
Can CoALP be useful for CoCo?

Katya Komendantskaya, joint work with J. Power, M. Schmidt,
J. Heras, V. Komendantsky

School of Computing, University of Dundee, UK

CoCo’14,
8 May 2014

Katya (Dundee) CoALP for Type Inference CoCo’14 1 / 22

CoALP-TI

”Coalgebraic Logic Programming for Type Inference” – EPSRC grant, Sep
2013 – Sep 2016. (Joint with J.Power, U. Bath)
”Coalgebraic Logic Programming” is an LP dialect with added corecursion
and parallelism.

Year1 (September 2013 - September 2014) Well-tuned Haskell
implementation

Year2 Experiments on using CoALP for type-inference in various languages;

Year3 Informed implementation of CoALP-TI in one of the above.

Katya (Dundee) CoALP for Type Inference CoCo’14 2 / 22

Outline

1 Motivation: LP in Type inference

2 Coalgebraic Logic Programming

3 Future directions

Katya (Dundee) CoALP for Type Inference CoCo’14 3 / 22

Outline

1 Motivation: LP in Type inference

2 Coalgebraic Logic Programming

3 Future directions

Katya (Dundee) CoALP for Type Inference CoCo’14 3 / 22

Outline

1 Motivation: LP in Type inference

2 Coalgebraic Logic Programming

3 Future directions

Katya (Dundee) CoALP for Type Inference CoCo’14 3 / 22

Milner, 1978

“A theory of Type Polymorphism in Programming”

An elegant match between polymorphic λ-calculus and type inference by
means of Robinson’s unification/resolution algorithm.

Katya (Dundee) CoALP for Type Inference CoCo’14 4 / 22

Milner, 1978

“A theory of Type Polymorphism in Programming”
An elegant match between polymorphic λ-calculus and type inference by
means of Robinson’s unification/resolution algorithm.

Katya (Dundee) CoALP for Type Inference CoCo’14 4 / 22

Trend in type inference:
improvement in expressiveness of the underlying type system, e.g., in
terms of

Dependent Types,

Type Classes [Wadler&Blott 89],

Generalised Algebraic Types (GADTs) [Peyton Jones & al, 2006]

Dependent Type Classes [Sozeau & al 08] and

Canonical Structures [Gonthier& al 11].

Milner-style decidable type inference does not always suffice (e.g. the
principal type may no longer exist), and TI requires additional inference
algorithms.

Implementations of new type inference algorithms include a variety of
first-order decision procedures, notably Unification and Logic
Programming (LP) [Peyton Jones & al, 2006], Constraint LP [Odersky
Sulzmann, Vytiniotis & many more 1999-], LP embedded into interactive
tactics (Coq’s eauto) Sozeau & al. 08], and LP supplemented by rewriting
[Gonthier & al, 11].

Katya (Dundee) CoALP for Type Inference CoCo’14 5 / 22

Trend in type inference:
improvement in expressiveness of the underlying type system, e.g., in
terms of

Dependent Types,

Type Classes [Wadler&Blott 89],

Generalised Algebraic Types (GADTs) [Peyton Jones & al, 2006]

Dependent Type Classes [Sozeau & al 08] and

Canonical Structures [Gonthier& al 11].

Milner-style decidable type inference does not always suffice (e.g. the
principal type may no longer exist), and TI requires additional inference
algorithms.
Implementations of new type inference algorithms include a variety of
first-order decision procedures, notably Unification and Logic
Programming (LP) [Peyton Jones & al, 2006], Constraint LP [Odersky
Sulzmann, Vytiniotis & many more 1999-], LP embedded into interactive
tactics (Coq’s eauto) Sozeau & al. 08], and LP supplemented by rewriting
[Gonthier & al, 11].

Katya (Dundee) CoALP for Type Inference CoCo’14 5 / 22

Example: type inference with Polymorphic types

List Length in Haskell

length :: [a] -> Integer

length [] = 0

length (x:xs) = 1 + length xs

Logic program for type inference

cons(X) ← X = Y→ list(Y)→ list(Y).
plus(X) ← X = int→ int→ int.
nil(X) ← X = list(Y).
length(X)← (X = Y→ Z) & nil(Y) & Z = int & cons(W) &

(W = W1→ W2→ Y) & plus(U) &
(U = int→ Z→ Z) & W2 = Y.

