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Workshop PAR at ITP’10

http://www.cs.st-andrews.ac.uk/ ek/PAR-10/

Important dates:

29 March 2010: Submission deadline
29 April 2010: Notification of acceptance
24 May 2010: Final version of accepted papers
15 July 2010: the workshop

Invited Speakers:

Conor McBride (University of Strathclyde)
tba

We plan EPTCS post-proceedings.
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Coq in Mathematics and Computer Science

Coq is a proof assistant using dependent type system.

Choice of Type Theory: Type theory presents a powerful formal
system that captures both the notion of computation (via the
inclusion of functional programs written in typed λ-calculus), and
proof (via the “formulas as types embedding”, where types are viewed
as propositions and terms as proofs).

Dependent products =⇒ additional expressiveness makes possible to
consider propositions about programs/proofs; or to construct certified
programs that satisfy a given property. (E.g. prime divisor,
binary world,...)

Proof assistant = proof checker + proof-development system. (*not
theorem prover*)
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The goal: to increase reliability of mathematical results.

Mathematical results may be difficult to verify, because of:

Complexity: the problem is very big, the number of cases very large,
etc.
=⇒ computer assistance is needed.

Depth: the problem is very deep, complicated, complex methods from
different disciplines are needed (eg, Fermat theorem).
=⇒ machine assistance for doing mathematical research.

The former is the reality, the latter is a challenge.
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Type-theoretic approach to proof-checking

Decidability of type checking = core of the type-theoretic theorem
proving

Γ `T p : A
In situation Γ we have A.

Proof. p. TypeΓ
(p) = A// //

Type−(−) is a function that finds for p a type in the given context Γ. The

decidability of type-checking follows from:

TypeΓ
(p) generates a type of p in context Γ or returns “false”.

The equality = is decidable.

Katya (St Andrews) Partiality and Co-Recursion FPlunch10 6 / 53



Type-theoretic approach to proof-checking

Decidability of type checking = core of the type-theoretic theorem
proving

Γ `T p : A
In situation Γ we have A.

Proof. p. TypeΓ
(p) = A// //

Type−(−) is a function that finds for p a type in the given context Γ. The

decidability of type-checking follows from:

TypeΓ
(p) generates a type of p in context Γ or returns “false”.

The equality = is decidable.

Katya (St Andrews) Partiality and Co-Recursion FPlunch10 6 / 53



Three main decidability problems:

TCP Γ `T M : A?
“Does proof M indeed proves A?”

TSP Γ `T M :?
“Is proof M a proof?”

TIP Γ `T ? : A?
“Is A provable?”

Both TCP and TSP are decidable.

provability of formula A = “inhabitation” of type A

proof checking = type checking

interactive theorem proving = i. construction of a term/given a type
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Coq is the leading proof-assistant

Coq wins comparison with Agda, Lego, Nurpl, HOL, Isabelle, Mizar,
ACL2, PVS in [Barendregt,Geuvers01].
Parameters:
Presence of Proof Objects: the script generates and stores a term that is
isomorphic to a proof that can be checked on independent/simple proof
checker. =⇒ high reliability. (!)
Reliability. (!)
Poincaré Principle There is a distinction between computations and proofs;
computations do not require a proof. (E.g. 1+0 = 1 does not require a
proof.) The principle is useful to deal with Conversion Rule. (!)
Logic - Intuitionistic
Dependent Types (!)
Inductive Types (!)
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Limits of Coq?

Marelle Team, INRIA, April 2008:

Majour:

= limits of pure functional programming: no computational effects
(side effects, interactive input/output, exceptions,..);

Proof checker and not prover (2 researchers);

Syntactic restrictions: difficult to have different views/representations
of one object;

Constructive logic (?);

Too much of expressiveness: Coq Art.

Structural recursion, Guardedeness...;

Minor, technical hurdles:

higher-order unification;

deciding guardedness;

need for a better organised documentation.
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What is the one best thing about Coq?

