Horn-formulas as Types for Structural Resolution

Peng Fu, Ekaterina Komendantskaya

University of Dundee School of Computing

Introduction: Background

- Logic Programming(LP) is based on first-order Horn formula
- The execution of LP is by SLD-resolution
- SLD-resolution uses Robinson's unification

Connectivity of graph with 3 nodes:

```
\kappa_1 : \text{Connect}(x, y), \text{Connect}(y, z) \Rightarrow \text{Connect}(x, z)
```

 $\kappa_2:\Rightarrow Connect(node_1,node_2)$

 $\kappa_3 : \Rightarrow Connect(node_2, node_3)$

Connectivity of graph with 3 nodes:

```
\kappa_1 : \text{Connect}(x, y), \text{Connect}(y, z) \Rightarrow \text{Connect}(x, z)

\kappa_2 : \Rightarrow \text{Connect}(\text{node}_1, \text{node}_2)

\kappa_3 : \Rightarrow \text{Connect}(\text{node}_2, \text{node}_3)
```

query: Connect(node₁, node₃) ?

Connectivity of graph with 3 nodes:

```
\kappa_1 : \text{Connect}(x, y), \text{Connect}(y, z) \Rightarrow \text{Connect}(x, z)

\kappa_2 : \Rightarrow \text{Connect}(\text{node}_1, \text{node}_2)

\kappa_3 : \Rightarrow \text{Connect}(\text{node}_2, \text{node}_3)
```

- query: Connect(node₁, node₃) ?
- Execution trace:

```
\begin{aligned} & \{ Connect(node_1, node_3) \} \leadsto_{\kappa_1, [node_1/x, node_3/z]} \\ & \{ Connect(node_1, y), Connect(y, node_3) \} \leadsto_{\kappa_2, [node_1/x, node_2/y, node_3/z]} \\ & \{ Connect(node_2, node_3) \} \leadsto_{\kappa_3} \emptyset \end{aligned}
```

Connectivity of graph with 3 nodes:

```
\begin{split} \kappa_1 : \mathsf{Connect}(x,y), \mathsf{Connect}(y,z) &\Rightarrow \mathsf{Connect}(x,z) \\ \kappa_2 : &\Rightarrow \mathsf{Connect}(\mathsf{node}_1,\mathsf{node}_2) \\ \kappa_3 : &\Rightarrow \mathsf{Connect}(\mathsf{node}_2,\mathsf{node}_3) \end{split}
```

- query: Connect(node₁, node₃) ?
- Execution trace:

```
\begin{aligned} & \left\{ \text{Connect}(\text{node}_1, \text{node}_3) \right\} \leadsto_{\kappa_1, [\text{node}_1/x, \text{node}_3/z]} \\ & \left\{ \text{Connect}(\text{node}_1, y), \text{Connect}(y, \text{node}_3) \right\} \leadsto_{\kappa_2, [\text{node}_1/x, \text{node}_2/y, \text{node}_3/z]} \\ & \left\{ \text{Connect}(\text{node}_2, \text{node}_3) \right\} \leadsto_{\kappa_3} \emptyset \end{aligned}
```

▶ So the answer for Connect(node₁, node₃) is yes.

Introduction: Motivation

Assumptions of LP

- Provide answers only when a query yields terminating execution
- Answering a query as proving a formula
- The notion of proof seems to be of little use in LP

Difficulties

- Hard to model infinite data, where the execution may not terminate
- How to understand the meaning a query when the query is not terminating

Introduction: Resolution by Term-Matching

- Let's call LP by SLD-resolution LP-Unif
- How about resolution by term-matching(LP-TM)?
- ▶ Unifiable $t_1 \sim_{\gamma} t_2$, i.e. $\gamma t_1 \equiv \gamma t_2$. Matchable $t_1 \mapsto_{\sigma} t_2$, i.e. $\sigma t_1 \equiv t_2$.
- A use case for LP-TM: Theorem proving

Introduction: Resolution by Term-Matching

- Let's call LP by SLD-resolution LP-Unif
- How about resolution by term-matching(LP-TM)?
- ▶ Unifiable $t_1 \sim_{\gamma} t_2$, i.e. $\gamma t_1 \equiv \gamma t_2$. Matchable $t_1 \mapsto_{\sigma} t_2$, i.e. $\sigma t_1 \equiv t_2$.
- A use case for LP-TM: Theorem proving
- ► Given axioms: $\Rightarrow O(x)$

$$Q(x) \Rightarrow P(x)$$

Is P(x) provable?

$$P(x) \to Q(x) \to \emptyset$$

Introduction: Resolution by Term-Matching

- Let's call LP by SLD-resolution LP-Unif
- How about resolution by term-matching(LP-TM)?
- ▶ Unifiable $t_1 \sim_{\gamma} t_2$, i.e. $\gamma t_1 \equiv \gamma t_2$. Matchable $t_1 \mapsto_{\sigma} t_2$, i.e. $\sigma t_1 \equiv t_2$.
- A use case for LP-TM: Theorem proving
- ► Given axioms: $\Rightarrow Q(x)$ $Q(x) \Rightarrow P(x)$ Is P(x) provable? $P(x) \rightarrow O(x) \rightarrow \emptyset$
- ► Given axioms: ⇒ Q(c) $Q(x) \Rightarrow P(x)$ Is P(x) provable? $P(x) \rightarrow O(x) \not\rightarrow$

