Horn-formulas as Types for Structural
Resolution

Peng Fu, Ekaterina Komendantskaya

University of Dundee
School of Computing

Introduction: Background

» Logic Programming(LP) is based on first-order Horn
formula
» The execution of LP is by SLD-resolution

» SLD-resolution uses Robinson’s unification

17

Introduction: Example of SLD-resolution

» Connectivity of graph with 3 nodes:
k1 : Connect(x,y), Connect(y, z) = Connect(x, z)
Ky : = Connect(node;, node;)
k3 : = Connect(node;, nodes)

/17

Introduction: Example of SLD-resolution

» Connectivity of graph with 3 nodes:
k1 : Connect(x,y), Connect(y, z) = Connect(x, z)
Ky : = Connect(node;, node;)
k3 : = Connect(node;, nodes)

(
» query: Connect(node;, nodes) ?

/17

Introduction: Example of SLD-resolution

» Connectivity of graph with 3 nodes:
k1 : Connect(x,y), Connect(y, z) = Connect(x, z)
Ky : = Connect(node;, node;)
k3 : = Connect(node;, nodes)

» query: Connect(node;, nodes) ?
» Execution trace:
{Connect(node;, nodes) } ~4, mode, /x,nodes /2]

{Connect(node;, y), Connect(y, nodes)} ~~ 12, [node; /x,node, /y,nodes /2]
{Connect(nodey, nodez)} ~, 0

/17

Introduction: Example of SLD-resolution

» Connectivity of graph with 3 nodes:
k1 : Connect(x,y), Connect(y, z) = Connect(x, z)
Ky : = Connect(node;, node;)
k3 : = Connect(node;, nodes)
» query: Connect(node;, nodes) ?
» Execution trace:
{Connect(node;, nodes)} ~,, [node; /x,nodes /2]
{ConneCt(HOdel))7), Connect(y, n0d63)} "~ k,[node; /x,node; /y,nodes /7]
{Connect(nodey, nodez)} ~, 0

» So the answer for Connect(node;, node3) is yes.

/17

Introduction: Motivation

Assumptions of LP

» Provide answers only when a query yields terminating
execution

» Answering a query as proving a formula
» The notion of proof seems to be of little use in LP
Difficulties

» Hard to model infinite data, where the execution may not
terminate

» How to understand the meaning a query when the query is
not terminating

Introduction: Resolution by Term-Matching

v

Let’s call LP by SLD-resolution LP-Unif

How about resolution by term-matching(LP-TM)?
Unifiable t; ~, 1, i.e. vt; = yt,. Matchable #; —, 1, i.e.
ot] = 1.

A use case for LP-TM: Theorem proving

v

v

v

/17

Introduction: Resolution by Term-Matching

» Let’s call LP by SLD-resolution LP-Unif
» How about resolution by term-matching(LP-TM)?
» Unifiable t; ~, 1, i.e. vt; = y1,. Matchable #; —, 1, i.e.
ol = 1.
» A use case for LP-TM: Theorem proving
» Given axioms:
= Q(x)
O(x) = P(x)
Is P(x) provable?
P(x) = Q(x) = 0

Introduction: Resolution by Term-Matching

» Let’s call LP by SLD-resolution LP-Unif
» How about resolution by term-matching(LP-TM)?
» Unifiable t; ~, 1, i.e. vt; = y1,. Matchable #; —, 1, i.e.
ol = 1.
» A use case for LP-TM: Theorem proving
» Given axioms:
= Q(x)
O(x) = P(x)
Is P(x) provable?
P(x) = Q(x) = 0
» Given axioms:
= 0(c)
O(x) = P(x)
Is P(x) provable?
P(x) = Q(x) #

Execution behavior of LP-TM

» Consider following Stream predicate:
K : Stream(y) = Stream(cons(x, y))

/17

Execution behavior of LP-TM

» Consider following Stream predicate:
K : Stream(y) = Stream(cons(x, y))
» For query Stream(cons(x, y)), in LP-Unif:

{Stream(cons(x, ¥))} ~ . x/x1.y/v1]
{Stream()} ~ K,[cons(x2,y2) /y,x/x1,cons(x2,y2)/y1,) {Stream(yZ)}

/17

Execution behavior of LP-TM

» Consider following Stream predicate:
K : Stream(y) = Stream(cons(x, y))