Marelle Team, INRIA, April 2008:

Mathematics and programming together; compute and prove
simultaneously; =⇒ Research in Coq (3 researchers);

Dependent types;

Type theory =⇒ formal rigour;

Implicit arguments, type inference.

Extraction;

Replication of proofs;

Simple, uniform notation.
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Successful applications of Coq (http://coq.inria.fr/)

Mathematics

Geometry,

Set Theory,

Algebra,

Number theory,

Category Theory,

Domain theory,

Real analysis and Topology,

Probabilities.

CS

Infinite Structures,

Pr. Lang.: Data Types and
Data Structures;

Pr. Lang.: Semantics and
Compilation;

Formal Languages Theory
and Automata;

Decision Procedures and
Certified Algorithms;

Concurrent Systems and
Protocols;

Operating Systems;

Biology and Bio-CS.
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Inductive Types and Recursive Functions

Coq = COC [Coquand,Huet’88] + CIC [Coquand,Paulin’93]

Inductive nat : Set :=

| O : nat
| S : nat -> nat.

Fixpoint div2 n : nat :=

match n with
| O => 0
| S O => 0
| S (S n’) => S (div2 n’)
end.
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Coinductive Types and Corecursive Functions

Coq = COC [’88] + CIC [’93] + CCC [Gimenez’96]

CoInductive str (A: Set) : Set :=

SCons: A -> str A -> str A.

CoFixpoint repeat (a: A): str A :=

SCons a (repeat a).

CoInductive ETrees (A B: Set) : Set :=

A node : A -> ETrees A B -> ETrees A B
B node : B -> ETrees A B -> ETrees A B -> ETrees A B.

But note that in Isabelle/HOL coiductive definitions are given through
greatest fixed-points of monotone operators.
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Termination

We require all computations to terminate, because of:

Curry-Howard Isomorphism (propositions → types; proofs →
programs): non-terminating proofs can lead to inconsistency.

To decide type-checking of dependent types, we need to reduce
expressions to normal form.

Example

The function div2 is terminative.
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Productive Values

Values in co-inductive types are productive when all observations of
fragments made using recursive functions are guaranteed to be computable
in finite time.

The element of the stream at position n can be found by:{
nth 0 (SCons a tl) = a
nth (S n) (SCons a tl) = nth n tl

A given stream s is productive if we can be sure that the computation of
the list nth n s is guaranteed to terminate, whatever the value of n is.

Example

For any n, the value repeat n is productive.
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Productivity for tree-like structures

Inductive direct : Type :=

L | R

fetch of the type forall A B:Set, list direct -> ETrees A

B -> A+B
fetch nil (A node a t) = inl a
fetch ( ::tl) (A node a t) = fetch tl t
fetch nil (B node b t1 t2) = inr b
fetch (L::tl) (B node b t1 t2) = fetch tl t1
fetch (R::tl) (B node b t1 t2) = fetch tl t2
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Productive Functions

We call a function productive at the input value i , if it outputs a
productive value at i .

Example

(Filter for streams). Filter is productive only on certain inputs. For a
given predicate P,

filter (SCons x tl) =

{
SCons x (filter tl) if P(x)
filter tl otherwise.
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A more general example

Definition

Let A, B be of type Set. For a predicate P : B → bool and functions
h : B → A, g , g ′ : B → B, we define the function dyn:

dyn (x) =

{
SCons h(x) (dyn (g(x))) if P(x)
dyn (g ′(x)) otherwise.

Example

Suppose B is the set of natural numbers, h = id , g = +1; g ′ = ∗2; P =
“even”. If we take x = 1, dyn will compute the infinite list:
2, 6, 14, 30, 62, 126, ...
If B is a set of streams, we can have dyn = filter.
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Totally-, Partially-, Non- Productive Functions

Totally Productive
(Function repeat)

Partially Productive
(Filters on streams and trees; dyn).