Execution behavior of LP-TM

Consider following Stream predicate:

 $\kappa : \text{Stream}(y) \Rightarrow \text{Stream}(\cos(x, y))$

Execution behavior of LP-TM

Consider following Stream predicate:

```
\kappa : \text{Stream}(y) \Rightarrow \text{Stream}(\cos(x, y))
```

► For query Stream(cons(x, y)), in LP-Unif: {Stream(cons(x, y))} $\leadsto_{\kappa, [x/x_1, y/y_1]}$

```
\{\operatorname{Stream}(y)\} \leadsto_{\kappa, [\operatorname{cons}(x_2, y_2)/y, x/x_1, \operatorname{cons}(x_2, y_2)/y_1,]} \{\operatorname{Stream}(y_2)\} \leadsto
```

...

Execution behavior of LP-TM

Consider following Stream predicate:

```
\kappa : \text{Stream}(y) \Rightarrow \text{Stream}(\cos(x, y))
```

For query Stream(cons(x, y)), in LP-Unif: {Stream(cons(x, y))} $\leadsto_{\kappa,[x/x_1,y/y_1]}$

```
\{\operatorname{Stream}(y)\} \leadsto_{\kappa,[\cos(x_2,y_2)/y,x/x_1,\cos(x_2,y_2)/y_1,]} \{\operatorname{Stream}(y_2)\} \leadsto
```

...

▶ In LP-TM:

```
\{\operatorname{Stream}(\operatorname{cons}(x,y))\} \to_{\kappa,\lceil x/x_1,y/y_1\rceil} \{\operatorname{Stream}(y)\}
```

- ▶ LP-TM not quite suitable for problem solving
 - ► The following logic program can describe finite bit list

```
\begin{array}{l} \kappa_1:\Rightarrow Bit(0)\\ \kappa_2:\Rightarrow Bit(1)\\ \kappa_3:\Rightarrow BList(nil)\\ \kappa_4:Bit(x),BList(y)\Rightarrow BList(cons(x,y)) \end{array}
```

- LP-TM not quite suitable for problem solving
 - The following logic program can describe finite bit list

```
\kappa_1 : \Rightarrow \text{Bit}(0)

\kappa_2 : \Rightarrow \text{Bit}(1)

\kappa_3 : \Rightarrow \text{BList}(\text{nil})

\kappa_4 : \text{Bit}(x), \text{BList}(y) \Rightarrow \text{BList}(\cos(x, y))

• Consider query BList(\cos(x, y)):

\{\text{BList}(\cos(x, y))\} \rightarrow_{\kappa_4, [x/x_1, y/y_1]} \{\text{Bit}(x), \text{BList}(y)\}
```

- LP-TM not quite suitable for problem solving
 - The following logic program can describe finite bit list

```
\kappa_1 : \Rightarrow \operatorname{Bit}(0)

\kappa_2 : \Rightarrow \operatorname{Bit}(1)

\kappa_3 : \Rightarrow \operatorname{BList}(\operatorname{nil})

\kappa_4 : \operatorname{Bit}(x), \operatorname{BList}(y) \Rightarrow \operatorname{BList}(\operatorname{cons}(x, y))

• Consider query \operatorname{BList}(\operatorname{cons}(x, y)):

\{\operatorname{BList}(\operatorname{cons}(x, y))\} \to_{\kappa_4, [x/x_1, y/y_1]} \{\operatorname{Bit}(x), \operatorname{BList}(y)\}

• But what is the answer for x, y?
```

7/17

- LP-TM not quite suitable for problem solving
 - The following logic program can describe finite bit list

```
\kappa_1 : \Rightarrow \operatorname{Bit}(0)
\kappa_2 : \Rightarrow \operatorname{Bit}(1)
\kappa_3 : \Rightarrow \operatorname{BList}(\operatorname{nil})
\kappa_4 : \operatorname{Bit}(x), \operatorname{BList}(y) \Rightarrow \operatorname{BList}(\operatorname{cons}(x, y))
 \bullet \operatorname{Consider query BList}(\operatorname{cons}(x, y)) :
 \left\{ \operatorname{BList}(\operatorname{cons}(x, y)) \right\} \rightarrow_{\kappa_4, [x/x_1, y/y_1]} \left\{ \operatorname{Bit}(x), \operatorname{BList}(y) \right\}
```

- \blacktriangleright But what is the answer for x, y?
- We need unification to compute substitution: $x \sim 0, y \sim \text{nil}$

- LP-TM not quite suitable for problem solving
 - ► The following logic program can describe finite bit list

```
\kappa_1 : \Rightarrow \operatorname{Bit}(0)

\kappa_2 : \Rightarrow \operatorname{Bit}(1)

\kappa_3 : \Rightarrow \operatorname{BList}(\operatorname{nil})

\kappa_4 : \operatorname{Bit}(x), \operatorname{BList}(y) \Rightarrow \operatorname{BList}(\operatorname{cons}(x, y))

• Consider query \operatorname{BList}(\operatorname{cons}(x, y)):

\left\{\operatorname{BList}(\operatorname{cons}(x, y))\right\} \rightarrow_{\kappa_4, [x/x_1, y/y_1]} \left\{\operatorname{Bit}(x), \operatorname{BList}(y)\right\}
```

- ▶ But what is the answer for x, y?
- ▶ We need unification to compute substitution: $x \sim 0, y \sim \text{nil}$
- The combination of LP-TM with substitution computed by unification leads to Structural Resolution

Term-matching reduction:

 $\Phi \vdash \{A_1,...,A_i,...,A_n\} \rightarrow_{\kappa,\sigma} \{A_1,...,\sigma B_1,...,\sigma B_m,...,A_n\},$ if there exists $\kappa : \forall \underline{x}.B_1,...,B_n \Rightarrow C \in \Phi$ such that $C \mapsto_{\sigma} A_i$.

