Nat2:

Example \leftarrow nat(x)1.nat(s(x)) \leftarrow nat(x) \leftarrow nat(x')2.nat(0) \leftarrow |Computes $x \mapsto s(s(s...)))$, the|first limit ordinal. \cdots

Example 3

Program Stream:

Example

Computes an infinite stream.

```
\leftarrow \texttt{stream}(\texttt{scons}(x, y))
  \leftarrow bit(x), stream(y)
          \leftarrow \texttt{stream}(\texttt{y})
\leftarrow bit(x<sub>1</sub>), stream(y<sub>1</sub>)
         \leftarrow \texttt{stream}(y_1)
```

What does it mean if your program does not terminate?

What does it mean if your program does not terminate?

May be it is a corecursive program, like Stream...

What does it mean if your program does not terminate?

- May be it is a corecursive program, like Stream...
- May be it is a recursive program, but badly ordered, like Nat2...

What does it mean if your program does not terminate?

- May be it is a corecursive program, like Stream...
- May be it is a recursive program, but badly ordered, like Nat2...
- Or may be it is a recursive program with coinductive interpretation? (again, Nat2)

What does it mean if your program does not terminate?

- May be it is a corecursive program, like Stream...
- May be it is a recursive program, but badly ordered, like Nat2...
- Or may be it is a recursive program with coinductive interpretation? (again, Nat2)
- Or may be it is just some bad loop without particular computational meaning:

 $bad(x) \leftarrow bad(x)$

What does it mean if your program does not terminate?

- May be it is a corecursive program, like Stream...
- May be it is a recursive program, but badly ordered, like Nat2...
- Or may be it is a recursive program with coinductive interpretation? (again, Nat2)
- Or may be it is just some bad loop without particular computational meaning:

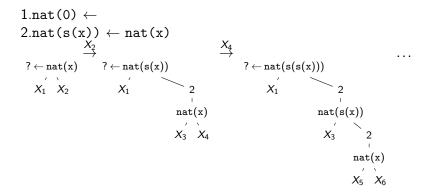
$$bad(x) \leftarrow bad(x)$$

We are missing a theory to talk about such things...

Nat in S-resolution

$$1.nat(0) \leftarrow \\ 2.nat(s(x)) \leftarrow nat(x)$$

Nat2 in S-resolution



Streams in S-resolution

0.
$$\operatorname{bit}(0) \leftarrow$$

1. $\operatorname{bit}(1) \leftarrow$
2. $\operatorname{stream}(\operatorname{scons}(x, y)) \leftarrow \operatorname{bit}(x), \operatorname{stream}(y)$
 $\xrightarrow{X_3}$
 $\xrightarrow{X_3}$
 $\xrightarrow{X_1}$
 $\xrightarrow{X_2} 2$
 $\xrightarrow{X_2}$
 $\xrightarrow{X_2}$
 $\xrightarrow{X_1}$
 $\xrightarrow{X_2} 2$
 $\xrightarrow{X_2}$
 $\xrightarrow{X_2}$

New theory of universal productivity for resolution

A program P is **productive**, if it gives rise to rewriting trees of finite size.

New theory of universal productivity for resolution

A program P is **productive**, if it gives rise to rewriting trees of finite size.

In the class of Productive LPs, we can further distinguish:

- finite LP that give rise only to finite derivations,
- inductive LPs for which derivations can be finite or infinite;
- coinductive LPs all derivations for which are infinite

New theory of universal productivity for resolution

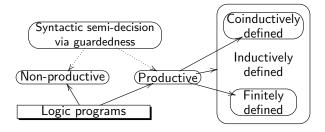
A program P is **productive**, if it gives rise to rewriting trees of finite size.

In the class of Productive LPs, we can further distinguish:

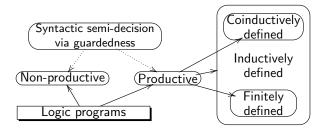
- finite LP that give rise only to finite derivations,
- inductive LPs for which derivations can be finite or infinite;
- coinductive LPs all derivations for which are infinite

Nat and Nat2	Infinite streams.	Bad recursion.
$\mathtt{nat}(\mathtt{s}(\mathtt{x})) \leftarrow \mathtt{nat}(\mathtt{x})$	$\texttt{stream}(\texttt{scons}(\texttt{x},\texttt{y})) \leftarrow $	$\mathtt{bad}(\mathtt{x}) \leftarrow \mathtt{bad}(\mathtt{x})$
$\texttt{nat(0)} \leftarrow$	stream(y)	
inductive definition	coinductive definition	non-well-founded
Productive inductive pro- gram	Productive coinductive program	Non-productive pro- gram
finite rewriting trees, pos- sibly infinite derivations	finite rewriting trees, nec- essarily infinite derivations	infinite rewriting trees

Theory of universal Productivity in LP!



Theory of universal Productivity in LP!



This and more

... in my poster session