Non-Productive
Computing nth 0 (filter even (repeat 1)) provokes the
following computation:
filter even (repeat 1) repeat 1  filter even
(1::repeat 1)  filter even (repeat 1)...
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Halting Problem

Before we start the survey of how recursion/co-recursion is formalised in
Coq and other ITPs, it is good to remember that:

Alan Turing proved in 1936 that a general algorithm to solve the
halting problem for all possible program-input pairs cannot exist.

This means there is no algorithm which can be applied to any arbitrary
program and input to decide whether the program stops when run with
that input.

Design of new methods of implementation of recursion and co-recursion in
ITPs is a small but ever-growing area. Of course, no new method is
capable of giving us a tool that will allow precisely terminating/productive
functions in the ITP, no less and no more. So, there is always a trade off
between consistency/correctness and expressiveness.
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Structural Recursion

Most of ITPs such as AGDA, Coq (but Isabelle/HOL also uses fixed
point approach)

A structurally recursive definition is such that every recursive call is
performed on a structurally smaller argument.

In this way we can be sure that the recursion terminates.

Example

Fixpoint div2 n : nat :=
match n with
| O => 0
| S O => 0
| S (S n’) => S (div2 n’)
end.

Note also that there are additional termination checkers - foetus in
AGDA; Function in Coq.
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General Recursion

Definitions where the recursive calls are not required to be on structurally
smaller arguments, that is, where the recursive calls can be performed on
any argument, are called general recursive arguments.

Example {
log(S 0) = 0
log(S(S n)) = S(log S(div2 n)).
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Syntactic and semantic methods to encode general
recursion in ITPs

Synthactic methods

McBride: “Every total program is
structurally recursive”

Use of dummy arguments.

Accessibility predicates [Bove];

Lexicographic orders [Krauss,
Nipkow];

McKinna (M.Sozau’s
package);

Ultrametric spaces and
Banach’s Fixed point theorem
[Buchholz05,
GianantonioMiculan03,
Matthews99]

Semantic methods: Sized types

Could really bring “change”. But
encoding this approach in ITPs
seems unlikely: this would require
implementation of ordinal notation
systems in type theory, which is
non-trivial. Moreover, the closure
ordinal ∞ of all inductive
definitions should be inaccessible
within the theory. [Hughes, Pareto,
Sabry, 1996], [Barthe et al. ,
2004], [Blanqui, 2005, 2005], (cost
inference algorithm) [Hammond,
Loidl, Vasconcelos 2002, 2004]

Katya (St Andrews) Partiality and Co-Recursion FPlunch10 23 / 53



Syntactic and semantic methods to encode general
recursion in ITPs

Synthactic methods

McBride: “Every total program is
structurally recursive”

Use of dummy arguments.

Accessibility predicates [Bove];

Lexicographic orders [Krauss,
Nipkow];

McKinna (M.Sozau’s
package);

Ultrametric spaces and
Banach’s Fixed point theorem
[Buchholz05,
GianantonioMiculan03,
Matthews99]

Semantic methods: Sized types

Could really bring “change”. But
encoding this approach in ITPs
seems unlikely: this would require
implementation of ordinal notation
systems in type theory, which is
non-trivial. Moreover, the closure
ordinal ∞ of all inductive
definitions should be inaccessible
within the theory. [Hughes, Pareto,
Sabry, 1996], [Barthe et al. ,
2004], [Blanqui, 2005, 2005], (cost
inference algorithm) [Hammond,
Loidl, Vasconcelos 2002, 2004]

Katya (St Andrews) Partiality and Co-Recursion FPlunch10 23 / 53



A very shallow account of type-based termination

General recursion can be implemented by adding a f-p combinator fix to
a functional language based on λ-calculus.
f ∈ A→ A
fix f ∈ A

fix f = f (fix f)

That means: “If f is an endofunctor on A, then fix f inhabits A, and fix f
behaves as f (fix f )”. General recursion makes language inconsistent as a
logic, since every type is inhabited; and introduces non-termination if the
equation is read as a computation rule. To maintain termination, fix
should be restricted.