Term-matching reduction:

 $\Phi \vdash \{A_1,...,A_i,...,A_n\} \rightarrow_{\kappa,\sigma} \{A_1,...,\sigma B_1,...,\sigma B_m,...,A_n\}$, if there exists $\kappa : \forall x.B_1,...,B_n \Rightarrow C \in \Phi$ such that $C \mapsto_{\sigma} A_i$.

Unification reduction:

$$\Phi \vdash \{A_1,...,A_i,...,A_n\} \leadsto_{\kappa,\gamma \cdot \gamma'} \{\gamma A_1,...,\gamma B_1,...,\gamma B_m,...,\gamma A_n\},$$
 if there exists $\kappa : \forall \underline{x}.B_1,...,B_n \Rightarrow C \in \Phi$ such that $C \sim_{\gamma} A_i$.

Term-matching reduction:

 $\Phi \vdash \{A_1,...,A_i,...,A_n\} \rightarrow_{\kappa,\sigma} \{A_1,...,\sigma B_1,...,\sigma B_m,...,A_n\}$, if there exists $\kappa : \forall x.B_1,...,B_n \Rightarrow C \in \Phi$ such that $C \mapsto_{\sigma} A_i$.

Unification reduction:

$$\Phi \vdash \{A_1,...,A_i,...,A_n\} \leadsto_{\kappa,\gamma \cdot \gamma'} \{\gamma A_1,...,\gamma B_1,...,\gamma B_m,...,\gamma A_n\},$$
 if there exists $\kappa : \forall \underline{x}.B_1,...,B_n \Rightarrow C \in \Phi$ such that $C \leadsto_{\gamma} A_i$.

Substitutional reduction:

$$\Phi \vdash \{A_1,...,A_i,...,A_n\} \hookrightarrow_{\kappa,\gamma \cdot \gamma'} \{\gamma A_1,...,\gamma A_i,...,\gamma A_n\}$$
, if there exists $\kappa : \forall \underline{x}.B_1,...,B_n \Rightarrow C \in \Phi$ such that $C \sim_{\gamma} A_i$.

Term-matching reduction:

 $\Phi \vdash \{A_1,...,A_i,...,A_n\} \rightarrow_{\kappa,\sigma} \{A_1,...,\sigma B_1,...,\sigma B_m,...,A_n\}$, if there exists $\kappa : \forall \underline{x}.B_1,...,B_n \Rightarrow C \in \Phi$ such that $C \mapsto_{\sigma} A_i$.

Unification reduction:

 $\Phi \vdash \{A_1,...,A_i,...,A_n\} \leadsto_{\kappa,\gamma \cdot \gamma'} \{\gamma A_1,...,\gamma B_1,...,\gamma B_m,...,\gamma A_n\},$ if there exists $\kappa : \forall \underline{x}.B_1,...,B_n \Rightarrow C \in \Phi$ such that $C \sim_{\gamma} A_i$.

Substitutional reduction:

 $\Phi \vdash \{A_1,...,A_i,...,A_n\} \hookrightarrow_{\kappa,\gamma \cdot \gamma'} \{\gamma A_1,...,\gamma A_i,...,\gamma A_n\}$, if there exists $\kappa : \forall \underline{x}.B_1,...,B_n \Rightarrow C \in \Phi$ such that $C \sim_{\gamma} A_i$.

▶ LP-TM: (Φ, \rightarrow) LP-Unif: (Φ, \rightsquigarrow) LP-Struct: $(\Phi, \rightarrow^{\mu} \cdot \hookrightarrow^{1})$

```
\kappa : \text{Stream}(y) \Rightarrow \text{Stream}(\cos(x, y))
For query \text{Stream}(\cos(x, y)), in LP-Struct:
```

▶ $\{Stream(cons(x, y))\} \rightarrow \{Stream(y)\}$

```
\kappa: \mathsf{Stream}(y) \Rightarrow \mathsf{Stream}(\mathsf{cons}(x,y)) For query \mathsf{Stream}(\mathsf{cons}(x,y)), in LP-Struct:
```

- ▶ $\{Stream(cons(x, y))\} \rightarrow \{Stream(y)\}$
- $ightharpoonup \hookrightarrow_{[\cos(x_1,y_1)/y]} \{ \operatorname{Stream}(\cos(x_1,y_1)) \} \rightarrow \{ \operatorname{Stream}(y_1) \}$

