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CoALP-TI

" Coalgebraic Logic Programming for Type Inference” — EPSRC grant, Sep
2013 — Sep 2016. (Joint with J.Power, U. Bath)

" Coalgebraic Logic Programming” is an LP dialect with added corecursion
and parallelism.

Yearl (September 2013 - September 2014) Well-tuned Haskell
implementation

Year2 Experiments on using CoALP for type-inference in various languages;
Year3 Informed implementation of CoOALP-TI in one of the above.
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Milner, 1978

“A theory of Type Polymorphism in Programming”
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Milner, 1978

“A theory of Type Polymorphism in Programming”
An elegant match between polymorphic A-calculus and type inference by
means of Robinson’s unification/resolution algorithm.
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Trend in type inference:

improvement in expressiveness of the underlying type system, e.g., in
terms of

@ Dependent Types,

o Type Classes [Wadler&Blott 89],

o Generalised Algebraic Types (GADTs) [Peyton Jones & al, 2006]
o Dependent Type Classes [Sozeau & al 08] and

e Canonical Structures [Gonthier& al 11].

Milner-style decidable type inference does not always suffice (e.g. the
principal type may no longer exist), and TI requires additional inference
algorithms.
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improvement in expressiveness of the underlying type system, e.g., in
terms of

@ Dependent Types,

o Type Classes [Wadler&Blott 89],

o Generalised Algebraic Types (GADTs) [Peyton Jones & al, 2006]
o Dependent Type Classes [Sozeau & al 08] and

e Canonical Structures [Gonthier& al 11].

Milner-style decidable type inference does not always suffice (e.g. the
principal type may no longer exist), and TI requires additional inference
algorithms.

Implementations of new type inference algorithms include a variety of
first-order decision procedures, notably Unification and Logic
Programming (LP) [Peyton Jones & al, 2006], Constraint LP [Odersky
Sulzmann, Vytiniotis & many more 1999-], LP embedded into interactive
tactics (Coq's eauto) Sozeau & al. 08], and LP supplemented by rewriting
[Gonthier & al, 11].
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Example: type inference with Polymorphic types

List Length in Haskell

length :: [a] -> Integer
length [1 = 0

length (x:xs) = 1 + length xs

Logic program for type inference

cons(X) <+ X=Y — list(Y) — list(Y).

plus(X) <« X=int — int — int.

nil(X) <« X = list(Y).

length(X) <~ (X =Y — Z) & nil(Y) & Z = int & cons(W) &
(W=1W1— W2 — Y) & plus(U) &
(U=int —2Z—2) & W2 =Y.

Query: length(X)?
Answer (any existing PROLOG version): X = list(_) — int.
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Trend to do more by type-inference:

. session types,
. writing contracts by means of types:

Example

Vytiniotis et al. "HALO: Haskell to Logic Through Denotational
Semantics” [POPL'13]

f xs = head (reverse (True : xs))

g xs = head (reverse xs)

Both f and g are well typed and "‘can’t go wrong”' in Milner's sense, but
g will crash for empty list, and £ will never crash.

Contract:

reverse € (xs : CF) — {ys | null xs <=> null ys}

Requires strong first-order type inference engines: Z3, Vampire, E...
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Could it get any better?

@ Clear trend on Type theory side: increase in type expressivenes
(dependent types, GADTs, type classes, session types, etc etc)
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Could it get any better?

@ Clear trend on Type theory side: increase in type expressivenes
(dependent types, GADTs, type classes, session types, etc etc)

o Chaotic use of type-inference engines, also known in the literature as
“using off-the-shelf” first order TPs.

@ Would it pay-off to get more conceptually elegant on type inference
side? — especially bearing in mind the big emphasis on type inference
in more expressive type systems.

@ Would our " Coalgebraic Logic programming” grow to become a
type-inference specific theorem prover (with stronger theoretical
background and motivation than state-of-the-art SAT /SMT-solvers)?
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CoALP: what is it about?

@ inspired by coalgebraic fibrational semantics;
@ explores the tree-structure of partial proofs — " coinductive trees”;

@ uses lazy guarded corecursion using measures of corecursive steps
given by coinductive trees (cf. "clocked corecursion”);

o parallel...