Query: length(X)?
Answer (any existing PROLOG version): X = list()→ int.

Katya (Dundee) CoALP for Type Inference CoCo’14 6 / 22

Trend to do more by type-inference:

... session types,

... writing contracts by means of types:

Example

Vytiniotis et al. ”HALO: Haskell to Logic Through Denotational
Semantics” [POPL’13]
f xs = head (reverse (True : xs))

g xs = head (reverse xs)

Both f and g are well typed and ”‘can’t go wrong”’ in Milner’s sense, but
g will crash for empty list, and f will never crash.
Contract:

reverse ∈ (xs : CF)→ {ys | null xs <=> null ys}

Requires strong first-order type inference engines: Z3, Vampire, E...

Katya (Dundee) CoALP for Type Inference CoCo’14 7 / 22

Could it get any better?

Clear trend on Type theory side: increase in type expressivenes
(dependent types, GADTs, type classes, session types, etc etc)

Chaotic use of type-inference engines, also known in the literature as
“using off-the-shelf” first order TPs.

Would it pay-off to get more conceptually elegant on type inference
side? – especially bearing in mind the big emphasis on type inference
in more expressive type systems.

Would our ”Coalgebraic Logic programming” grow to become a
type-inference specific theorem prover (with stronger theoretical
background and motivation than state-of-the-art SAT/SMT-solvers)?

Katya (Dundee) CoALP for Type Inference CoCo’14 8 / 22

Could it get any better?

Clear trend on Type theory side: increase in type expressivenes
(dependent types, GADTs, type classes, session types, etc etc)

Chaotic use of type-inference engines, also known in the literature as
“using off-the-shelf” first order TPs.

Would it pay-off to get more conceptually elegant on type inference
side? – especially bearing in mind the big emphasis on type inference
in more expressive type systems.

Would our ”Coalgebraic Logic programming” grow to become a
type-inference specific theorem prover (with stronger theoretical
background and motivation than state-of-the-art SAT/SMT-solvers)?

Katya (Dundee) CoALP for Type Inference CoCo’14 8 / 22

Could it get any better?

Clear trend on Type theory side: increase in type expressivenes
(dependent types, GADTs, type classes, session types, etc etc)

Chaotic use of type-inference engines, also known in the literature as
“using off-the-shelf” first order TPs.

Would it pay-off to get more conceptually elegant on type inference
side? – especially bearing in mind the big emphasis on type inference
in more expressive type systems.

Would our ”Coalgebraic Logic programming” grow to become a
type-inference specific theorem prover (with stronger theoretical
background and motivation than state-of-the-art SAT/SMT-solvers)?

Katya (Dundee) CoALP for Type Inference CoCo’14 8 / 22

Could it get any better?

Clear trend on Type theory side: increase in type expressivenes
(dependent types, GADTs, type classes, session types, etc etc)

Chaotic use of type-inference engines, also known in the literature as
“using off-the-shelf” first order TPs.

Would it pay-off to get more conceptually elegant on type inference
side? – especially bearing in mind the big emphasis on type inference
in more expressive type systems.

Would our ”Coalgebraic Logic programming” grow to become a
type-inference specific theorem prover (with stronger theoretical
background and motivation than state-of-the-art SAT/SMT-solvers)?

Katya (Dundee) CoALP for Type Inference CoCo’14 8 / 22

CoALP: what is it about?

inspired by coalgebraic fibrational semantics;

explores the tree-structure of partial proofs – ”coinductive trees”;

uses lazy guarded corecursion using measures of corecursive steps
given by coinductive trees (cf. ”clocked corecursion”);

parallel...

CoALP in one example

Katya (Dundee) CoALP for Type Inference CoCo’14 9 / 22

Stream of Fibonacci numbers:

Falls into infinite loops in Prolog and Prolog-like version of CoLP [Gupta
et al. 2007] [Both are eager...] Those powerful SAT/SMT solvers would
not do it either.

1. add(0,Y,Y).

2. add(s(X),Y,s(Z)) :- add(X,Y,Z).

