
Coalgebraic Logic Programming: implicit versus
explicit resource handling

Ekaterina Komendantskaya1, John Power2 and Martin Schmidt3

1 Department of Computing, University of Dundee, UK ?

2 Department of Computer Science, University of Bath, UK
3 Institute of Cognitive Science, Osnabrueck University, Germany

Abstract. We compare approaches to implicit and explicit resource
handling in coinductive and concurrent logic programming. We show
various effects that implicit and explicit handling of resources have on
implementation and semantics. In particular, we show that recently in-
troduced coalgebraic logic programming [17] is a paradigm in which, in
contrast to many other alternative systems, the aspects of logic and con-
trol are intertwined, and computational resources are handled implicitly.
Key words: Logic programming, Coinduction, Coalgebra, Resources.

1 Introduction

First-order logic programming is a language combining first-order syntax with
efficient techniques of unification and SLD-resolution [18, 19, 25]. These two tech-
niques underlie many modern computer tools, ranging from automated theorem
provers and SAT/SMT solvers to type inference in declarative [20, 21] and im-
perative [2] languages.

Example 1. The program Stream defines infinite streams of binary bits. It is
constructed using five atomic first-order formulas (atoms), arranged into three
clauses, two of which are themselves atomic. The last clause has one atom in its
head and two atoms in its body.

bit(0) ←
bit(1) ←

stream(scons (X,Y)) ← bit(X), stream(Y)

At the propositional (atomic) level, logic programs resemble, and indeed in-
duce, transition systems or rewrite systems, hence coalgebras. This fact has been
used to study their operational semantics, e.g. [5, 7]. In [15], we developed the
idea for variable-free logic programs. Given a set of atoms At, and a variable-free
logic program P built over At, one can construct a PfPf -coalgebra structure on
At, where Pf is the finite powerset functor: each atom is the head of finitely many
clauses in P , and the body of each of those clauses contains finitely many atoms.

? The work was supported by EPSRC grants

Our main result was that if C(PfPf) is the cofree comonad on PfPf , then, given
a logic program P qua PfPf -coalgebra, the corresponding C(PfPf)-coalgebra
structure characterises the parallel and-or derivation trees of P .

There have been several category theoretic models of first-order fragments of
logic programs and computations, and several of them have involved the char-
acterisation of the first-order language underlying a logic program as a Lawvere
theory [1, 5, 6, 14], and that of most general unifiers (mgu’s) as equalisers [4] or
as pullbacks [6, 1].

Given a signature Σ of function symbols, let LΣ denote the Lawvere theory
generated by Σ. Given a logic program P with function symbols in Σ, in [16],
we considered the functor category [LopΣ , Set], extending the set At of atoms in
a variable-free logic program to the functor from LopΣ to Set sending a natural
number n to the set At(n) of atomic formulae with at most n variables generated
by the predicate symbols in P . One can extend any endofunctor H on Set to the
endofunctor [LopΣ , H] on [LopΣ , Set] that sends F : LopΣ → Set to the composite
HF . So we would then like to model P by the putative [LopΣ , PfPf]-coalgebra
p : At −→ PfPfAt that, at n, takes an atomic formula A(x1, . . . , xn) with at
most n variables, considers all substitutions of clauses in P whose head agrees
with A(x1, . . . , xn), and gives the set of sets of atomic formulae in antecedents,
mimicking the construction for variable-free logic programs. As we showed in
[16], this does not work.

In fact, to make the theory work, we need to extend Set to Poset, nat-
ural transformations to lax natural transformations, and replace the outer in-
stance of Pf by Pc - the countable powerset functor (as recursion generates
countability). Subject to those replacements, p : At −→ PcPfAt behaves as
above, giving a Lax(LopΣ , PcPf)-coalgebra structure on At. Thus, p determines a
Lax(LopΣ , C(PcPf))-coalgebra structure p̄ : At −→ C(PcPf)(At).

In [17], we proved the adequacy of this coalgebraic semantics relative to
SLD-resolution. We also showed that observationally, the coalgebraic semantics
inspires a different type of derivation – coalgebraic. In this paper, we will con-
sider the implications the new coalgebraic derivation algorithm has on resource
handling in logic programming, paying special attention to the aspects of core-
cursion and concurrency. We also present an implementation of coalgebraic logic
programming, [23].