 $\{Stream(v_2)\}\$

```
\kappa: \operatorname{Stream}(y) \Rightarrow \operatorname{Stream}(\operatorname{cons}(x,y))
For query \operatorname{Stream}(\operatorname{cons}(x,y)), in LP-Struct:

• \{\operatorname{Stream}(\operatorname{cons}(x,y))\} \rightarrow \{\operatorname{Stream}(y)\}
• \hookrightarrow_{[\operatorname{cons}(x_1,y_1)/y]} \{\operatorname{Stream}(\operatorname{cons}(x_1,y_1))\} \rightarrow \{\operatorname{Stream}(y_1)\}
• \hookrightarrow_{[\operatorname{cons}(x_2,y_2)/y_1,\operatorname{cons}(x_1,\operatorname{cons}(x_2,y_2))/y]} \{\operatorname{Stream}(\operatorname{cons}(x_2,y_2))\} \rightarrow
```

```
\kappa: \operatorname{Stream}(y) \Rightarrow \operatorname{Stream}(\operatorname{cons}(x,y)) For query \operatorname{Stream}(\operatorname{cons}(x,y)), in LP-Struct:

 \left\{ \operatorname{Stream}(\operatorname{cons}(x,y)) \right\} \rightarrow \left\{ \operatorname{Stream}(y) \right\} 
 \left\{ \operatorname{Cons}(x_1,y_1)/y \right\} \left\{ \operatorname{Stream}(\operatorname{cons}(x_1,y_1)) \right\} \rightarrow \left\{ \operatorname{Stream}(y_1) \right\} 
 \left\{ \operatorname{Cons}(x_2,y_2)/y_1, \operatorname{cons}(x_1,\operatorname{cons}(x_2,y_2))/y \right\} \left\{ \operatorname{Stream}(\operatorname{cons}(x_2,y_2)) \right\} \rightarrow \left\{ \operatorname{Stream}(y_2) \right\} 
 \left\{ \operatorname{Cons}(x_3,y_3)/y_2, \operatorname{cons}(x_2,\operatorname{cons}(x_3,y_3))/y_1, \operatorname{cons}(x_1,\operatorname{cons}(x_2,\operatorname{cons}(x_3,y_3)))/y \right\} 
 \left\{ \operatorname{Stream}(\operatorname{cons}(x_3,y_3)) \right\} \rightarrow \left\{ \operatorname{Stream}(y_3) \right\}
```

```
\kappa : \text{Stream}(y) \Rightarrow \text{Stream}(\cos(x, y))
For query Stream(cons(x, y)), in LP-Struct:
   \blacktriangleright {Stream(cons(x, y))} \rightarrow {Stream(y)}

ightharpoonup \hookrightarrow_{[\operatorname{cons}(x_1,y_1)/y]} \{\operatorname{Stream}(\operatorname{cons}(x_1,y_1))\} \rightarrow \{\operatorname{Stream}(y_1)\}

ightharpoonup \hookrightarrow_{[\cos(x_2,y_2)/y_1,\cos(x_1,\cos(x_2,y_2))/y]} \{ Stream(\cos(x_2,y_2)) \} \rightarrow
        \{Stream(y_2)\}\

ightharpoonup [cons(x_3,y_3)/y_2,cons(x_2,cons(x_3,y_3))/y_1,cons(x_1,cons(x_2,cons(x_3,y_3)))/y_1
        \{Stream(cons(x_3, y_3))\} \rightarrow \{Stream(y_3)\}
   ▶ Partial answer: cons(x_1, cons(x_2, cons(x_3, y_3)))/y
```

 Both LP-Unif and LP-Struct are sound w.r.t. Herbrand Model

- Both LP-Unif and LP-Struct are sound w.r.t. Herbrand Model
- Operationally, They seem similar but a little different

- Both LP-Unif and LP-Struct are sound w.r.t. Herbrand Model
- Operationally, They seem similar but a little different
- Again, the graph example

```
\kappa_1 : \text{Connect}(x, y), \text{Connect}(y, z) \Rightarrow \text{Connect}(x, z)
```

 $\kappa_2 : \Rightarrow Connect(node_1, node_2)$

 $\kappa_3 : \Rightarrow \text{Connect}(\text{node}_2, \text{node}_3)$

- Both LP-Unif and LP-Struct are sound w.r.t. Herbrand Model
- Operationally, They seem similar but a little different
- Again, the graph example

```
\kappa_1 : \text{Connect}(x, y), \text{Connect}(y, z) \Rightarrow \text{Connect}(x, z)

\kappa_2 : \Rightarrow \text{Connect}(\text{node}_1, \text{node}_2)

\kappa_3 : \Rightarrow \text{Connect}(\text{node}_2, \text{node}_3)
```

► Connect(node₁, node₃) in LP-Unif terminates.

- Both LP-Unif and LP-Struct are sound w.r.t. Herbrand Model
- Operationally, They seem similar but a little different
- Again, the graph example

```
\kappa_1 : \text{Connect}(x, y), \text{Connect}(y, z) \Rightarrow \text{Connect}(x, z)

\kappa_2 : \Rightarrow \text{Connect}(\text{node}_1, \text{node}_2)

\kappa_3 : \Rightarrow \text{Connect}(\text{node}_2, \text{node}_3)
```

- ► Connect(node₁, node₃) in LP-Unif terminates.
- For LP-Struct:

```
 \begin{split} & \Phi \vdash \{\mathsf{Connect}(\mathsf{node}_1, \mathsf{node}_3)\} \to_{\kappa_1, [\mathsf{node}_1/x, \mathsf{node}_3/z]} \\ & \{\mathsf{Connect}(\mathsf{node}_1, y), \mathsf{Connect}(y, \mathsf{node}_3)\} \to_{\kappa_1, [\mathsf{node}_1/x, y/z]} \\ & \{\mathsf{Connect}(\mathsf{node}_1, y_1), \mathsf{Connect}(y_1, y), \mathsf{Connect}(y, \mathsf{node}_3)\} \to_{\kappa_1} \end{split}
```

...