3. fibs(X,Y,cons(X,S)) :- add(X,Y,Z), fibs(Y,Z,S).

4. nth(0,cons(X,S),X).

5. nth(s(N),cons(X,S),Y) :- nth(N,S,Y).

6. fib(N,X) :- fibs(0,s(0),S), nth(N,S,X).

7. fib2(X) :- fib(s(s(0)),X).

Katya (Dundee) CoALP for Type Inference CoCo’14 10 / 22

Examples of derivations with Fib: lazy step 1

fib2(X)

fib(s2(0)),X)

fibs(0,s(0),S) nth(s2(0),S,X)

5,S/c(X1,S1)−−−−−−−−→

→

1. add(0,Y,Y).

2. add(s(X),Y,s(Z)) :-

add(X,Y,Z).

3. fibs(X,Y,cons(X,S)) :-

add(X,Y,Z), fibs(Y,Z,S).

4. nth(0,cons(X,S),X).

5. nth(s(N),cons(X,S),Y) :-

nth(N,S,Y).

6. fib(N,X) :- fibs(0,s(0),S),

nth(N,S,X).

7. fib2(X) :- fib(s(s(0)),X).

Katya (Dundee) CoALP for Type Inference CoCo’14 11 / 22

Examples of derivations with Fib: lazy step 1

fib2(X)

fib(s2(0)),X)

fibs(0,s(0),S) nth(s2(0),S,X)

5,S/c(X1,S1)−−−−−−−−→

→

1. add(0,Y,Y).

2. add(s(X),Y,s(Z)) :-

add(X,Y,Z).

3. fibs(X,Y,cons(X,S)) :-

add(X,Y,Z), fibs(Y,Z,S).

4. nth(0,cons(X,S),X).

5. nth(s(N),cons(X,S),Y) :-

nth(N,S,Y).

6. fib(N,X) :- fibs(0,s(0),S),

nth(N,S,X).

7. fib2(X) :- fib(s(s(0)),X).

Katya (Dundee) CoALP for Type Inference CoCo’14 11 / 22

Examples of derivations with Fib: lazy step 2

fib2(X)

fib(s2(0)),X)

fibs(0,s(0),c(X1,S1)) nth(s2(0),c(X1,S1),X)

nth(s(0),S1,X)

5,S1/c(X2,S2)−−−−−−−−−→

→

1. add(0,Y,Y).

2. add(s(X),Y,s(Z)) :-

add(X,Y,Z).

3. fibs(X,Y,cons(X,S)) :-

add(X,Y,Z), fibs(Y,Z,S).

4. nth(0,cons(X,S),X).

5. nth(s(N),cons(X,S),Y) :-

nth(N,S,Y).

6. fib(N,X) :- fibs(0,s(0),S),

nth(N,S,X).

7. fib2(X) :- fib(s(s(0)),X).

Katya (Dundee) CoALP for Type Inference CoCo’14 12 / 22

Examples of derivations with Fib: lazy step 2

fib2(X)

fib(s2(0)),X)

fibs(0,s(0),c(X1,S1)) nth(s2(0),c(X1,S1),X)

nth(s(0),S1,X)

5,S1/c(X2,S2)−−−−−−−−−→

→

1. add(0,Y,Y).

2. add(s(X),Y,s(Z)) :-

add(X,Y,Z).

3. fibs(X,Y,cons(X,S)) :-

add(X,Y,Z), fibs(Y,Z,S).

4. nth(0,cons(X,S),X).

5. nth(s(N),cons(X,S),Y) :-

nth(N,S,Y).

6. fib(N,X) :- fibs(0,s(0),S),

nth(N,S,X).

7. fib2(X) :- fib(s(s(0)),X).