There are two aspects of logic programming that are both desirable and
problematic in practice — these are corecursive derivations and concurrent com-
putations. For example, Stream is a coinductive definition, that is, proof search
for the goal stream(X) will result in an infinite SLD-derivation. Programs like
Stream can be given declarative semantics via the greatest fixed point of the se-
mantic operator TP . However the fixed point semantics is incomplete in general
[19]: it fails for some infinite derivations.

Example 2. The program Stream is characterised by the greatest fixed point of
the TP operator, which contains stream(sconsω(X,Y)); whereas no infinite term
can be computed via SLD-resolution.

There have been numerous attempts to resolve the mismatch between infinite
derivations and greatest fixed point semantics [9, 12, 19, 24]. Notably, many solu-
tions [9, 24] resort to explicit annotation of corecursive loops to terminate infinite
derivations gracefully. One may also view such attempts as explicit corecursive
resource handling, as we explain in Section 2.

Another distinguishing feature of logic programming languages is that they
allow implicit parallel execution of programs [10, 22, 11]. However, many first-
order algorithms are P-complete and hence inherently sequential [8, 13]. This
especially concerns first-order unification and variable substitution in the pres-
ence of variable dependencies.

Example 3. The goal stream(scons(X, scons(Y,X))), if processed sequen-
tially, leads to a failed derivation (due to ill-typing). But, if the proof search
proceeds in concurrent fashion, it may find substitutions for x in distinct paral-
lel branches of the derivation tree.

Implementations of parallel SLD-derivations require keeping special records
of previously made substitutions and hence involve additional data structures
and algorithms that coordinate variable substitution in different branches of
parallel derivation trees. Again, this can be seen as explicit resource handling,
where resources are variables, terms, and substitutions, cf. Section 4.

Sections 2 and 4 also analyse how these common practices of explicit resource
handling of corecursion and concurrency change with the introduction of coal-
gebraic logic programming [17], notably in favour of implicit resource-handling.
In Section 6, we discuss an implementation [23] and draw conclusions.

2 Co-recursion: implicit versus explicit resource control

In this section, we consider applications of corecursion and concurrency [9, 24]
that rely on explicit resource management. As Example 4 illustrates, standard
SLD-derivation procedures of logic programming can be caught in infinite deriva-
tion chains for any proof involving the predicate stream.

Example 4. The goal stream(X) produces the following SLD derivation:

stream(X)
X/scons(Y,Z)−−−−−−−−−→ bit(Y), stream(Z)

Y/0−−→ stream(Z) →
It contains an infinite repetition of stream(X) for various variables X.

In [9, 24], the solution was to introduce a procedure that allows one to assert
“stream(X) is proven” and terminate derivations whenever such a regular loop
is detected. Extending this extra “rule” to inductive computations would lead
to unsound results: in the inductive case, infinite loops normally indicate lack
of progress in a derivation rather than “success”. Thus, explicit annotation of
predicates is required:

Example 5. Consider the annotated logic program below comprising both induc-
tive and coinductive clauses:

bit
i(0) ←

bit
i(1) ←

stream
c(scons(X,Y)) ← bit

i(X), streamc(Y)

list
i(nil) ←

list
i(cons(X,Y)) ← bit

i(X), listi(Y)

Only infinite loops produced for corecursive goals (marked by c) are gracefully
terminated; others are still be treated as “undecided” proof branches. In practice,
this works as locks and keys in resource logics, allowing or disallowing infinite
data structures. There are several drawbacks to this method:

F some predicates may behave inductively or coinductively depending on
the arguments provided, and such cases need to be resolved dynamically, and
not statically; in which case mere predicate annotation fails.

FF this new coinductive algorithm is not in essence a lazy infinite (corecur-
sive) computation. Instead, it substitutes an infinite proof by a finite derivation,
on the basis of guarantees of the data regularity in the corecursive loops. But
such guarantees cannot always be given; consider computing the number π.

An alternative solution to the problem is given in [16, 17]. There, instead of
introducing explicit annotations into the programming language, a new deriva-
tion algorithm is introduced; it uses lazy rewriting of coinductive trees. The
definition of coinductive trees arises directly from the coalgebraic semantics [16]
as sketched in the Introduction.

Definition 1. Let P be a logic program and G =← A be an atomic goal. A coin-
ductive derivation tree for A is a possibly infinite tree T satisfying the following
properties.