► Term $t ::= x \mid f(t_1, ..., t_n)$ Atomic Formula $A, B, C, D ::= P(t_1, ..., t_n)$ (Horn) Formula $F ::= A_1, ..., A_n \Rightarrow A$ Proof Term $p, e ::= \kappa \mid a \mid \lambda a.e \mid e \mid e'$

- ► Term $t ::= x \mid f(t_1,...,t_n)$ Atomic Formula $A,B,C,D ::= P(t_1,...,t_n)$ (Horn) Formula $F ::= A_1,...,A_n \Rightarrow A$ Proof Term $p,e ::= \kappa \mid a \mid \lambda a.e \mid e \mid e'$
- Girard's observation on intuitionistic sequent calculus with atomic formulas

$$\underline{\underline{B} \vdash A} \ axiom \quad \underline{\underline{B} \vdash C} \ subst \quad \underline{\underline{A} \vdash D} \ \underline{\underline{B}, D \vdash C} \ cut$$

- ► Term $t ::= x \mid f(t_1,...,t_n)$ Atomic Formula $A,B,C,D ::= P(t_1,...,t_n)$ (Horn) Formula $F ::= A_1,...,A_n \Rightarrow A$ Proof Term $p,e ::= \kappa \mid a \mid \lambda a.e \mid e \mid e'$
- Girard's observation on intuitionistic sequent calculus with atomic formulas

$$\underline{\underline{B} \vdash A} \ axiom \quad \underline{\underline{B} \vdash C} \ subst \quad \underline{\underline{A} \vdash D} \ \underline{\underline{B}, D \vdash C} \ cut$$

▶ Is $\vdash Q$ provable?

- ► Term $t ::= x \mid f(t_1, ..., t_n)$ Atomic Formula $A, B, C, D ::= P(t_1, ..., t_n)$ (Horn) Formula $F ::= A_1, ..., A_n \Rightarrow A$ Proof Term $p, e ::= \kappa \mid a \mid \lambda a.e \mid e e'$
- Girard's observation on intuitionistic sequent calculus with atomic formulas

$$\underline{\underline{B} \vdash A} \ axiom \quad \underline{\underline{B} \vdash C} \ subst \quad \underline{\underline{A} \vdash D} \ \underline{\underline{B}, D \vdash C} \ cut$$

- ▶ Is $\vdash Q$ provable?
- We internalized "⊢" as "⇒" and add proof term annotations

$$\frac{e: F}{e: \forall \underline{x}.F} \ axiom \qquad \frac{e: F}{e: \forall \underline{x}.F} \ gen$$

$$\frac{e: \forall \underline{x}.F}{e: [\underline{t}/\underline{x}]F} \ inst \qquad \frac{e_1: \underline{A} \Rightarrow D \quad e_2: \underline{B}, D \Rightarrow C}{\lambda \underline{a}.\lambda \underline{b}.(e_2 \ \underline{b}) \ (e_1 \ \underline{a}): \underline{A}, \underline{B} \Rightarrow C} \ cut$$

Soundness of LP-TM and LP-Unif

- ▶ Soundness of LP-Unif If $\Phi \vdash \{A\} \leadsto_{\gamma}^* \emptyset$, then there exists a proof $e : \forall \underline{x}. \Rightarrow \gamma A$ given axioms Φ .
- ▶ Soundness of LP-TM If $\Phi \vdash \{A\} \to^* \emptyset$, then there exists a proof $e : \forall \underline{x}. \Rightarrow A$ given axioms Φ .
- ► For example, the LP-Unif reductions: {Connect(node₁, node₃)} $\leadsto_{\kappa_1,[\text{node}_1/x,\text{node}_3/z]}$ {Connect(node₁, y), Connect(y, node₃)} $\leadsto_{\kappa_2,[\text{node}_1/x,\text{node}_2/y,\text{node}_3/z]}$ {Connect(node₂, node₃)} $\leadsto_{\kappa_3} \emptyset$
- ► The reduction yields a proof $(\lambda b.(\kappa_1 \ b) \ \kappa_3) \ \kappa_2$ for the formula \Rightarrow Connect(node₁, node₃).

Useful Properties about the Type System

- Strong Normalization If e: F, then e is strongly normalizable w.r.t. beta-reduction on proof terms.
- ▶ First Orderness
 If $e : [\forall \underline{x}.]\underline{A} \Rightarrow B$ given axioms Φ , then either e is a proof term constant or it is normalizable to the form $\lambda \underline{a}.n$, where n is first order normal proof term.
- ▶ If $e : [\forall \underline{x}.] \Rightarrow B$, then e is normalizable to a first order proof term.

Inspired from Kleene's realizability: φ realize $A\Rightarrow B$ iff for any number a realizes A and $\varphi(a)$ realizes B.