» For query Stream(cons(x, y)), in LP-Unif:
{Stream(cons(x, y))} ~ . [x/x,,y/v1]
{Stream()} "~ k,[cons (x2,y2) /y,x/x1 ,cons(x2,y2) /V1) {Stream(yZ)}

> In LP-TM:
{Stream(cons(x,y))} =y (/x, vy 1Stream(y)}

/17

Limitations of LP-TM

» LP-TM not quite suitable for problem solving
» The following logic program can describe finite bit list

K1

K3
R4

: = Bit(0)
Ry ©
: = BList(nil)

: Bit(x), BList(y) = BList(cons(x,y))

= Bit(1)

17

Limitations of LP-TM

» LP-TM not quite suitable for problem solving

» The following logic program can describe finite bit list
K1 = Blt(O)
Ky : = Bit(1)
k3 : = BList(nil)
K4 @ Bit(x), BList(y) = BList(cons(x,y))

» Consider query BList(cons(x,y)):
{BList(cons(x,y))} =, [x/x;.y/w] 1Bit(x), BList(y)}

Limitations of LP-TM

» LP-TM not quite suitable for problem solving
» The following logic program can describe finite bit list
K1 = Blt(O)
Ky : = Bit(1)
k3 : = BList(nil)
K4 @ Bit(x), BList(y) = BList(cons(x,y))
» Consider query BList(cons(x,y)):

{BList(cons(x,y))} =, [x/x;.y/w] 1Bit(x), BList(y)}
» But what is the answer for x, y?

Limitations of LP-TM

» LP-TM not quite suitable for problem solving
» The following logic program can describe finite bit list
K1 = Blt(O)
Ky : = Bit(1)
k3 : = BList(nil)
K4 @ Bit(x), BList(y) = BList(cons(x,y))
» Consider query BList(cons(x,y)):
{BList(cons(x,y))} =, [x/x;.y/w] 1Bit(x), BList(y)}
» But what is the answer for x, y?
» We need unification to compute substitution: x ~ 0,y ~ nil

17

Limitations of LP-TM

» LP-TM not quite suitable for problem solving
» The following logic program can describe finite bit list
K1 = Blt(O)
Ky : = Bit(1)
k3 : = BList(nil)
K4 @ Bit(x), BList(y) = BList(cons(x,y))
» Consider query BList(cons(x,y)):
{BList(cons(x,y))} =, [x/x;.y/w] 1Bit(x), BList(y)}
» But what is the answer for x, y?
» We need unification to compute substitution: x ~ 0,y ~ nil

» The combination of LP-TM with substitution computed by
unification leads to Structural Resolution

17

Formalism: LP-Unif, LP-TM and LP-Struct

» Term-matching reduction:
P+ {Al, ‘..,Ai, ,An} 7k, {A], ...,O'Bl, ceny O‘Bm, .‘.,An}, if
there exists « : Vx.By,...,B, = C € ® such that C —, A;.

/17

Formalism: LP-Unif, LP-TM and LP-Struct

» Term-matching reduction:
P+ {Al, ...,Ai, ,An} 7k, {A], ...,O‘Bl, ceny O'Bm, .‘.,An}, if
there exists « : Vx.By,...,B, = C € ® such that C —, A;.

» Unification reduction:
o+ {Al, ...,A,’, ,An} 7 kyyey! {’}/A], ...,’}/Bl, ...,’}/Bm7 ...,’}/An},
if there exists « : Vx.By,...,B, = C € ® such that C ~, A;.

17

Formalism: LP-Unif, LP-TM and LP-Struct

» Term-matching reduction:
P+ {Al, ...,Ai, ,An} 7k, {A], ...,O‘Bl, cey O'Bm, .‘.,An}, if
there exists « : Vx.By,...,B, = C € ® such that C —, A;.
» Unification reduction:
P+ {Al, ...,A,’, ,An} W'iv’Y"Y/ {’}/A], ...,’}/Bl, ...,’}/Bm, ...,’}/An},
if there exists « : Vx.By,...,B, = C € ® such that C ~, A;.
» Substitutional reduction:
D {A1, 0y Aly s An} oy {17AL, ey YA, o VALY, i there
exists x : Vx.By, ..., B, = C € ® such that C ~, A;.