– A is the root of T .
– Each node in T is either an and-node or an or-node.
– Each or-node is given by •.
– Each and-node is an atom.
– For every and-node A′ occurring in T , if there exist exactly m > 0 dis-

tinct clauses C1, . . . , Cm in P (a clause Ci has the form Bi ← Bi1, . . . , B
i
ni

,
for some ni), such that A′ = B1θ1 = ... = Bmθm, for some substitu-
tions θ1, . . . , θm, then A′ has exactly m children given by or-nodes, such
that, for every i ∈ m, the ith or-node has n children given by and-nodes
Bi1θi, . . . , B

i
ni
θi.

In general case, a goal may induce an infinite family of coinductive trees - as
there can be a countable number of substitutions θ′i, . . . , θ

′′
i that match a given

goal with the clause Ci.

Definition 2. Let P be a logic program and G =← A be an atomic goal. The
coinductive forest F for A is the set of all coinductive trees for A. We say that
the forest has depth n if the deepest tree in F has depth n. A coinductive forest
F has breadth k if at most k distinct variables appear in all and-nodes of all of
its trees together.

The coinductive trees and forests mimic the action of the comonad p̄ : At −→
C(PcPf)(At) on the atomic goals:

Theorem 1 (Adequacy). For any logic program P and for any atom A gen-
erated by the predicate symbols of P and k distinct variables x1, . . . , xk, p̄(k)(A)
expresses precisely the same information as that given by the coinductive forest
F for the goal A. That is, the following holds:

– pn(k)(A) is isomorphic to the coinductive forest of depth n and breadth k.
– F has finite depth n if and only if p̄(k)(A) = pn(k)(A).

The coalgebraic semantics can serve as a diagnostic tool for well-foundness of
corecursion; and that provides an alternative to explicit atom labelling [9, 24]. In
particular, two features will distinguish well-founded coinductive programs like
Stream from ill-founded programs:

– finite size of the coinductive forests, in which the coinductive tree for every
goal is uniquely determined;

– finite depth of the coinductive trees.

We now step back from the semantics and consider coinductive trees as a
computational model. The first feature to note is that, comparing this with the
SLD-resolution algorithm or co-LP [9, 24], the definition of coinductive deriva-
tion tree restricts unification to the case of term matching, i.e., the substitution
θ unifying atoms A1 and A2 is applied only to one atom, e.g. A1 = A2θ, whereas
traditionally mgus satisfy A1θ = A2θ. This restriction in the unification algo-
rithm provides a powerful tool for implicit resource control : it allows one to
unfold coinductive trees lazily, keeping each individual tree at a finite size, pro-
vided the program is well-founded.

We can go further and introduce a new derivation algorithm that allows proof
search using coinduction trees. We modify the definition of a goal by taking it to
be a pair < A, T >, where A is an atom, and T is the coinduction tree determined
by A, as in Definition 1, in which we restrict the choice of substitutions θ1, . . . θm
to the most general unifiers only, in which case T is uniquely determined by A.
This restriction to mgus is the second method for implicit resource handling of
coinductive trees.

Definition 3. Let G be a goal given by an atom ← A, let T be the coinductive
tree induced by A, and let C be a clause H ← B1, . . . , Bn. Then goal G′ is
coinductively derived from G and C using mgu θ if the following conditions
hold:
• A′ is a leaf atom, called the selected atom, in T .
• θ is an mgu of A′ and H.
• G′ is given by the atom ← Aθ and the coinduction tree T ′ determined by Aθ.

Coinductive derivations resemble tree rewriting. Figure 1 shows a coinductive
derivation of length 3 for the goal G = stream(X) and the program Stream

stream(X)

θ1→
stream(scons(Z, Y))

bit(Z) stream(Y)

θ2→ . . .
θ3→

stream(scons(0, scons(Y1, Z1)))

bit(0)

2

stream(scons(Y1, Z1))

bit(Y1) stream(Z1)

Fig. 1. A coinductive derivation of length 3 for the goal G = stream(X) and the
program Stream, with θ1 = X/scons(Z, Y) and θ2 = Z/0, θ3 = Y/scons(Y1, Z1).

from Example 5. Coinductive derivations were proven to be sound and complete
relative to the coalgebraic semantics [17]; see [23] for implementations.