- Inspired from Kleene's realizability: φ realize $A\Rightarrow B$ iff for any number a realizes A and $\varphi(a)$ realizes B.
- Representing First Order Proof Term Let φ be a mapping from proof term variables to first order terms.
 - $[a]_{\phi} := \phi(a)$ $- [\kappa p_1...p_n]_{\phi} := f_{\kappa}([p_1]_{\phi}, ..., [p_n]_{\phi})$

- Inspired from Kleene's realizability: φ realize $A\Rightarrow B$ iff for any number a realizes A and $\varphi(a)$ realizes B.
- ▶ Representing First Order Proof Term Let ϕ be a mapping from proof term variables to first order terms.
 - $[a]_{\phi} := \phi(a)$ $- [\kappa p_1...p_n]_{\phi} := f_{\kappa}([p_1]_{\phi}, ..., [p_n]_{\phi})$
- ▶ For $A \equiv P(\underline{x})$, we write $A[y] \equiv P(\underline{x}, y)$. Similarly, $A[t] \equiv P(\underline{x}, t)$

- Inspired from Kleene's realizability: φ realize $A\Rightarrow B$ iff for any number a realizes A and $\varphi(a)$ realizes B.
- ▶ Representing First Order Proof Term Let ϕ be a mapping from proof term variables to first order terms.
 - $[a]_{\phi} := \phi(a)$ $- [\kappa p_1...p_n]_{\phi} := f_{\kappa}([p_1]_{\phi}, ..., [p_n]_{\phi})$
- ► For $A \equiv P(\underline{x})$, we write $A[y] \equiv P(\underline{x}, y)$. Similarly, $A[t] \equiv P(\underline{x}, t)$
- Realizability transformation F on normal proofs

- Inspired from Kleene's realizability: φ realize $A\Rightarrow B$ iff for any number a realizes A and $\varphi(a)$ realizes B.
- ▶ Representing First Order Proof Term Let ϕ be a mapping from proof term variables to first order terms.
 - $[a]_{\phi} := \phi(a)$ $- [\kappa p_1...p_n]_{\phi} := f_{\kappa}([p_1]_{\phi}, ..., [p_n]_{\phi})$
- ► For $A \equiv P(\underline{x})$, we write $A[y] \equiv P(\underline{x}, y)$. Similarly, $A[t] \equiv P(\underline{x}, t)$
- Realizability transformation F on normal proofs
 - $F(\kappa : \forall \underline{x}.A_1, ..., A_m \Rightarrow B) := \\ \kappa : \forall \underline{x}.\forall \underline{y}.A_1[y_1], ..., A_m[y_m] \Rightarrow B[f_{\kappa}(y_1, ..., y_m)]$

- Inspired from Kleene's realizability: φ realize $A\Rightarrow B$ iff for any number a realizes A and $\varphi(a)$ realizes B.
- ▶ Representing First Order Proof Term Let ϕ be a mapping from proof term variables to first order terms.
 - $[a]_{\phi} := \phi(a)$ $- [\kappa p_1...p_n]_{\phi} := f_{\kappa}([p_1]_{\phi}, ..., [p_n]_{\phi})$
- ► For $A \equiv P(\underline{x})$, we write $A[y] \equiv P(\underline{x}, y)$. Similarly, $A[t] \equiv P(\underline{x}, t)$
- Realizability transformation F on normal proofs
 - $F(\kappa : \forall \underline{x}.A_1, ..., A_m \Rightarrow B) := \\ \kappa : \forall \underline{x}.\forall y.A_1[y_1], ..., A_m[y_m] \Rightarrow B[f_{\kappa}(y_1, ..., y_m)]$
 - $F(\lambda \underline{a}.n : [\forall \underline{x}].A_1, ..., A_m \Rightarrow B) := \lambda \underline{a}.n : [\forall \underline{x}.\forall \underline{y}].A_1[y_1], ..., A_m[y_m] \Rightarrow B[\llbracket n \rrbracket_{[\underline{y}/\underline{a}]}]$

```
\kappa_1 : \text{Connect}(x, y, u_1), \text{Connect}(y, z, u_2) \Rightarrow \text{Connect}(x, z, f_{\kappa_1}(u_1, u_2))

\kappa_2 : \Rightarrow \text{Connect}(\text{node}_1, \text{node}_2, c_{\kappa_2})

\kappa_3 : \Rightarrow \text{Connect}(\text{node}_2, \text{node}_3, c_{\kappa_3})
```

Connectivity after realizability transformation:

```
\kappa_1 : \text{Connect}(x, y, u_1), \text{Connect}(y, z, u_2) \Rightarrow \text{Connect}(x, z, f_{\kappa_1}(u_1, u_2))

\kappa_2 : \Rightarrow \text{Connect}(\text{node}_1, \text{node}_2, c_{\kappa_2})

\kappa_3 : \Rightarrow \text{Connect}(\text{node}_2, \text{node}_3, c_{\kappa_3})
```

▶ LP-Struct reduction for Connect(node₁, node₃, *u*).

```
\kappa_1 : \text{Connect}(x, y, u_1), \text{Connect}(y, z, u_2) \Rightarrow \text{Connect}(x, z, f_{\kappa_1}(u_1, u_2))

\kappa_2 : \Rightarrow \text{Connect}(\text{node}_1, \text{node}_2, c_{\kappa_2})

\kappa_3 : \Rightarrow \text{Connect}(\text{node}_2, \text{node}_3, c_{\kappa_3})
```