The following typing rule for fix is admissible, that is, provable using just

the typing rules of λ-calculus: A0 = T f ∈ Ai → Ai+1, for all i

fix f ∈ An

If
⋂

n∈N An is “interesting”, then fix f has interesting properties, like
termination and productivity.
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“Well-founded recursion”: where does the notion come
from?

Let ≺ be a binary relation on a set A. The well-founded part of ≺ is the
set W (≺) of a ∈ A such that there is no infinite descending sequence
a � a0 � a1 . . .. The relation ≺ is a well-founded relation if A = W (≺).
W (≺) can be inductively defined as follows. Let Φ≺ be the set of rules
(≺ a)→ a for a ∈ A, where (≺ a) = {x ∈ A|x ≺ a}. See Aczel “An
introduction to inductive definitions”, 1977.
Already in early 70s [e.g. Manna 74], the well-founded induction (or also
Noetherian induction) was used as the fundamental method for proving
termination.
[Paulson 1984] lists a number of methods, e.g., the ordering on natural
numbers, a subrelation of a w.f. relation, the inverse image of w.f.
relation, the transitive closure of a w.f. relation, the disjoint sum over two
w.f. relations; the lexocographic order of two w.f. relations; the
lexicographic power of a w.f. relation; the immediate subtree relation of a
wellordering type.
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Accessibility and well-founded induction [Aczel77, Huet88]
The method of recursion over an inductive predicate is provided by
well-founded induction that relies on an inductive notion of accessibility or
adjoint.

Inductive Acc (A: Set) (R: A -> A -> Prop): A -> Prop

:=

Acc intro: forall x:A, (forall y: A, R x y -> Acc R y) ->
Acc R x.

If R is an arbitrary relation, we say that a sequence ai , (i ∈ N) is
R-decreasing if Raiai+1 holds for every i . Taking Φ to be the predicate
”does not belong to an infinite decreasing chain”, the following holds:

∀x(∀y .Ryx → Φx)↔ Φx

The accessibility predicate gives a good constructive description of the
elements that do not belong to infinite decreasing chains. We can use this
to express that function computations do not involve infinite sequences of
recursive calls.
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Accessibility and well-founded induction [Aczel77, Huet88],
ctd

On the technical side, when hx is a proof that x is accessible, and there is
a proof hr of type Ryx , we can easily build a proof (by pattern-matching)
that y is accessible. This new proof is structurally smaller than hx ; so it
can be used as an argument in a recursive call for a function whose
principal argument is hx . See theorem Acc inv given in the Coq library:

Lemma Acc inv : forall x:A, Acc x -> forall y:A, R y x

-> Acc y.
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Well-founded recursive functions

In the Coq library, there are defined “wellordering types”, and then one
uses the fact that Wellfounded relations are the inverse image of
wellordering types.
The well-founded relation in Coq library:

Definition well founded := forall a:A, Acc a.

When a relation is well-founded, we can define recursive functions where
the relation is used to control which recursive calls are correct:

Definition well founded induction (A : Set) (R: A -> A

-> Prop) (H: well founded R) (P: A -> Set) (f: forall

x:A, R y x -> P y) -> P x) (x:A): P x :=

Acc iter P f (H x).
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Method of Ad-hoc Predicates [Aczel77], [Bove02]
Bove’s contribution in particular was to use the method as a way of
defining functions, (as opposed to using it separately for “proving”
termination)

Inductive log domain : nat -> Prop :=

| log domain 1 : log domain 1
| log domain 2 :
forall p: nat, log domain (S (div2 p)) -> log domain (S (S
p)).

Lemma log domain inv :

forall x p : nat, log domain x -> x = S(S p) ->
log domain (S (div2 p)).

Lemma log domain non 0: forall x :nat,

log domain x -> x 6= 0.
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Method of Ad-hoc Predicates [Aczel77], [Bove02].

Fixpoint log (x:nat)(h:log domain x){struct h} : nat

:=

match x as y return x = y -> nat with
| 0 => fun h’ => False rec nat (log domain non 0 x h h’)
| S 0 => fun h’ => 0
| S (S p) =>
fun h’ => S (log (S (div2 p)) (log domain inv x p h h’))
end (refl equal x).