One way to achieve well-foundness of corecursion in practice is to guard
(co-)recursive function applications by constructors. In our case, this amounts
to requiring that, for the predicate appearing in the clause head, at least one of
its arguments is the term formed by means of the function symbol.4 It is easy to
see that Stream is a guarded definition. We will discuss a method to guard logic
programs later. Note that guardedness is the third way to ensure sound implicit
handling of corecursive resources.

Proposition 1. Given a logic program P and a goal G, a coinductive tree de-
termined by P and G has finite depth if and only if P is guarded.

As Figure 1 shows, coinductive programs such as Stream may give rise to
infinite derivations of coinduction trees, in which case implementation may prune
the chain of derivations as [9, 24] suggest, or, if infinite production of new streams
is desirable, let the coinductive derivations run lazily, stopping each time after
generating a finite coinductive tree.

The advantages of this implicit method of handling (co-)recursive compu-
tational resources can be summarised as follows. It solves both difficulties that
explicit coinductive resource management causes: in response to F, the method
uniformly treats inductive and coinductive definitions, and it can be used to
detect non-well-founded cases in both; In response to FF, it is a corecursive
process in spirit. Thus, instead of relying on guarantees of loop regularity, it
relies on well-foundness of every single coinductive tree in the process of lazy
infinite derivations.

3 Case study 1. Coinductive trees: resource-handling of
corecursion

In this case study, we consider the effects of coalgebraic programming on core-
cursive resource handling, using a classical example from [25].

4 Note that function symbols can be nullary.

Example 6. [25] Let GC (for graph connectivity) denote the logic program

1. connected(X,X)←
2. connected(X,Y)← edge(X,Z), connected(Z,Y).

Here, we use predicates “connected” and “edge”, to make the intended meaning
of the program clear. Additionally, there may be clauses that describe the data
base; in our case - edges of a graph whose nodes are labeled by natural numbers,
e.g. edge(O,s(O)) ← , edge(s(O),s(s(O))) ← .

The example uses recursion in order to traverse all the connected nodes in
a graph. Two kinds of infinite SLD derivations are possible: computing finite or
infinite objects.

Example 7. Consider the logic program from Example 6. It is easy to facili-
tate infinite SLD-derivations by adding a clause that makes the graph cyclic:
edge(s(s(O)),O) ← . Taking a query ← connected(O,Z) as a goal may lead
to an infinite SLD-derivation corresponding to an infinite path starting from O

in the cycle. However, the object that is described by this program, the cyclic
graph with three nodes, is finite.

In the standard practice of logic programming, where the ordering of the
clauses is taken as above, the program behaves gracefully, giving finitely-
computed answers, but potentially infinitely many times. However, this balance
is fragile. For example, the following program (with different orderings of the
clauses and of the atoms in the body) results in non-terminating derivations:

Example 8.

1. connected(X,Y)← connected(Z,Y), edge(X,Z)

2. connected(X,X)←

SLD-derivation loops as follows: connected(O,Z) →
(connected(Y ,Z), edge(O,Y))→ (connected(Z1,Y1), edge(Y ,Z1), edge(O,Y))
→ It never produces an answer as it falls into an infinite loop irrespective
of the particular graph in question.

There are two details we should note here. First, in traditional LP, the bur-
den of deciding which programs might result in loops like the one above falls
completely to the programmer. The programmer is given no semantic tools to
help: semantically, the two programs above are equivalent, despite being dif-
ferent observationally! Second, the explicit approach to co-recursion [9, 24] (cf.
Section 2) does not handle such cases properly. If the atoms in the programs
above are labelled as inductive, the behaviour of Co-LP [9, 24] is exactly as it is
for SLD-resolution. If, on the contrary, the atoms are marked as coinductive, we

may find the derivation loop terminated as “successful”, whereas we should be
warned of its being non-well-founded.

Consider the action of coalgebraic semantics [16] and coalgebraic derivations
[17] on programs like GC. Two semantic properties will immediately distinguish
GC from well-founded programs like Stream; compare Figure 2 with Figure 1.
In particular, for a single goal, GC gives rise to

1. infinite-breadth coinductive forests.
This generally happens whenever a program in question contains clauses that
have variables in the bodies that do not appear in their heads.

2. infinite-depth coinductive-trees (and hence forests).
This happens whenever the formulas in the clause heads are not guarded by
constructors – that is, do not contain function symbols.