Katya (Dundee) CoALP for Type Inference CoCo’14 12 / 22

Examples of derivations with Fib: lazy step 3

fib2(X)

fib(s2(0)),X)

fibs(0,s(0),c(X1,c(X2,S2))) nth(s2(0),c(X1,c(X2,S2)),X)

nth(s(0),c(X2,S2),X)

nth(0,S2,X)

S2/c(X,S3)−−−−−−−→

→

Katya (Dundee) CoALP for Type Inference CoCo’14 13 / 22

Examples of derivations with Fib: lazy step 4

fib2(X)

fib(s2(0)),X)

fibs(0,s(0),c(X1,c(X2,c(X,S3)))) nth(s2(0),c(X1,c(X2,c(X,S3))),X)

nth(s(0),c(X2,c(X,S3)),X)

nth(0,c(X,S3),X)

nth(0,c(X,S3),X)

�

X1/0−−−→

→

Katya (Dundee) CoALP for Type Inference CoCo’14 14 / 22

Examples of derivations with Fib: lazy step 5

fib2(X)

fib(s2(0)),X)

fibs(0,s(0),c(0,c(X2,c(X,S3))))

a(0,s(0),Z) fibs(s(0),Z,c(X2,c(X,S3)))

nth(s2(0),c(0,c(X2,c(X,S3))),X)

nth(s(0),c(X2,c(X,S3)),X)

nth(0,c(X,S3),X)

nth(0,c(X,S3),X)

�

Z/0−−→

→

Katya (Dundee) CoALP for Type Inference CoCo’14 15 / 22

Examples of derivations with Fib: lazy step 6

fib2(X)

fib(s2(0)),X)

fibs(0,s(0),c(0,c(X2,c(X,S3))))

a(0,s(0),s(0))

�

fibs(s(0),s(0),c(X2,c(X,S3)))

nth(s2(0),c(0,c(X2,c(X,S3))),X)

nth(s(0),c(X2,c(X,S3)),X)

nth(0,c(X,S3),X)

nth(0,c(X,S3),X)

�

X2/s(0)−−−−−→

→

Katya (Dundee) CoALP for Type Inference CoCo’14 16 / 22

Examples of derivations with Fib: lazy step 7
fib2(X)

fib(s2(0)),X)

fibs(0,s(0),c(0,c(s(0),c(X,S3))))

a(0,s(0),s(0))

�

fibs(s(0),s(0),c(s(0),c(X,S3)))

a(s(0),s(0),Z) fibs(s(0),Z,c(X,S3))

nth(s2(0),c(0,c(s(0),c(X,S3))),X)

nth(s(0),c(s(0),c(X,S3)),X)

nth(0,c(X,S3),X)

nth(0,c(X,S3),X)

�

Z/s(s(0))−−−−−−→

→
Katya (Dundee) CoALP for Type Inference CoCo’14 17 / 22

Examples of derivations with Fib: lazy step 8
fib2(X)

fib(s2(0)),X)

fibs(0,s(0),c(0,c(s(0),c(X,S3))))

a(0,s(0),s(0))

�

fibs(s(0),s(0),c(s(0),c(X,S3)))

a(s(0),s(0),s(s(0)))

a(0,s(0),s(0))

�

fibs(s(0),s(s(0)),c(X,S3))

nth(s2(0),c(0,c(s(0),c(X,S3))),X)

nth(s(0),c(s(0),c(X,S3)),X)

nth(0,c(X,S3),X)

nth(0,c(X,S3),X)

�

X/s(0)−−−−→

→
Katya (Dundee) CoALP for Type Inference CoCo’14 18 / 22

Examples of derivations with Fib: lazy step 9

fib2(s(0))

fib(s2(0)),s(0))

fibs(0,s(0),c(0,c(s(0),c(s(0),S3))))

a(0,s(0),s(0))

�

fibs(s(0),s(0),c(s(0),c(s(0),S3)))

a(s(0),s(0),s(s(0)))

a(0,s(0),s(0))

�

fibs(s(0),s(s(0)),c(s(0),S3))

a(s(0),s(s(0)),Z) fibs(s(s(0)),Z,S3)

nth(s2(0),c(0,c(s(0),c(s(0),S3))),s(0))

nth(s(0),c(s(0),c(s(0),S3)),s(0))

nth(0,c(s(0),S3),s(0))

nth(0,c(s(0),S3),s(0))