This idea is now implemented in Isabelle/HOL, AGDA, Coq
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Briefly about size-change principle of termination

Lee, Jones, Ben-Amram 2001

A program terminates on all inputs if every infinite call sequence would
cause an infinite descent in soma data values. Note its relation to the
well-founded recursion. Generally, checking the SCT is PSPACE complete,
but with restrictions becomes polynomial.

SCT abstracts from the actual program by viewing it as a set of control
points and transitions between them, forming a directed graph (the control
graph). Each control point has a finite set of abstract data positions
associated to it. Each transition is labeled by a size-change graph, which
contains information about how the values in the data positions are
related: e.g., decreases (p ↓ q , if q < p) or remains equal (p l q if q ≤ p
after transition. By connecting the size-change graphs along a control flow
path, the data flow becomes visible. Chains of such connected edges are
called threads. A thread has infinite descent if it contains infinitely many ↓
edges.
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Briefly about size-change principle of termination, ctd
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Use of call descriptors, measure functions

A call descriptor is a triple (Γ, r , l), which describes a recursive call in
a function definition:

r is the argument of the recursive call, l is the original argument (from the
left hand side of the equation) and Γ is the condition under which the call
occurs. All three values depend on variables (the pattern variables), which
we replace by a single variable (possibly containing a tuple).
types
(α, γ)cdesc = (γ → bool)× (γ → α)× (γ → α)
Here, α is the argument type of the function and γ is the type of the
pattern variable.

Measure functions capture the notion of size.
types
αmeasure = α→ nat
Isabelle provides a structural measure function for each inductive type.
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Briefly about size-change principle of termination, ctd

It has been implemented in several ITPs:

Agda: tool foetus detects lexicographic termination orderings for
simply-typed functional programs and inductive types. [Abel,
Altenkirch 2002]

HOL/Isabelle: [Krauss 2007] Also related methods of lexicographic
orders...

Coq: McKinna, Sozeau - ?
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Guardedness [Gimenez96: Calculus of Coinductive
Constructions]

The guardedness condition insures that

* each corecursive call is made under at least one constructor;

** if the recursive call is under a constructor, it does not appear as an
argument of any function.

Violation of any of these two conditions makes a function rejected by the
guardedness test in Coq.

Example

CoFixpoint repeat (a:A): str A := SCons a (repeat a).
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Non-guarded functions:

[∗] is not satisfied:
Filters, dyn;
[∗∗] is not satisfied:
Consider the following function computing lists of ordered natural
numbers:
nats = (SCons 1 (map (+ 1) nats)).
where the function map above is defined as follows:

map f (s: str): str := Cons (f (hd s)) (map f (tl s)).
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Other Productive Non-Guarded Functions

What other productive non-guarded functions do we know?

Every terminative function gives rise to a non-guarded totally productive
function.

Example

Terminative function x − 1 gives rise to the totally productive function f:
stream nat -> stream nat:

f (x::y::tl) =

{
x::f(y::tl) if x ≤ y
f((x-1)::y::tl) otherwise.
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Our Method: Inductive and Coinductive Components

CoRecursive Function (Non-Guarded):

Inductive Component?> =<89 :; CoInductive Component?> =<89 :;

Predicate eventually

?> =<89 :;

Predicate infinite

?> =<89 :;

ooooooooooo

wwww OOOOOOOOOOO

'' ''
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Predicate eventually: First-Step Productivity

Using eventually, we can describe the inductive component of a
corecursive function. This component is a recursive function that performs
all the computations and tests that lead to the first guarded corecursive
call.

Inductive eventually s: str A -> Prop :=

| ev b: forall x s, P x -> eventually s (SCons A x s)
| ev r: forall x s, not P x
-> eventually s s -> eventually s (SCons A x s).
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eventually for dyn

Inductive eventually dyn (x: B) : Prop :=

| ev dyn1 : P x = true -> eventually dyn x
| ev dyn2 : P x = false -> eventually dyn (g’ x) ->
eventually dyn x.