Note that, as shown in Figure 1, the coinductive Stream program gives rise
only to single-tree forests of finite depth, for every given goal. Thus, the seman-
tics can serve the diagnostic purpose of finding potential sources of non-well-
foundness in computations.

connected(O, Z)

edge(O, Y) connected(Y, Z))

edge(Y, Y1) connected(Y1, Z)

...

connected(O, Z)

edge(O, s(Y)) connected(s(Y), Z))

edge(s(Y), Y1) connected(Y1, Z1)

...

connected(O, Z)

edge(O, s(Y)) conn(s(Y), Z))

edge(s(Y), s(Y1))conn(s(Y1), Z1)

...

. . .
connected(O, Z)

edge(O, s(s(Y)))conn(s(s(Y)), Z))

edge(s(s(Y)), Y1) conn(Y1, Z1)

...

Fig. 2. The coinductive forest of infinite depth and breadth for the program GC and
the goal connected(O,Z); conn abbreviates connected.

On the level of coalgebraic derivations, the two problems are treated differ-
ently. The first problem can be solved by using mgus in Definition 1, as explained
in Section 2. This allows one to determine coinductive trees uniquely for every
goal. The second problem, however, has a deeper, (co-)recursive nature, solved by

use of guardedness, as explained in Section 2. To make the GC example guarded,
we have to reformulate it as follows, see also [23]:

connected (X,cons(Node,Path))← edge(X,Node), connected(Node,Path)

connected (X,nil)←
edge(0,0)←

edge(X,s(X))←

The coinductive derivation for it is shown in Figure 3; and features trees and
forests of finite size.

conn(O, cons(Y, Z))

edge(O, Y) conn(Y, Z))

→
conn(O, cons(sO, Z))

edge(O, sO)

2

conn(sO, Z))

→
conn(O, cons(sO, nil))

edge(O, sO)

2

conn(sO, nil))

2

Fig. 3. Finite Coinductive derivations for a guarded variant of the program GC; conn
abbreviates connected; sO abbreviates s(O).

4 Concurrent Derivations: Logic versus Control

One of the distinguishing features of logic programming languages is that they
allow implicit parallel execution of programs. In the last two decades, an as-
tonishing variety of parallel logic programming implementations have been pro-
posed, see [11] for a detailed survey. The three main types of parallelism used in
implementations of logic programs are and-parallelism, or-parallelism and their
combination.

Or-parallelism arises when more than one clause unifies with the goal atom —
the corresponding bodies can be executed in Or-parallel fashion. Or-parallelism
is thus a way of efficiently searching for solutions to a goal by exploring alter-
native solutions in parallel. Although in theory this is the most obvious way to
parallelize logic programs, in practice, the variable binding needs to be propa-
gated sequentially from root nodes of proof trees down through the leaves, and
the dependencies often span several parallel branches.

(Independent) And-parallelism arises when more than one atom is present
in the goal, and the atoms do not share variables. That is, given a goal
G = ← B1, . . . Bn, an And-parallel algorithm of SLD resolution looks for SLD

derivations for each Bi simultaneously. Dependent and-parallelism aims to ex-
tend independent and-parallelism by introducing more algorithms for sharing
and binding common variables and substitutions.

Predominantly, the existing parallel implementations of logic programming
follow Kowalski’s principle [18]:

Programs = Logic + Control.

This principle separates the control component (backtracking, occur check,
goal ordering/selection, parallelisation) from the logical specification of a prob-
lem (first-order Horn logic, SLD-resolution, unification). Thus the control of
program execution becomes independent of programming semantics.

With many parallel solutions on offer, some form of resource handling and
process scheduling are inevitable ingredients of parallel logic programming: this
is due to the fact that the algorithms of unification and SLD- resolution un-
derlying logic programming are P-complete [26, 13] and cannot themselves be
parallelized in the general case. The existing trend for parallel implementations
of PROLOG is to hide all additional control-handling algorithms at the level of
implementation, away from program specification or semantics [11].

For lack of space, we will illustrate this trend using just one example. One
way to express And-Or parallelism in logic programs is through and-or trees [10],
which consist of or-nodes and and-nodes. We start with the parallelisable case
of variable-free (ground) logic programs, for which and-or trees and coinductive
trees coincide, cf. [15].

Definition 4. [10] Let P be a ground logic program and let ← A be an atomic
goal (possibly with variables). The and-or parallel derivation tree for A is the
possibly infinite tree T satisfying the following properties.