CoALP in one example
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Stream of Fibonacci numbers:

Falls into infinite loops in Prolog and Prolog-like version of CoLP [Gupta
et al. 2007] [Both are eager...] Those powerful SAT/SMT solvers would
not do it either

add(0,Y,Y).

add(s(X),Y,s(2)) :- add(X,Y,Z).
fibs(X,Y,cons(X,S)) :- add(X,Y,Z), fibs(Y,Z,S).
nth(0,cons(X,S) ,X).

nth(s(N),cons(X,S),Y) :- nth(N,S,Y).

fib(N,X) :- fibs(0,s(0),S), nth(N,S,X).

fib2(X) :- £ib(s(s(0)),X).

~N o O W N
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Examples of derivations with Fib: lazy step 1

£ib2(X)

%

£ib(s2(0)),X)

A

£ibs(0,s(0),8)  nth(s2(0),S,X)

5,5/c(X1,51)
e
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Examples of derivations with Fib: lazy step 1

£ib2(X)

|

£ib(s2(0)),X)

A

£ibs(0,s(0),8)  nth(s2(0),S,X)

5,8/c(X1,81)
e

Katya (Dundee)

1. add(0,Y,Y).

2. add(s(X),Y,s(Z)) :-

add(X,Y,Z).

3. fibs(X,Y,cons(X,S))

add(X,Y,z), fibs(Y,Z,S).
4. nth(0,cons(X,S),X).

5. nth(s(N),cons(X,S),Y)

nth(N,S,Y).

6. fib(N,X) :- fibs(0,s(0),S),
nth(N,S,X).

7. fib2(X) :- fib(s(s(0)),X).
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Examples of derivations with Fib: lazy step 2

£ib2(X)

+

£ib(s2(0)),X)

A

£ibs(0,5(0),c(X1,51))  nth(s2(0),c(X1,51),X)

l

nth(s(0),81,X)

5,81/c(X2,82)
-
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Examples of derivations with Fib: lazy step 2

£ib2(X)

+

£ib(s2(0)),X)

A

fibs(0,s(0),c(X1,51)) nth(s2(0),c(X1,51),X)

+

nth(s(0),81,X)

5,81/c(X2,82)
—_

1. add(o,Y,Y).
2. add(s(X),Y,s(Z)) :-

add(X,Y,Z).

3. fibs(X,Y,cons(X,S)) :-
add(X,Y,z), fibs(Y,Z,S).
4. nth(0,cons(X,S),X).

5. nth(s(),

nth(N,S,Y).
6. fib(N,X)
nth(N,S,X).
7. £ib2(X)

cons(X,S),Y) :-

:- fibs(0,s(0),S),

:— £fib(s(s(0)),X).
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Examples of derivations with Fib: lazy step 3

£ib2(X)

+

£ib(s2(0)),X)

/l\

£ibs(0,s(0) ,c(X1,c(X2,82))) nth(s?(0),c(X1,c(X2,52)),X)

i

nth(s(0),c(X2,52),X)

{

nth(0,52,X)

52/c(X,83)
I,
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Examples of derivations with Fib: lazy step 4

£ib2(X)

|

£ib(s%(0)),X)

/L\

£ibs(0,s(0),c(X1,c(X2,c(X,83)))) nth(s?(0),c(X1,c(X2,c(X,53))),X)

nth(s(0),c(X2,c(X,83)),X)
nth(0,c(X,83),X)

nth(0,c(X,83),X)
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Examples of derivations with Fib: lazy step 5

£ib2(X)

|

£ib(s%(0)),X)

/\

fibs(0,s(0),c(0,c(X2,c(X,S3))))

nth(s2(0),c(0,c(X2,c(X,$3))),X)

a(0,s(0),2) fibs(s(0),Z,c(X2,c(X,S3))) nth(s(0),c(X2,c(X,S3)),X)

nth(0,c(X,83),X)

nth(0,c(X,83),X)
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Examples of derivations with Fib: lazy step 6

£ib2(X)

|

£ib(s2(0)),X)

/\

fibs(0,s(0),c(0,c(X2,c(X,S3))))

A

a(0,s(0),s(0)) £ibs(s(0),s(0),c(X2,c(X,83)))

nth(s%(0),c(0,c(X2,c(X,53))),X)

nth(s(0),c(X2,c(X,83)),X)

nth(0,c(X,83),X)

nth(0,c(X,83),X)
X2/s(0)
s
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Examples of derivations with Fib: lazy step 7

£ib2(X)

|

£ib(s2(0)),X)