Compare eventually with ♦ in [Pnueli81, Jacobs02].
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Inversion Lemmas

Lemma eventually s inv:

forall (s : str A),
eventually s s -> forall x s’, s = SCons A x s’ ->
not P x -> eventually s s’.

Lemma eventually dyn inv :

forall x, eventually dyn x -> P x = false ->
eventually dyn (g’ x).
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Inductive Component of Filter

Fixpoint pre filter s (s : str A) (h : eventually s s)

struct h : A * str A :=

match s as b return s = b -> A*str A with
SCons x s’ =>
fun heq =>
match P dec x with
| left => (x, s’)
| right hn =>
pre filter s s’ (eventually s inv s h x s’ heq hn)
end
end (refl equal s).
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Inductive Component of dyn

Fixpoint pre dyn(x:B)(d:eventually dyn x){struct d}:
A*B:=

match P x as b return P x = b -> A*B with
| true => fun t => (h x, g x)
| false => fun t =>
pre dyn (g’ x) (eventually dyn inv x d t)
end (refl equal (P x)).
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Coinductive Predicate infinite

Corecursive computations are introduced by repeating computations
performed by the inductive component. This can happen only if recursive
calls satisfy the eventually predicate repeatedly. We need the predicate
infinite to express this.

CoInductive infinite s : str -> Prop :=

al_cons: forall (s:str A) (h: eventually s),
infinite_s (snd(pre_filter_s s h)) -> infinite_s s.
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The same predicate for dyn

CoInductive infinite dyn (x : B): Prop :=

di : forall (d: eventually_dyn x),
infinite_dyn (snd (pre_dyn x d)) -> infinite_dyn x.

The infinite predicate describes exactly those arguments to the function
for which the function is guaranteed to be productive.
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Relating eventually and infinite

Lemma infinite eventually dyn :

forall x, infinite dyn x -> eventually dyn x.

Lemma infinite always dyn :

forall x, infinite dyn x ->
forall e: eventually dyn x,
infinite dyn (snd (pre dyn x e)).
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Guarded Representation of a filter

CoFixpoint filter (s : str A) : forall (h: infinite s

s), str A :=

match s return infinite s s -> str A with
| SCons x s’ =>
fun h’ : infinite s (SCons A x s’) =>
SCons A (fst
(pre filter s infinite eventually s (SCons A x s’) h’)))
(filter (infinite always s (SCons A x s’) h’))
end.
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Guarded Representation of dyn

CoFixpoint dyn (x:B)(h:infinite dyn x) : str :=

SCons (fst (pre dyn x (infinite eventually dyn ev x h)))
(dyn (infinite always dyn x h
(infinite eventually dyn x h))).
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Recursive Equation Lemma for dyn

Theorem dyn equation :

forall x i: infinite_dyn x , bisimilar_s (dyn x i )

(match Px as b return Px = b -> infinite_dyn x -> str
with
|true => fun t i =>

SCons(h x)(dyn(g x) (dyn_step1 x t i))

|false => fun t i => dyn (g’ x) (dyn_step2 x t i)

end (refl_equal (P x)) i) .
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More Complicated Applications of Our Method:

Expression trees and dynamic filtering on expression trees.

The dynamic filter function on expression trees was used to establish a
normalisation algorithm for an admissible representation of a closed
interval of real numbers in [Geuvers1993], [Niqui2004].

The function was not guarded.

We applied our method to give a Coq formalisation of the function.
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Conclusions

1 We generalised the method of [Bertot05] to a wider class of
functions:

I various output data types including streams, expression and binary
trees;

I included dynamically changing functions;

and thereby gave a general analysis of the method.

2 We work with partial productivity, and not just total productivity.

3 We establish the uniform Recursive Equation Lemmas for the
functions we formalise, this was not achieved in [Bertot05].

Future work → further automatisation.
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Thank you!
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