– A is the root of T .
– Each node in T is either an and-node or an or-node.
– Each or-node is given by •.
– Each and-node is an atom.
– For every node A′ occurring in T , if A′ is unifiable with only one clause
B ← B1, . . . , Bn in P with mgu θ, then A′ has n children given by and-
nodes B1θ, . . . Bnθ.

– For every node A′ occurring in T , if A′ is unifiable with exactly m > 1
distinct clauses C1, . . . , Cm in P via mgu’s θ1, . . . , θm, then A′ has ex-
actly m children given by or-nodes, such that, for every i ∈ m, if Ci =
Bi ← Bi1, . . . , B

i
n, then the ith or-node has n children given by and-nodes

Bi1θi, . . . , B
i
nθi.

A naive extension of Definition 4 to the full first-order case yields inconsis-
tent derivations, cf. Example 3, so variable dependencies need to be handled by
additional tools. A solution proposed in [10] was given by composition (and-or
parallel) trees. Composition trees contain a special kind of composition node. A
composition node is a list of atoms in the goal. If, in a goal G = ← B1, . . . Bn,

an atom Bi is unifiable with k > 1 clauses, then the algorithm adds k children
(k composition nodes) to the node G; similarly for every atom in G that is
unifiable with more than one clause. Every such composition node has the form
B1, . . . Bn, and n and-parallel edges. Thus, all possible combinations of all possi-
ble or-choices at every and-parallel step are given. Additionally, special binding
arrays are kept to synchronize substitutions in different but related branches.

We would like to highlight several properties of this example implementation
that are also shared by many other parallel implementations:

? Although the implementation is called “implicit parallelism” in the lit-
erature [11], it boils down to explicit resource handling at a compiler level:
this includes both annotating the syntax and maintaining special sched-
ulers/arrays/hash tables to synchronize variable substitutions computed by dif-
ferent processes; these are separated from the language and semantics.

?? Issues of logic and control are separated to the point that parallel PRO-
LOG systems are usually built as speed-ups to SLD-resolution and have neither
“logic” algorithms nor semantics of their own. In the example of composition
trees, they are implemented by adding extra features to SLD-resolution. Specif-
ically, composition nodes are handled by binding arrays at the compiler level.

Returning to coalgebraic logic programming (cf. Definitions 1, 3), note that
coinductive trees allow for concurrency in that every proof branch in a coin-
ductive tree is computed independently of the others. We can notice that this
distinguishes two approaches: Parallel LP = and-or trees + explicit resource
handling and Coalgebraic LP = coinductive trees + implicit resource handling.
This gives an altogether different view of resource handling in concurrent logic
programming:

1. We avoid explicit resource handling (either at “logic” or “control” level);
instead, we uses the three implicit methods (cf. Section 2) to control resources.
Note that in particular, we have restricted unification to term-matching: in con-
trast to the inherently sequential unification algorithm [8], it is parallelisable.
As a result, parallel proof-search in separate branches of a coinductive tree does
not require explicit synchronization of variables.

2. The issues of logic and control are now bound together: coinductive deriva-
tion trees provide both logic specification and resource control. Moreover, coal-
gebraic logic programming [17] comes with its own coalgebraic semantics that
accounts for observational behavior of coinductive derivations.

5 Case-study 2. Coalgebraic logic programming and
resources for concurrency.

In this case study, our focus is resource-handling of concurrency in logic pro-
gramming. We start by illustrating ground cases of concurrent derivations: these
can be parallelised straightforwardly, and coinductive trees [17] and and-or trees
[10] coincide. We will take an inductive logic program ListNat as a running
example, although a similar case-study could be done with a coinductive logic
program such as Stream.

Example 9. Let ListNat denote the logic program

nat(0)←
nat(s(X))← nat(X)

list(nil)←
list(cons(X,Y))← nat(X), list(Y)

Consider the parallel and-or tree [10] for the program ListNat and goal
list(cons(O,cons(O,nil))) in Figure 4. As was discussed in Section 4, it
is unification and variable dependencies that make the parallelisation of logic
programming hard and require special attention to resource-handling. To illus-
trate this, consider the naive extension of Definition 4 of and-or trees to the
full first-order case, see Figure 5. It shows an unsound derivation for the goal
list(cons(X, cons(Y, X))) when variable dependencies were omitted and substi-
tutions computed in parallel.

list(cons(0, cons(0, nil)))

nat(0)

2

list(cons(0, nil))

nat(0)

2

list(nil)

2

Fig. 4. An and-or parallel derivation for the goal list(cons(O,cons(O,nil))).

list(cons(X, cons(Y, X)))

nat(X)

2 nat(X1)

...

list(cons(Y, X))

nat(Y)

2 nat(Y1)

...

list(X)

2 nat(Z1)

...

list(Z2)

...