17

Formalism: LP-Unif, LP-TM and LP-Struct

» Term-matching reduction:
P+ {Al, ...,Ai, ...,An} 7k, {A], ...,O‘Bl, ceny O'Bm, .‘.,An}, if
there exists « : Vx.By,...,B, = C € ® such that C —, A;.
» Unification reduction:
P+ {Al, ...,A,’, ,An} W'iv’Y"Y/ {’}/A], ...,’}/Bl, ...,’}/Bm, ...,’}/An},
if there exists « : Vx.By,...,B, = C € ® such that C ~, A;.
» Substitutional reduction:
D {A1, 0y Aly s An} oy {17AL, ey YA, o VALY, i there
exists x : Vx.By, ..., B, = C € ® such that C ~, A;.
» LP-TM: (9, —)
LP-Unif: (®,~)
LP-Struct: (&, =+ - 1)

17

LP-Struct: Stream

K : Stream(y) = Stream(cons(x, y))
For query Stream(cons(x, y)), in LP-Struct:

» {Stream(cons(x,y))} — {Stream(y)}

/17

LP-Struct: Stream

K : Stream(y) = Stream(cons(x, y))
For query Stream(cons(x, y)), in LP-Struct:

» {Stream(cons(x,y))} — {Stream(y)}

> cons(ri) /] {Stream(cons(xy,y;))} — {Stream(y;)}

/17

LP-Struct: Stream

K : Stream(y) = Stream(cons(x, y))
For query Stream(cons(x, y)), in LP-Struct:

» {Stream(cons(x,y))} — {Stream(y)}
> cons(ri) /] {Stream(cons(xy,y;))} — {Stream(y;)}
)

> [cons(xz,2)/y1,cons(x; ,cons(x2,52)) /3] {Stream(cons(x27y2) } —
{Stream(y,)}

LP-Struct: Stream

K : Stream(y) = Stream(cons(x, y))
For query Stream(cons(x, y)), in LP-Struct:

» {Stream(cons(x,y))} — {Stream(y)}
> cons(ri) /] {Stream(cons(xy,y;))} — {Stream(y;)}
)

> [cons(xz,2)/y1,cons(x; ,cons(x2,52)) /3] {Stream(cons(xz,yz) } —
{Stream(y,)}

> “[cons(x3,y3)/y2,cons(xz,cons(x3,y3)) /y1 ,cons (x; cons (x2,cons (x3,53))) /3]

{Stream(cons(x3,y3))} — {Stream(y3)}

/17

LP-Struct: Stream

K : Stream(y) = Stream(cons(x, y))
For query Stream(cons(x, y)), in LP-Struct:
» {Stream(cons(x,y))} — {Stream(y)}
> cons(ri) /] {Stream(cons(xy,y;))} — {Stream(y;)}
)

> [cons(xz,2)/y1,cons(x; ,cons(x2,52)) /3] {Stream(cons(xz,yz) } —
{Stream(y,)}

> “[cons(x3,y3)/y2,cons(xz,cons(x3,y3)) /y1 ,cons (x; cons (x2,cons (x3,53))) /3]

{Stream(cons(x3,y3))} — {Stream(y3)}

> ...

» Partial answer: cons(x;, cons(xz, cons(x3,y3)))/y

/17

Question: Relation between LP-Unif and LP-Struct?

» Both LP-Unif and LP-Struct are sound w.r.t. Herbrand
Model

10/17

Question: Relation between LP-Unif and LP-Struct?

» Both LP-Unif and LP-Struct are sound w.r.t. Herbrand
Model

» Operationally, They seem similar but a little different

10/17

Question: Relation between LP-Unif and LP-Struct?

» Both LP-Unif and LP-Struct are sound w.r.t. Herbrand
Model
» Operationally, They seem similar but a little different
» Again, the graph example
k1 : Connect(x,y), Connect(y, z) = Connect(x, z)
Ky : = Connect(node;, node;)
k3 : = Connect(node;, nodes)

10/17

Question: Relation between LP-Unif and LP-Struct?

» Both LP-Unif and LP-Struct are sound w.r.t. Herbrand
Model
» Operationally, They seem similar but a little different
» Again, the graph example
k1 : Connect(x,y), Connect(y, z) = Connect(x, z)
Ky : = Connect(node;, node;)
k3 : = Connect(node;, nodes)

» Connect(nodey, nodes) in LP-Unif terminates.

10/17

Question: Relation between LP-Unif and LP-Struct?

» Both LP-Unif and LP-Struct are sound w.r.t. Herbrand
Model

» Operationally, They seem similar but a little different

» Again, the graph example
k1 : Connect(x,y), Connect(y, z) = Connect(x, z)
Ky : = Connect(node;, node;)
k3 : = Connect(node;, nodes)

» Connect(nodey, nodes) in LP-Unif terminates.