/‘\

£ibs(0,s(0),c(0,c(s(0),c(X,83)))) nth(s2(0),c(0,c(s(0) ,c(X,83))),X)
a(0,s(0),s(0)) £ibs(s(0),5(0),c(s(0),c(X,83))) nth(s(0),c(s(0),c(X,83)),X)
O a(s(0),s(0),2) fibs(s(0),Z,c(X,S83)) nth(0,c(X,S3),X)

nth(0,c(X,83),X)
Z/s(s(0))
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Examples of derivations with Fib: lazy step 8

£ib2(X)

|

£ib(s2(0)),X)

/\

£ibs(0,s(0),c(0,c(s(0),c(X,83))))

A

a(0,s(0),s(0)) £ibs(s(0),s(0),c(s(0),c(X,83)))

A

O a(s(0),s(0),s(s(0))) fibs(s(0),s(s(0)),c(X,83))

|

a(0,s(0),s(0))

X/s(0)
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nth(s?(0),c(0,c(s(0),c(X,53))),X)

nth(s(0),c(s(0),c(X,S3)),X)

nth(0,c(X,83),X)

nth(0,c(X,83),X)
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Examples of derivations with Fib: lazy step 9

£ib2(s(0))

+

£ib(s2(0)),s(0))

/L\

£ibs(0,s(0),c(0,c(s(0),c(s(0),83)))) nth(sZ(O),c(O,c(s(O) ,c(s(0),83))),s(0))

/J\ +

a(0,s(0),s(0)) £ibs(s(0),s(0),c(s(0),c(s(0),83))) nth(s(0),c(s(0),c(s(0),83)),s(0))
O a(s(0),s(0),s(s(0))) fibs(s(0),s(s(0)),c(s(0),83)) nth(0,c(s(0),83),s(0))
a(0,s(0),s(0))a(s(0),s(s(0)),2) fibs(s(s(0)),Z,83) nth(0,c(s(0),83),s(0))
O O
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Logic Programming dialects, compared

|| Prolog

| Parallel Prolog | Co-LP

| CoALP

Fib example

|| No

|No

|No

| Yes

Execution

Eager

Eager

Eager

Lazy

Corecursion

Mode of execu-
tion

Declarative se-
mantics

Operational se-
mantics
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Logic Programming dialects, compared

| Parallel Prolog

Prolog Co-LP CoALP
Fib example No No No
Yes
Execution Eager Eager Eager
Lazy
Corecursion
No No by Regular Loop | Guardedness by

detection

constructors

Mode of execu-
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Declarative se-
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Logic Programming dialects, compared

Prolog Parallel Prolog Co-LP CoALP
| Fib example || No | No | No
Yes
Execution Eager Eager Eager
Lazy
Corecursion
No No by Regular Loop | Guardedness by
detection constructors
Mode of execu-
tion Sequential Parallel Sequential Parallel
Declarative se-
mantics
Operational se-
mantics
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Logic Programming dialects, compared
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Lazy
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Logic Programming dialects, compared

Parallel Prolog ‘

‘ CoALP ‘

Co-LP
‘ Fib example H No ‘ No ‘ No ‘ ‘
Yes
Execution Eager Eager Eager
Lazy
Corecursion
No No by Regular Loop | Guardedness by
detection constructors
Mode of execu-
tion Sequential Parallel Sequential Parallel
Declarative se-
mantics Ifp Ifp gfp (restricted) coalgebraic
Operational se- . . . .
mantics transitions; transitions; transitions; transitions;
states: lists of | states: lists of | states: lists of | states: coinduc-
formulae formulae formulae tive trees
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Directions we are exploring

Using CoALP in Hume: for analysis of stream-based networks and/or
for type inference [thanks to Hans-Wolfgang for discussions];

Type-inference in Haskell;

SSReflect: overloading in canonical structures currently requires the
use of back-tracking in LP-like algorithm. It could be parallel CoALP
execution instead:;

@ CoALP for global type analysis in object-oriented languages: ColLP is
already used for that.

e ...TBC...
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The end

The best reference so far is
o Komendantskaya, Power, Schmidt: Coalgebraic Logic Programming:
from Semantics to Implementation, Journal of Logic and
Computation, 2014.
@ A paper on implementing lazy guarded corecursion in CoALP using
Haskell is in preparation...

@ CoALP webpage has various prototype implementations to play
with... http://staff.computing.dundee.ac.uk/katya/CoALP/

We will be happy to apply CoALP for Tl (or other purposes) in *YOUR*
language!
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