Fig. 5. An unsound refutation by an and-or parallel tree, with θ = {X/0, Y/0, X/nil}
.

Real-life implementations of parallel PROLOG [11] employ various mecha-
nisms to synchronise variable substitutions (cf. Section 4), and these typically
introduce sequentiality and explicit resource handling at the implementational
level. The coalgebraic approach [16, 17] re-establishes the balance in favour of
concurrency and implicit handling of resources (by which we mean variables
and substitutions in this case). Consider the coinductive derivation for the goal
list(cons(X, cons(Y, X))) given in Figure 6. In contrast to the and-or tree, and
owing to the restriction of unification to term-matching, every coinductive tree
in the derivation pursues fewer variable substitutions than the corresponding
and-or tree does (cf. Figure 5). This allows one to keep variables synchronised
while pursuing parallel proof-branches in the tree.

Example 10. The coinductive trees from Figure 6 agree with the first part of the
and-or parallel tree for list(cons(X, cons(Y, X))) in Figure 5.

list(cons(X, cons(Y, X)))

nat(X) list(cons(Y, X))

nat(Y) list(X)

→
list(cons(O, cons(Y, O)))

nat(O)

2

list(cons(Y, O))

nat(Y) list(O)

→

→
list(cons(O, cons(O, O)))

nat(O)

2

list(cons(O, O)

nat(O)

2

list(O)

Fig. 6. A coinductive derivation for the goal list(cons(X,cons(Y,X))).

Note that coinductive trees not only allow one to achieve soundness where
parallelism normally is not sound, but also they achieve this without any kind
of explicit resource handling.

6 Implementation

The first minimal implementation [23] to show the feasibility of the coalgebraic
logic programming approach has been developed in Prolog. Constructing deriva-
tions for success trees for a given input is modelled as a uniform cost search
through the graph of coalgebraic derivation trees connected by the derivation
operation. A derivation step here is constrained to first order unification of the
first unifiable open leaf that has the lowest level in the tree; cf. Definition 3 and
Figures 1,6.

Each expansion of a tree e.g. list(X) to list(nil) or to list(cons(X1, Y1))
and then list(cons(s(X2), Y1)) involves a unification that acts as an implicit
barrier to this process. This bounds the resources a tree uses at each derivation
step. Only a very thin layer of control for the search is needed on top of the
resource handling in the form of a priority search queue.

Using the substitution length of all the substitutions used in the derivation
chain as priority ranking, we gain an enumeration order even for an infinite lazy
derivation process. Therefore, while an infinite number of success trees can in
principle be produced for the goal list(X), the algorithm returns list(nil),
list(cons(0, nil)) and then list(cons(s(0), nil)) in a finite number of time-
steps and keeps producing finite success trees thereafter. The substitution lengths
for the first three trees are 1 {X/nil}, 3 {X/cons(X1, Y1), X1/0, Y1/nil} and 4
{X/cons(X1, Y1), X1/s(X2), X2/0, Y1/nil}.

The use of term-matching to traverse and expand trees allows for paralleliza-
tion without synchronization while operating directly on trees. On the search
level of the algorithm it is possible to simultaneously dequeue, check and ex-
pand derivation trees to introduce further parallelization.

7 Conclusions and Future Work

The main feature of the coalgebraic logic programming approach is its gener-
ality: it is suitable for both inductive and coinductive logic programs, for pro-
grams with variable dependencies or not, and for programs that are unification-
parallelisable or inherently sequential. Many distinctions that led to a variety of
engineering solutions in the design of corecursive and concurrent logic programs
[11, 9, 24] are erased here, with resource-handling delegated to a logic algorithm;
and issues of logic and control, semantics and execution, become inseparable.

In the future, we plan to investigate the integration of coalgebraic LP with
methods of resource handling in state-of-the-art coinductive LP [11, 9, 24], as
well as in modern concurrent logic programming systems [11]. Furthermore, we
would like to investigate whether Coalgebraic LP has potential to play a positive
role in type inference, cf. [3].