- ▶ LP-Struct reduction for Connect(node₁, node₃, *u*).
 - $\qquad \qquad \{ \mathsf{Connect}(\mathsf{node}_1, \mathsf{node}_3, u) \}$

```
\kappa_1 : \text{Connect}(x, y, u_1), \text{Connect}(y, z, u_2) \Rightarrow \text{Connect}(x, z, f_{\kappa_1}(u_1, u_2))

\kappa_2 : \Rightarrow \text{Connect}(\text{node}_1, \text{node}_2, c_{\kappa_2})

\kappa_3 : \Rightarrow \text{Connect}(\text{node}_2, \text{node}_3, c_{\kappa_3})
```

- ▶ LP-Struct reduction for Connect(node₁, node₃, *u*).
 - ightharpoonup {Connect(node₁, node₃, u)}
 - $\overset{\longleftarrow}{\kappa_1,[\mathsf{node}_1/x,\mathsf{node}_3/z,f_{\kappa_1}(u_1,u_2)/u]} \\ \left\{ \mathsf{Connect}(\mathsf{node}_1,\mathsf{node}_3,f_{\kappa_1}(u_1,u_2)) \right\} \to_{\kappa_1} \\ \left\{ \mathsf{Connect}(\mathsf{node}_1,y,u_1),\mathsf{Connect}(y,\mathsf{node}_3,u_2) \right\}$

```
\kappa_1 : \mathsf{Connect}(x, y, u_1), \mathsf{Connect}(y, z, u_2) \Rightarrow \mathsf{Connect}(x, z, f_{\kappa_1}(u_1, u_2))
\kappa_2 : \Rightarrow \mathsf{Connect}(\mathsf{node}_1, \mathsf{node}_2, c_{\kappa_2})
\kappa_3 : \Rightarrow \mathsf{Connect}(\mathsf{node}_2, \mathsf{node}_3, c_{\kappa_3})
```

- ▶ LP-Struct reduction for Connect(node₁, node₃, *u*).
 - ightharpoonup {Connect(node₁, node₃, u)}
 - $\overset{\hookrightarrow}{\sim}_{\kappa_1,[\mathsf{node}_1/x,\mathsf{node}_3/z,f_{\kappa_1}(u_1,u_2)/u]} \{ \mathsf{Connect}(\mathsf{node}_1,\mathsf{node}_3,f_{\kappa_1}(u_1,u_2)) \} \to_{\kappa_1} \{ \mathsf{Connect}(\mathsf{node}_1,y,u_1),\mathsf{Connect}(y,\mathsf{node}_3,u_2) \}$
 - $ightharpoonup \hookrightarrow \kappa_2, [c_{\kappa_2}/u_1, \text{node}_1/x, \text{node}_2/y, \text{node}_3/z, f_{\kappa_1}(c_{\kappa_2}, u_2)/u]$

```
\kappa_1 : \text{Connect}(x, y, u_1), \text{Connect}(y, z, u_2) \Rightarrow \text{Connect}(x, z, f_{\kappa_1}(u_1, u_2))

\kappa_2 : \Rightarrow \text{Connect}(\text{node}_1, \text{node}_2, c_{\kappa_2})

\kappa_3 : \Rightarrow \text{Connect}(\text{node}_2, \text{node}_3, c_{\kappa_3})
```

- ▶ LP-Struct reduction for Connect(node₁, node₃, *u*).
 - ightharpoonup {Connect(node₁, node₃, u)}
 - $\overset{\hookrightarrow}{\leftarrow}_{\kappa_1,[\mathsf{node}_1/x,\mathsf{node}_3/z,f_{\kappa_1}(u_1,u_2)/u]} \{ \mathsf{Connect}(\mathsf{node}_1,\mathsf{node}_3,f_{\kappa_1}(u_1,u_2)) \} \to_{\kappa_1} \{ \mathsf{Connect}(\mathsf{node}_1,y,u_1),\mathsf{Connect}(y,\mathsf{node}_3,u_2) \}$
 - $ightharpoonup \hookrightarrow_{\kappa_2,[c_{\kappa_2}/u_1,\operatorname{node}_1/x,\operatorname{node}_2/y,\operatorname{node}_3/z,f_{\kappa_1}(c_{\kappa_2},u_2)/u]}$
 - ► {Connect(node₁, node₂, c_{κ_2}), Connect(node₂, node₃, u_2)} \rightarrow_{κ_2} {Connect(node₂, node₃, u_2)}

```
\kappa_1 : \text{Connect}(x, y, u_1), \text{Connect}(y, z, u_2) \Rightarrow \text{Connect}(x, z, f_{\kappa_1}(u_1, u_2))

\kappa_2 : \Rightarrow \text{Connect}(\text{node}_1, \text{node}_2, c_{\kappa_2})

\kappa_3 : \Rightarrow \text{Connect}(\text{node}_2, \text{node}_3, c_{\kappa_3})
```