» For LP-Struct:
® + {Connect(node;, nodes)} — o1, [nodey /x,nodes /2]
{Connect(nodey, y), Connect(y, nodes) } =4, jnode; /x,y/2]
{Connect(nodey, y;), Connect(y;, y), Connect(y, nodes)} —,

10/17

Formalization of a Type System

» Termrt == x| f(t1,....1n)
Atomic Formula A,B,C,D ::= P(t1,....t,)
(Horn) Formula F ::= Ay,...,A, = A
Proof Term p,e ::= k|a| da.e|eé€

11/17

Formalization of a Type System

» Termt == x| f(t1,...,tn)
Atomic Formula A,B,C,D ::= P(t1,....t,)
(Horn) Formula F ::= Ay,...,A, = A
Proof Term p,e ::= k|a| da.e|eé€
» Girard’s observation on intuitionistic sequent calculus with
atomic formulas

BFC AFD BDFC

— subst ABFEC cut

axiom

BFA oBFoC

11/17

Formalization of a Type System

» Termt == x| f(t1,...,tn)
Atomic Formula A,B,C,D ::= P(t1,....t,)
(Horn) Formula F ::= Ay,...,A, = A
Proof Term p,e ::= k|a| da.e|eé€
» Girard’s observation on intuitionistic sequent calculus with
atomic formulas

BFC AFD BDFC

m axiom m subst ABFEC cut

» Is Q provable?

11/17

Formalization of a Type System

» Termt == x| f(t1,...,tn)
Atomic Formula A,B,C,D ::= P(t1,....t,)
(Horn) Formula F ::= Ay,...,A, = A
Proof Term p,e ::= k|a| da.e|eé€
» Girard’s observation on intuitionistic sequent calculus with
atomic formulas

, B-rc . AFD BDFC
Bl_ALZXZOI’l’l UE'_UCsust A,E"C cu

» Is Q provable?
» We internalized “-” as “=" and add proof term annotations

. e. F
en
K Vx.F axtom e:Vx.F &
e:Vx.F e1:A=D e :B,D=C

e WAF

inst t

Aa.\b.(e2 b) (e a) :A,B=C o

11/17

Soundness of LP-TM and LP-Unif

» Soundness of LP-Unif
If & - {A} ~* 0, then there exists a proof e : Vx. = 7A
given axioms o.

» Soundness of LP-TM
If ® - {A} —* (0, then there exists a proof e : Vx. = A given
axioms &.

» For example, the LP-Unif reductions:
{Connect(node;, node3)} ~~,, [node; /x,nodes /2]
{Connect(nodey, y), Connect(y, nodes) }
{Connect(node,, nodes)} ~=, ()

» The reduction yields a proof (Ab.(k; b) k3) k; for the
formula =- Connect(node;, nodes).

"~ k,[node; /x,node; /y,nodes /7]

12/17

Useful Properties about the Type System

» Strong Normalization
If e : F, then e is strongly normalizable w.r.t. beta-reduction
on proof terms.

» First Orderness
If e : [Vx.]A = B given axioms @, then either e is a proof
term constant or it is normalizable to the form A\a.n, where
n is first order normal proof term.

» If e : [Vx.] = B, then e is normalizable to a first order proof
term.

13/17

Realizability Transformation

» Inspired from Kleene’s realizability:
¢ realize A = B iff for any number a realizes A and ¢(a)
realizes B.

14/17

Realizability Transformation

» Inspired from Kleene’s realizability:
¢ realize A = B iff for any number a realizes A and ¢(a)
realizes B.

» Representing First Order Proof Term

Let ¢ be a mapping from proof term variables to first order
terms.

—[a]g := ¢(a)
=[5 p1--paly = fu(lp1]g, -, [Pn]o)

14/17

Realizability Transformation

» Inspired from Kleene’s realizability:
¢ realize A = B iff for any number a realizes A and ¢(a)
realizes B.

» Representing First Order Proof Term

Let ¢ be a mapping from proof term variables to first order
terms.

= ldly := é(a)
=[5 p1--pulg = Fa(lp1]g: s [Pnls)
» For A = P(x), we write A[y] = P(x,y). Similarly, A[7] = P(x,1)

14/17

Realizability Transformation

» Inspired from Kleene’s realizability:
¢ realize A = B iff for any number a realizes A and ¢(a)
realizes B.

