Can CoALP be useful for CoCo?

Katya Komendantskaya, joint work with J. Power, M. Schmidt,
J. Heras, V. Komendantsky

School of Computing, University of Dundee, UK

CoCo’'14,
8 May 2014

Katya (Dundee) CoALP for Type Inference CoCo'14 1/22

CoALP-TI

" Coalgebraic Logic Programming for Type Inference” — EPSRC grant, Sep
2013 — Sep 2016. (Joint with J.Power, U. Bath)

" Coalgebraic Logic Programming” is an LP dialect with added corecursion
and parallelism.

Yearl (September 2013 - September 2014) Well-tuned Haskell
implementation

Year2 Experiments on using CoALP for type-inference in various languages;
Year3 Informed implementation of CoOALP-TI in one of the above.

Katya (Dundee) CoALP for Type Inference CoCo'14 2/22

Outline

@ Motivation: LP in Type inference

Katya (Dundee) CoALP for Type Inference

Outline

@ Motivation: LP in Type inference

@ Coalgebraic Logic Programming

Katya (Dundee) CoALP for Type Inference

Outline

@ Motivation: LP in Type inference

@ Coalgebraic Logic Programming

© Future directions

Katya (Dundee) CoALP for Type Inference

Milner, 1978

“A theory of Type Polymorphism in Programming”

Katya (Dundee) CoALP for Type Inference

Milner, 1978

“A theory of Type Polymorphism in Programming”
An elegant match between polymorphic A-calculus and type inference by
means of Robinson’s unification/resolution algorithm.

Katya (Dundee) CoALP for Type Inference CoCo'14 4 /22

Trend in type inference:

improvement in expressiveness of the underlying type system, e.g., in
terms of

@ Dependent Types,

o Type Classes [Wadler&Blott 89],

o Generalised Algebraic Types (GADTs) [Peyton Jones & al, 2006]
o Dependent Type Classes [Sozeau & al 08] and

e Canonical Structures [Gonthier& al 11].

Milner-style decidable type inference does not always suffice (e.g. the
principal type may no longer exist), and TI requires additional inference
algorithms.

Katya (Dundee) CoALP for Type Inference CoCo'14

5/22

Trend in type inference:
improvement in expressiveness of the underlying type system, e.g., in
terms of

@ Dependent Types,

o Type Classes [Wadler&Blott 89],

o Generalised Algebraic Types (GADTs) [Peyton Jones & al, 2006]
o Dependent Type Classes [Sozeau & al 08] and

e Canonical Structures [Gonthier& al 11].

Milner-style decidable type inference does not always suffice (e.g. the
principal type may no longer exist), and TI requires additional inference
algorithms.

Implementations of new type inference algorithms include a variety of
first-order decision procedures, notably Unification and Logic
Programming (LP) [Peyton Jones & al, 2006], Constraint LP [Odersky
Sulzmann, Vytiniotis & many more 1999-], LP embedded into interactive
tactics (Coq's eauto) Sozeau & al. 08], and LP supplemented by rewriting
[Gonthier & al, 11].

Katya (Dundee) CoALP for Type Inference CoCo'14 5/22

Example: type inference with Polymorphic types

List Length in Haskell

length :: [a] -> Integer
length [1 = 0

length (x:xs) = 1 + length xs

Logic program for type inference

cons(X) <+ X=Y — list(Y) — list(Y).

plus(X) <« X=int — int — int.

nil(X) <« X = list(Y).

length(X) <~ (X =Y — Z) & nil(Y) & Z = int & cons(W) &
(W=1W1— W2 — Y) & plus(U) &
(U=int —2Z—2) & W2 =Y.

Query: length(X)?
Answer (any existing PROLOG version): X = list(_) — int.

Katya (Dundee) CoALP for Type Inference CoCo'14 6 /22

Trend to do more by type-inference:

. session types,
. writing contracts by means of types:

Example

Vytiniotis et al. "HALO: Haskell to Logic Through Denotational
Semantics” [POPL'13]

f xs = head (reverse (True : xs))

g xs = head (reverse xs)

Both f and g are well typed and "‘can’t go wrong”' in Milner's sense, but
g will crash for empty list, and £ will never crash.

Contract:

reverse € (xs : CF) — {ys | null xs <=> null ys}

Requires strong first-order type inference engines: Z3, Vampire, E...