�

Katya (Dundee) CoALP for Type Inference CoCo’14 19 / 22

Logic Programming dialects, compared

Prolog Parallel Prolog Co-LP CoALP

Fib example No No No
Yes

Execution Eager Eager Eager
Lazy

Corecursion

No No by Regular Loop
detection

Guardedness by
constructors

Mode of execu-
tion

Sequential Parallel Sequential Parallel

Declarative se-
mantics

lfp lfp gfp (restricted) coalgebraic

Operational se-
mantics

transitions;
states: lists of
formulae

transitions;
states: lists of
formulae

transitions;
states: lists of
formulae

transitions;
states: coinduc-
tive trees

Katya (Dundee) CoALP for Type Inference CoCo’14 20 / 22

Logic Programming dialects, compared

Prolog Parallel Prolog Co-LP CoALP

Fib example No No No
Yes

Execution Eager Eager Eager
Lazy

Corecursion
No No by Regular Loop

detection
Guardedness by
constructors

Mode of execu-
tion

Sequential Parallel Sequential Parallel

Declarative se-
mantics

lfp lfp gfp (restricted) coalgebraic

Operational se-
mantics

transitions;
states: lists of
formulae

transitions;
states: lists of
formulae

transitions;
states: lists of
formulae

transitions;
states: coinduc-
tive trees

Katya (Dundee) CoALP for Type Inference CoCo’14 20 / 22

Logic Programming dialects, compared

Prolog Parallel Prolog Co-LP CoALP

Fib example No No No
Yes

Execution Eager Eager Eager
Lazy

Corecursion
No No by Regular Loop

detection
Guardedness by
constructors

Mode of execu-
tion Sequential Parallel Sequential Parallel

Declarative se-
mantics

lfp lfp gfp (restricted) coalgebraic

Operational se-
mantics

transitions;
states: lists of
formulae

transitions;
states: lists of
formulae

transitions;
states: lists of
formulae

transitions;
states: coinduc-
tive trees

Katya (Dundee) CoALP for Type Inference CoCo’14 20 / 22

Logic Programming dialects, compared

Prolog Parallel Prolog Co-LP CoALP

Fib example No No No
Yes

Execution Eager Eager Eager
Lazy

Corecursion
No No by Regular Loop

detection
Guardedness by
constructors

Mode of execu-
tion Sequential Parallel Sequential Parallel

Declarative se-
mantics lfp lfp gfp (restricted) coalgebraic

Operational se-
mantics

transitions;
states: lists of
formulae

transitions;
states: lists of
formulae

transitions;
states: lists of
formulae

transitions;
states: coinduc-
tive trees

Katya (Dundee) CoALP for Type Inference CoCo’14 20 / 22

Logic Programming dialects, compared

Prolog Parallel Prolog Co-LP CoALP

Fib example No No No
Yes

Execution Eager Eager Eager
Lazy

Corecursion
No No by Regular Loop

detection
Guardedness by
constructors

Mode of execu-
tion Sequential Parallel Sequential Parallel

Declarative se-
mantics lfp lfp gfp (restricted) coalgebraic

Operational se-
mantics transitions;

states: lists of
formulae

transitions;
states: lists of
formulae

transitions;
states: lists of
formulae

transitions;
states: coinduc-
tive trees

Katya (Dundee) CoALP for Type Inference CoCo’14 20 / 22

Directions we are exploring

Using CoALP in Hume: for analysis of stream-based networks and/or
for type inference [thanks to Hans-Wolfgang for discussions];

Type-inference in Haskell;

SSReflect: overloading in canonical structures currently requires the
use of back-tracking in LP-like algorithm. It could be parallel CoALP
execution instead;

CoALP for global type analysis in object-oriented languages: CoLP is
already used for that.

...TBC...

Katya (Dundee) CoALP for Type Inference CoCo’14 21 / 22

The end

The best reference so far is

Komendantskaya, Power, Schmidt: Coalgebraic Logic Programming:
from Semantics to Implementation, Journal of Logic and
Computation, 2014.

A paper on implementing lazy guarded corecursion in CoALP using
Haskell is in preparation...

CoALP webpage has various prototype implementations to play
with... http://staff.computing.dundee.ac.uk/katya/CoALP/

We will be happy to apply CoALP for TI (or other purposes) in *YOUR*
language!

Katya (Dundee) CoALP for Type Inference CoCo’14 22 / 22

	Motivation: LP in Type inference
	Coalgebraic Logic Programming
	Future directions