» Representing First Order Proof Term

Let ¢ be a mapping from proof term variables to first order
terms.

= la]s := ¢(a)

- [[”pb--pn]](ﬁ 5:fn([[171]]¢’ ey [[Pnﬂqﬁ)
» For A = P(x), we write A[y] = P(x,y). Similarly, A[7] = P(x,1)
» Realizability transformation F on normal proofs

14/17

Realizability Transformation

» Inspired from Kleene’s realizability:
¢ realize A = B iff for any number a realizes A and ¢(a)
realizes B.

» Representing First Order Proof Term

Let ¢ be a mapping from proof term variables to first order
terms.

= la]s := ¢(a)
- [[”pb--pn]](ﬁ 5:fn([[171]]¢’ ey [[Pnﬂqﬁ)
» For A = P(x), we write A[y] = P(x,y). Similarly, A[7] = P(x,1)
» Realizability transformation F on normal proofs
» F(k:Vx.Ay,..,Ay = B) :=
K VXY AL] s AnYm] = Bl (1, -0 V)]

14/17

Realizability Transformation

» Inspired from Kleene’s realizability:
¢ realize A = B iff for any number a realizes A and ¢(a)
realizes B.

» Representing First Order Proof Term

Let ¢ be a mapping from proof term variables to first order

terms.

= [aly == ¢(a)

- [[”pb--pn]](ﬁ 5:fn([[171]]¢’ ey [[Pnﬂqﬁ)
» For A = P(x), we write A[y] = P(x,y). Similarly, A[7] = P(x,1)
» Realizability transformation F on normal proofs

» F(k:Vx.Ay,..,Ay = B) :=
K VXY AL Y] s Amlym] = Blfie (V15 - ym)]

» F(Aa.n:[Vx].Ay,...,An = B) ==
Aa.n : [VxVYLA 1], o Anlym] = B[[[”ﬂ[x/d]

14/17

Realizability Transformation: Example

» Connectivity after realizability transformation:
1 : Connect(x, y, u), Connect(y, z, u2) = Connect(x, z, f, (u1, u2))
k2 : = Connect(node;, node;, cx,)

k3 : = Connect(node;, nodes, ¢,)

15/17

Realizability Transformation: Example

» Connectivity after realizability transformation:
1 : Connect(x, y, u), Connect(y, z, u2) = Connect(x, z, f, (u1, u2))
k2 : = Connect(node;, node;, cx,)

k3 : = Connect(node;, nodes, ¢,)

» LP-Struct reduction for Connect(node;, nodes, u).

15/17

Realizability Transformation: Example

» Connectivity after realizability transformation:
1 : Connect(x, y, u), Connect(y, z, u2) = Connect(x, z, f, (u1, u2))
k2 : = Connect(node;, node;, cx,)

k3 : = Connect(node;, nodes, ¢,)
» LP-Struct reduction for Connect(node;, nodes, u).

» {Connect(node;, nodes, u)}

15/17

Realizability Transformation: Example

» Connectivity after realizability transformation:
1 : Connect(x, y, u), Connect(y, z, u2) = Connect(x, z, f, (u1, u2))
k2 : = Connect(node;, node;, cx,)

k3 : = Connect(node;, nodes, ¢,)
» LP-Struct reduction for Connect(node;, nodes, u).

» {Connect(node;, nodes, u)}

> P ki,[node; /x,nodes /z.fr, (u1,12) /1]
{Connect(node;, nodes, f,;, (u1, u2))} —,
{Connect(nodey, y, u;), Connect(y, nodes, u,) }

15/17

Realizability Transformation: Example

» Connectivity after realizability transformation:
1 : Connect(x, y, u), Connect(y, z, u2) = Connect(x, z, f, (u1, u2))
k2 : = Connect(node;, node;, cx,)

k3 : = Connect(node;, nodes, ¢,)
» LP-Struct reduction for Connect(node;, nodes, u).

» {Connect(node;, nodes, u)}

> P ki,[node; /x,nodes /z.fr, (u1,12) /1]
{Connect(node;, nodes, f,;, (u1, u2))} —,
{Connect(nodey, y, u;), Connect(y, nodes, u,) }

> (_hiz,[%z /u1,node; /x,node /y,,nodes /z.fis| (¢r,tt2) /ul]

15/17

Realizability Transformation: Example

» Connectivity after realizability transformation:
1 : Connect(x, y, u), Connect(y, z, u2) = Connect(x, z, f, (u1, u2))
k2 : = Connect(node;, node;, cx,)

k3 : = Connect(node;, nodes, ¢,)
» LP-Struct reduction for Connect(node;, nodes, u).