Katya (Dundee) CoALP for Type Inference CoCo'14 7/22

Could it get any better?

@ Clear trend on Type theory side: increase in type expressivenes
(dependent types, GADTs, type classes, session types, etc etc)

Katya (Dundee) CoALP for Type Inference CoCo'14 8 /22

Could it get any better?

@ Clear trend on Type theory side: increase in type expressivenes
(dependent types, GADTs, type classes, session types, etc etc)

o Chaotic use of type-inference engines, also known in the literature as
“using off-the-shelf” first order TPs.

Katya (Dundee) CoALP for Type Inference CoCo'14 8 /22

Could it get any better?

@ Clear trend on Type theory side: increase in type expressivenes
(dependent types, GADTs, type classes, session types, etc etc)

o Chaotic use of type-inference engines, also known in the literature as
“using off-the-shelf” first order TPs.

@ Would it pay-off to get more conceptually elegant on type inference
side? — especially bearing in mind the big emphasis on type inference
in more expressive type systems.

Katya (Dundee) CoALP for Type Inference CoCo'14 8 /22

Could it get any better?

@ Clear trend on Type theory side: increase in type expressivenes
(dependent types, GADTs, type classes, session types, etc etc)

o Chaotic use of type-inference engines, also known in the literature as
“using off-the-shelf” first order TPs.

@ Would it pay-off to get more conceptually elegant on type inference
side? — especially bearing in mind the big emphasis on type inference
in more expressive type systems.

@ Would our " Coalgebraic Logic programming” grow to become a
type-inference specific theorem prover (with stronger theoretical
background and motivation than state-of-the-art SAT /SMT-solvers)?

Katya (Dundee) CoALP for Type Inference CoCo'14 8 /22

CoALP: what is it about?

@ inspired by coalgebraic fibrational semantics;
@ explores the tree-structure of partial proofs — " coinductive trees”;

@ uses lazy guarded corecursion using measures of corecursive steps
given by coinductive trees (cf. "clocked corecursion”);

o parallel...

CoALP in one example

Katya (Dundee) CoALP for Type Inference CoCo'14

9/22

Stream of Fibonacci numbers:

Falls into infinite loops in Prolog and Prolog-like version of CoLP [Gupta
et al. 2007] [Both are eager...] Those powerful SAT/SMT solvers would
not do it either

add(0,Y,Y).

add(s(X),Y,s(2)) :- add(X,Y,Z).
fibs(X,Y,cons(X,S)) :- add(X,Y,Z), fibs(Y,Z,S).
nth(0,cons(X,S) ,X).

nth(s(N),cons(X,S),Y) :- nth(N,S,Y).

fib(N,X) :- fibs(0,s(0),S), nth(N,S,X).

fib2(X) :- £ib(s(s(0)),X).

~N o O W N

Katya (Dundee) CoALP for Type Inference CoCo'14 10 / 22

Examples of derivations with Fib: lazy step 1

£ib2(X)

%

£ib(s2(0)),X)

A

£ibs(0,s(0),8) nth(s2(0),S,X)

5,5/c(X1,51)
e

Katya (Dundee) CoALP for Type Inference

Examples of derivations with Fib: lazy step 1

£ib2(X)

|

£ib(s2(0)),X)

A

£ibs(0,s(0),8) nth(s2(0),S,X)

5,8/c(X1,81)
e

Katya (Dundee)

1. add(0,Y,Y).

2. add(s(X),Y,s(Z)) :-

add(X,Y,Z).

3. fibs(X,Y,cons(X,S))

add(X,Y,z), fibs(Y,Z,S).
4. nth(0,cons(X,S),X).

5. nth(s(N),cons(X,S),Y)

nth(N,S,Y).

6. fib(N,X) :- fibs(0,s(0),S),
nth(N,S,X).

7. fib2(X) :- fib(s(s(0)),X).

CoALP for Type Inference

CoCo'14

11/ 22

Examples of derivations with Fib: lazy step 2

£ib2(X)

+

£ib(s2(0)),X)

A

£ibs(0,5(0),c(X1,51)) nth(s2(0),c(X1,51),X)

l

nth(s(0),81,X)

5,81/c(X2,82)
-

Katya (Dundee) CoALP for Type Inference

Examples of derivations with Fib: lazy step 2

£ib2(X)

+

£ib(s2(0)),X)

A

fibs(0,s(0),c(X1,51)) nth(s2(0),c(X1,51),X)

+

nth(s(0),81,X)

5,81/c(X2,82)
—_

1. add(o,Y,Y).
2. add(s(X),Y,s(Z)) :-

add(X,Y,Z).