References

1. G. Amato, J. Lipton, and R. McGrail. On the algebraic structure of declarative
programming languages. Theor. Comput. Sci., 410(46):4626–4671, 2009.

2. D. Ancona and G. Lagorio. Idealized coinductive type systems for imperative
object-oriented programs. RAIRO - Theoretical Informatics and Applications,
45(1):3–33, 2011.

3. D. Ancona, G. Lagorio, and E. Zucca. Type inference by coinductive logic pro-
gramming. In TYPES, volume 5497 of LNCS, pages 1–18, 2009.

4. A. Asperti and S. Martini. Projections instead of variables: A category theoretic
interpretation of logic programs. In ICLP, pages 337–352, 1989.

5. F. Bonchi and U. Montanari. Reactive systems, (semi-)saturated semantics and
coalgebras on presheaves. Theor. Comput. Sci., 410(41):4044–4066, 2009.

6. R. Bruni, U. Montanari, and F. Rossi. An interactive semantics of logic program-
ming. TPLP, 1(6):647–690, 2001.

7. M. Comini, G. Levi, and M. C. Meo. A theory of observables for logic programs.
Inf. Comput., 169(1):23–80, 2001.

8. C. Dwork, P. Kanellakis, and J. Mitchell. On the sequential nature of unification.
J. Logic Prog., 1:35–50, 1984.

9. G. Gupta, A. Bansal, R. Min, L. Simon, and A. Mallya. Coinductive logic pro-
gramming and its applications. In ICLP 2007, volume 4670 of LNCS, pages 27–44.
Springer, 2007.

10. G. Gupta and V. Costa. Optimal implementation of and-or parallel prolog. In
Conf. proc. on PARLE’92, pages 71–92. Elsevier, 1994.

11. G. Gupta, E. Pontelli, K. Ali, M. Carlsson, and M. Hermenegildo. Parallel execu-
tion of prolog programs: a survey. ACM Trans. Computational Logic, 2012. 126
pages, in print.

12. M. Jaume. On greatest fixpoint semantics of logic programming. J. Log. Comput.,
12(2):321–342, 2002.

13. P. C. Kanellakis. Logic programming and parallel complexity. In Foundations of
Deductive Databases and Logic Prog., pages 547–585. Morgan Kaufmann, 1988.

14. Y. Kinoshita and J. Power. A fibrational semantics for logic programs. In Proc.
Int. Workshop on Extensions of Logic Programming, volume 1050 of LNAI, 1996.

15. E. Komendantskaya, G. McCusker, and J. Power. Coalgebraic semantics for parallel
derivation strategies in logic programming. In Proc. of AMAST’2010, volume 6486
of LNCS, 2010.

16. E. Komendantskaya and J. Power. Coalgebraic derivations in logic programming.
In CSL, LIPIcs, pages 352–366. Schloss Dagstuhl, 2011.

17. E. Komendantskaya and J. Power. Coalgebraic semantics for derivations in logic
programming. In CALCO, LNCS, pages 268–282. Spinger, 2011.

18. R. Kowalski. Logic for problem Solving. Elsevier, Amsterdam, 1979.
19. J. Lloyd. Foundations of Logic Programming. Springer-Verlag, 2nd edition, 1987.
20. R. Milner. A theory of type polymorphism in programming. J. Comput. Syst. Sci.,

17(3):348–375, 1978.
21. M. Odersky, M. Sulzmann, and M. Wehr. Type inference with constrained types.

TAPOS, 5(1):35–55, 1999.
22. E. Pontelli and G. Gupta. On the duality between or-parallelism and and-

parallelism in logic programming. In Euro-Par, pages 43–54, 1995.
23. M. Schmidt and E. Komendantskaya. Coalgebraic logic programming: Implemen-

tation, 2012. www.computing.dundee.ac.uk/staff/katya/MLCAP-man.
24. L. Simon and et al. Co-logic programming: Extending logic programming with

coinduction. In ICALP, volume 4596 of LNCS, pages 472–483. Springer, 2007.
25. L. Sterling and E. Shapiro. The art of Prolog. MIT Press, 1986.
26. J. D. Ullman and A. V. Gelder. Parallel complexity of logical query programs.

Algorithmica, 3:5–42, 1988.