» {Connect(node;, nodes, u)}

> ;)nl,[nodel/x,nodm/z,f,{l(ul,uz)/u]
{Connect(node;, nodes, f,;, (u1, u2))} —,
{Connect(nodey, y, u;), Connect(y, nodes, u,) }

> 74, [cxy /ur,node; /x,n0des /y,,n0des /2., (i sti2) /]

» {Connect(node;, node;, ¢,), Connect(node,, nodes, uy)} — 4,
{Connect(node,, nodes, u)}

15/17

Realizability Transformation: Example

» Connectivity after realizability transformation:
1 : Connect(x, y, u), Connect(y, z, u2) = Connect(x, z, f, (u1, u2))
k2 : = Connect(node;, node;, cx,)

k3 : = Connect(node;, nodes, ¢,)
» LP-Struct reduction for Connect(node;, nodes, u).

» {Connect(node;, nodes, u)}

> P ki,[node; /x,nodes /z.fr, (u1,12) /1]
{Connect(node;, nodes, f,;, (u1, u2))} —,
{Connect(nodey, y, u;), Connect(y, nodes, u,) }

> [y /i1 noder /x,n00es /3, m0des /2 ey (g stz) /]

» {Connect(node;, node;, ¢,), Connect(node,, nodes, uy)} — 4,
{Connect(node,, nodes, u)}

> €_>n3,[c,‘.3 /U2,y [ur,nodes /z,node; /x,nodes /y.fis (Cry 5Criy) /1]
{Connect(node,, nodes, ¢y,)} —4; 0

15/17

Realizability Transformation: Example

» Connectivity after realizability transformation:
1 : Connect(x, y, u), Connect(y, z, u2) = Connect(x, z, f, (u1, u2))
k2 : = Connect(node;, node;, cx,)

k3 : = Connect(node;, nodes, ¢,)
» LP-Struct reduction for Connect(node;, nodes, u).

» {Connect(node;, nodes, u)}

> P ki,[node; /x,nodes /z.fr, (u1,12) /1]
{Connect(node;, nodes, f,;, (u1, u2))} —,
{Connect(nodey, y, u;), Connect(y, nodes, u,) }

> [y /i1 noder /x,n00es /3, m0des /2 ey (g stz) /]

» {Connect(node;, node;, ¢,), Connect(node,, nodes, uy)} — 4,
{Connect(node,, nodes, u)}

> €_>n3,[c,‘.3 /U2,y [ur,nodes /z,node; /x,nodes /y.fis (Cry 5Criy) /1]
{Connect(node,, nodes, ¢y,)} —4; 0

> Answer: f. (i, Cry)/u

15/17

Results about Realizability Transformation

» Termination of term-matching reduction
For any (®, —# - <), we have (F(®), =" - <)
» Preserve Provability
Given axioms @, if e : [Vx].A = B holds with e in normal
form, then F(e : [Vx].A = B) holds for axioms F(®)
» Recording Proof
Suppose F(®) - {A[y]} ~Z 0. We have p : Vx. = yA[vy] for
F(®), where pis in normal form and [p]y = vy
» Preserve Unification
O {A} ~* 0iff F(®) - {AD]} ~* 0
» Operational Equivalent of LP-Unif and LP-Struct
F(®) - {A[y]} ~* 0iff F(®) - {A[y]} (=Y - =1)*0.

16/17

Summary and Future Work

» We define a type system to model LP-TM, LP-Unif and
LP-Struct

» We define a transformation called realizability
transformation

» Realizability transformation preserves proof content

» We show LP-Unif and LP-Struct are operationally
equivalent after the tranformation

» Future works: Apply LP-TM to analyze type class inference
in functional langauges

17/17

Future Work

» In type class inference, proof has computational meaning:

class Eg A where
eq :: Eg A => A -> A -> Bool

instance => Eqg Int where
instance Eq A => Eq (List A) where

test = eq [] [1]

» test function will generate a query Eq (List Int)

» Eg (List Int) ==> Eqg Int ==> empty

» The proof of the query Eq (List Int) will be passed as
an input for eq

18/17