3. fibs(X,Y,cons(X,S)) :-
add(X,Y,z), fibs(Y,Z,S).
4. nth(0,cons(X,S),X).

5. nth(s(),

nth(N,S,Y).
6. fib(N,X)
nth(N,S,X).
7. £ib2(X)

cons(X,S),Y) :-

:- fibs(0,s(0),S),

:— £fib(s(s(0)),X).

Katya (Dundee) CoALP for Type Inference

CoCo'14

12 /22

Examples of derivations with Fib: lazy step 3

£ib2(X)

+

£ib(s2(0)),X)

/l\

£ibs(0,s(0) ,c(X1,c(X2,82))) nth(s?(0),c(X1,c(X2,52)),X)

i

nth(s(0),c(X2,52),X)

{

nth(0,52,X)

52/c(X,83)
I,

Katya (Dundee) CoALP for Type Inference

Examples of derivations with Fib: lazy step 4

£ib2(X)

|

£ib(s%(0)),X)

/L\

£ibs(0,s(0),c(X1,c(X2,c(X,83)))) nth(s?(0),c(X1,c(X2,c(X,53))),X)

nth(s(0),c(X2,c(X,83)),X)
nth(0,c(X,83),X)

nth(0,c(X,83),X)

Katya (Dundee) CoALP for Type Inference

Examples of derivations with Fib: lazy step 5

£ib2(X)

|

£ib(s%(0)),X)

/\

fibs(0,s(0),c(0,c(X2,c(X,S3))))

nth(s2(0),c(0,c(X2,c(X,$3))),X)

a(0,s(0),2) fibs(s(0),Z,c(X2,c(X,S3))) nth(s(0),c(X2,c(X,S3)),X)

nth(0,c(X,83),X)

nth(0,c(X,83),X)

Katya (Dundee) CoALP for Type Inference

Examples of derivations with Fib: lazy step 6

£ib2(X)

|

£ib(s2(0)),X)

/\

fibs(0,s(0),c(0,c(X2,c(X,S3))))

A

a(0,s(0),s(0)) £ibs(s(0),s(0),c(X2,c(X,83)))

nth(s%(0),c(0,c(X2,c(X,53))),X)

nth(s(0),c(X2,c(X,83)),X)

nth(0,c(X,83),X)

nth(0,c(X,83),X)
X2/s(0)
s

Katya (Dundee) CoALP for Type Inference CoCo'14 16 / 22

Examples of derivations with Fib: lazy step 7

£ib2(X)

|

£ib(s2(0)),X)

/‘\

£ibs(0,s(0),c(0,c(s(0),c(X,83)))) nth(s2(0),c(0,c(s(0) ,c(X,83))),X)
a(0,s(0),s(0)) £ibs(s(0),5(0),c(s(0),c(X,83))) nth(s(0),c(s(0),c(X,83)),X)
O a(s(0),s(0),2) fibs(s(0),Z,c(X,S83)) nth(0,c(X,S3),X)

nth(0,c(X,83),X)
Z/s(s(0))

Katya (Dundee) CoALP for Type Inference CoCo'14 17 / 22

Examples of derivations with Fib: lazy step 8

£ib2(X)

|

£ib(s2(0)),X)

/\

£ibs(0,s(0),c(0,c(s(0),c(X,83))))

A

a(0,s(0),s(0)) £ibs(s(0),s(0),c(s(0),c(X,83)))

A

O a(s(0),s(0),s(s(0))) fibs(s(0),s(s(0)),c(X,83))

|

a(0,s(0),s(0))

X/s(0)

Katya (Dundee) CoALP for Type Inference

nth(s?(0),c(0,c(s(0),c(X,53))),X)

nth(s(0),c(s(0),c(X,S3)),X)

nth(0,c(X,83),X)

nth(0,c(X,83),X)

CoCo'14

18 / 22

Examples of derivations with Fib: lazy step 9

£ib2(s(0))

+

£ib(s2(0)),s(0))