- ▶ LP-Struct reduction for Connect(node₁, node₃, *u*).
 - ightharpoonup {Connect(node₁, node₃, u)}
 - $\overset{\hookrightarrow}{\leftarrow}_{\kappa_1,[\mathsf{node}_1/x,\mathsf{node}_3/z,f_{\kappa_1}(u_1,u_2)/u]} \\ \{\mathsf{Connect}(\mathsf{node}_1,\mathsf{node}_3,f_{\kappa_1}(u_1,u_2))\} \to_{\kappa_1} \\ \{\mathsf{Connect}(\mathsf{node}_1,y,u_1),\mathsf{Connect}(y,\mathsf{node}_3,u_2)\}$
 - $ightharpoonup \hookrightarrow_{\kappa_2,[c_{\kappa_2}/u_1,\operatorname{node}_1/x,\operatorname{node}_2/y,\operatorname{node}_3/z,f_{\kappa_1}(c_{\kappa_2},u_2)/u]}$
 - ► {Connect(node₁, node₂, c_{κ_2}), Connect(node₂, node₃, u_2)} \rightarrow_{κ_2} {Connect(node₂, node₃, u_2)}
 - $\hookrightarrow_{\kappa_3, [c_{\kappa_3}/u_2, c_{\kappa_2}/u_1, \text{node}_3/z, \text{node}_1/x, \text{node}_2/y, f_{\kappa_1}(c_{\kappa_2}, c_{\kappa_3})/u] }$ {Connect(node₂, node₃, c_{κ_3})} $\rightarrow_{\kappa_3} \emptyset$

```
\kappa_1 : \text{Connect}(x, y, u_1), \text{Connect}(y, z, u_2) \Rightarrow \text{Connect}(x, z, f_{\kappa_1}(u_1, u_2))

\kappa_2 : \Rightarrow \text{Connect}(\text{node}_1, \text{node}_2, c_{\kappa_2})

\kappa_3 : \Rightarrow \text{Connect}(\text{node}_2, \text{node}_3, c_{\kappa_3})
```

- ▶ LP-Struct reduction for Connect(node₁, node₃, *u*).
 - ightharpoonup {Connect(node₁, node₃, u)}
 - $\overset{\hookrightarrow}{\leftarrow}_{\kappa_1,[\mathsf{node}_1/x,\mathsf{node}_3/z,f_{\kappa_1}(u_1,u_2)/u]} \\ \left\{ \mathsf{Connect}(\mathsf{node}_1,\mathsf{node}_3,f_{\kappa_1}(u_1,u_2)) \right\} \to_{\kappa_1} \\ \left\{ \mathsf{Connect}(\mathsf{node}_1,y,u_1),\mathsf{Connect}(y,\mathsf{node}_3,u_2) \right\}$
 - $ightharpoonup \hookrightarrow_{\kappa_2,[c_{\kappa_2}/u_1,\operatorname{node}_1/x,\operatorname{node}_2/y,\operatorname{node}_3/z,f_{\kappa_1}(c_{\kappa_2},u_2)/u]}$
 - ► {Connect(node₁, node₂, c_{κ_2}), Connect(node₂, node₃, u_2)} \rightarrow_{κ_2} {Connect(node₂, node₃, u_2)}
 - $\hookrightarrow_{\kappa_3, [c_{\kappa_3}/u_2, c_{\kappa_2}/u_1, \text{node}_3/z, \text{node}_1/x, \text{node}_2/y, f_{\kappa_1}(c_{\kappa_2}, c_{\kappa_3})/u] }$ {Connect(node₂, node₃, c_{κ_3})} $\rightarrow_{\kappa_3} \emptyset$
- Answer: $f_{\kappa_1}(c_{\kappa_2}, c_{\kappa_3})/u$

Results about Realizability Transformation

- ► Termination of term-matching reduction For any $(\Phi, \to^{\mu} \cdot \hookrightarrow^{1})$, we have $(F(\Phi), \to^{\nu} \cdot \hookrightarrow^{1})$
- ▶ Preserve Provability
 Given axioms Φ , if $e: [\forall \underline{x}].\underline{A} \Rightarrow B$ holds with e in normal form, then $F(e: [\forall \underline{x}].\underline{A} \Rightarrow B)$ holds for axioms $F(\Phi)$
- ▶ Recording Proof Suppose $F(\Phi) \vdash \{A[y]\} \leadsto_{\gamma}^* \emptyset$. We have $p : \forall \underline{x}. \Rightarrow \gamma A[\gamma y]$ for $F(\Phi)$, where p is in normal form and $\llbracket p \rrbracket_{\emptyset} = \gamma y$
- ► Preserve Unification $\Phi \vdash \{A\} \leadsto^* \emptyset$ iff $F(\Phi) \vdash \{A[y]\} \leadsto^* \emptyset$
- ▶ Operational Equivalent of LP-Unif and LP-Struct $F(\Phi) \vdash \{A[y]\} \leadsto^* \emptyset$ iff $F(\Phi) \vdash \{A[y]\}(\rightarrow^{\nu} \cdot \hookrightarrow^1)^*\emptyset$.

Summary and Future Work

- We define a type system to model LP-TM, LP-Unif and LP-Struct
- We define a transformation called realizability transformation
- Realizability transformation preserves proof content
- We show LP-Unif and LP-Struct are operationally equivalent after the tranformation
- Future works: Apply LP-TM to analyze type class inference in functional langauges

Future Work

▶ In type class inference, proof has computational meaning:

```
class Eq A where
  eq :: Eq A => A -> A -> Bool

instance => Eq Int where ..
instance Eq A => Eq (List A) where ..

test = eq [] [1]
```

- test function will generate a query Eq (List Int)
- ▶ Eq (List Int) ==> Eq Int ==> empty
- ► The proof of the query Eq (List Int) will be passed as an input for eq