/L\

£ibs(0,s(0),c(0,c(s(0),c(s(0),83)))) nth(sZ(O),c(O,c(s(O) ,c(s(0),83))),s(0))

/J\ +

a(0,s(0),s(0)) £ibs(s(0),s(0),c(s(0),c(s(0),83))) nth(s(0),c(s(0),c(s(0),83)),s(0))
O a(s(0),s(0),s(s(0))) fibs(s(0),s(s(0)),c(s(0),83)) nth(0,c(s(0),83),s(0))
a(0,s(0),s(0))a(s(0),s(s(0)),2) fibs(s(s(0)),Z,83) nth(0,c(s(0),83),s(0))
O O
Katya (Dundee) CoALP for Type Inference CoCo'14

19 /22

Logic Programming dialects, compared

|| Prolog

| Parallel Prolog | Co-LP

| CoALP

Fib example

|| No

|No

|No

| Yes

Execution

Eager

Eager

Eager

Lazy

Corecursion

Mode of execu-
tion

Declarative se-
mantics

Operational se-
mantics

Katya (Dundee)

CoALP for Type Inference

CoCo'14

20/ 22

Logic Programming dialects, compared

| Parallel Prolog

Prolog Co-LP CoALP
Fib example No No No
Yes
Execution Eager Eager Eager
Lazy
Corecursion
No No by Regular Loop | Guardedness by

detection

constructors

Mode of execu-
tion

Declarative se-
mantics

Operational se-
mantics

Katya (Dundee)

CoALP for Type Inference

CoCo'14 20 / 22

Logic Programming dialects, compared

Prolog Parallel Prolog Co-LP CoALP
| Fib example || No | No | No
Yes
Execution Eager Eager Eager
Lazy
Corecursion
No No by Regular Loop | Guardedness by
detection constructors
Mode of execu-
tion Sequential Parallel Sequential Parallel
Declarative se-
mantics
Operational se-
mantics
Katya (Dundee) CoALP for Type Inference CoCo'14 20 / 22

Logic Programming dialects, compared

|| Prolog

Parallel Prolog Co-LP CoALP
| Fib example || No | No | No
Yes
Execution Eager Eager Eager
Lazy
Corecursion
No No by Regular Loop | Guardedness by
detection constructors
Mode of execu-
tion Sequential Parallel Sequential Parallel
Declarative se- . .
mantics Ifp Ifp gfp (restricted) coalgebraic
Operational se-
mantics

Katya (Dundee)

CoALP for Type Inference

CoCo'14 20 / 22

Logic Programming dialects, compared

Parallel Prolog ‘

‘ CoALP ‘

Co-LP
‘ Fib example H No ‘ No ‘ No ‘ ‘
Yes
Execution Eager Eager Eager
Lazy
Corecursion
No No by Regular Loop | Guardedness by
detection constructors
Mode of execu-
tion Sequential Parallel Sequential Parallel
Declarative se-
mantics Ifp Ifp gfp (restricted) coalgebraic
Operational se-
mantics transitions; transitions; transitions; transitions;
states: lists of | states: lists of | states: lists of | states: coinduc-
formulae formulae formulae tive trees
Katya (Dundee) CoALP for Type Inference CoCo'14 20 / 22

Directions we are exploring

Using CoALP in Hume: for analysis of stream-based networks and/or
for type inference [thanks to Hans-Wolfgang for discussions];

Type-inference in Haskell;

SSReflect: overloading in canonical structures currently requires the
use of back-tracking in LP-like algorithm. It could be parallel CoALP
execution instead:;

@ CoALP for global type analysis in object-oriented languages: ColLP is
already used for that.

e ...TBC...

Katya (Dundee) CoALP for Type Inference CoCo'14 21 /22

The end

The best reference so far is
o Komendantskaya, Power, Schmidt: Coalgebraic Logic Programming:
from Semantics to Implementation, Journal of Logic and
Computation, 2014.
@ A paper on implementing lazy guarded corecursion in CoALP using
Haskell is in preparation...

@ CoALP webpage has various prototype implementations to play
with... http://staff.computing.dundee.ac.uk/katya/CoALP/

We will be happy to apply CoALP for Tl (or other purposes) in *YOUR*
language!

Katya (Dundee) CoALP for Type Inference CoCo'14 22 /22

	Motivation: LP in Type inference
	Coalgebraic Logic Programming
	Future directions

