Coalgebraic Logic Programming

Katya Komendantskaya, joint work with M. Schmidt, J. Heras

School of Computing, University of Dundee, UK

21 July 2014

Katya (Dundee) CoALP ICLP'14 1/30

Recursion and Corecursion in Logic Programming

© in the 70s-80s: Apt, van Emden, Kowalski: study of recursion and
least Herbrand model semantics of LP

Katya (Dundee) CoALP ICLP'14 2 /30

Recursion and Corecursion in Logic Programming

© in the 70s-80s: Apt, van Emden, Kowalski: study of recursion and
least Herbrand model semantics of LP

@ in the 80s; Abdallah, van Emden, Lloyd: “perpetual” computations in
LP and the greatest fixed point semantics of LP: incomplete, no finite
procedure for computations given

Katya (Dundee) CoALP ICLP'14 2 /30

Recursion and Corecursion in Logic Programming

© in the 70s-80s: Apt, van Emden, Kowalski: study of recursion and
least Herbrand model semantics of LP

@ in the 80s; Abdallah, van Emden, Lloyd: “perpetual” computations in
LP and the greatest fixed point semantics of LP: incomplete, no finite
procedure for computations given

© 2000s: Gupta, Simon et al: ColLP: finite derivation procedure for
coinductive programs, soundness and completeness for programs
describing regular trees.

Katya (Dundee) CoALP ICLP'14 2 /30

Recursion and Corecursion in Logic Programming

© in the 70s-80s: Apt, van Emden, Kowalski: study of recursion and
least Herbrand model semantics of LP

@ in the 80s; Abdallah, van Emden, Lloyd: “perpetual” computations in
LP and the greatest fixed point semantics of LP: incomplete, no finite
procedure for computations given

© 2000s: Gupta, Simon et al: ColLP: finite derivation procedure for
coinductive programs, soundness and completeness for programs
describing regular trees.

@ Our work, from 2010, — coalgebraic semantics for LP, and inspired
derivation procedures.

Katya (Dundee) CoALP ICLP'14 2 /30

Recursion and Corecursion in Logic Programming

Example
bit(0) <«
bit(l) <«
list(nil) <«
list(cons (X, Y)) < bit(X), list(Y)
Example
stream(cons (X,Y)) <« bit(X),stream(Y)

Katya (Dundee) CoALP ICLP'14 3 /30

SLD-resolution (+ unification and backtracking) behind

LP derivations.

Example

nat(0) «
nat(s(x)) < nat(x)
list(nil) <«

list(cons x y) < nat(x),

list(y)

Katya (Dundee)

+ list(cons(x,y))

<+ nat(x), list(y)

CoALP

ICLP'14

4/30

SLD-resolution (+ unification) is behind LP derivations.

Example List((x.7))
%
nat(O) y 1S C|OIIS Xy

nat(s(x)) + nat(x)
list(nil) «
list(cons x y) < nat(x),

+ nat(x), list(y)

— list(y)

list(y)

Katya (Dundee) CoALP ICLP'14 5 /30

SLD-resolution (+ unification) is behind LP derivations.

Example

nat (0) «

nat(s(x)) + nat(x)
list(nil) +

list(cons x y) < nat(x),

list(y)

« list(cons(x,y))

+ nat(x), list(y)

— list(y)

«~0d

The answer is x/O, y/nil, but we can get more substitutions by
backtracking. We can backtrack infinitely many times, but each time

computation will terminate.

Katya (Dundee)

CoALP ICLP'14

6/ 30

SLD-resolution (+ unification) is behind LP derivations.

« list(cons(x,y))

+ nat(x), list(y)

Example

nat(0) <«
nat(s(x)) < nat(x)
list(nil) « ‘
list(cons x y) < nat(x), ¢ list(y)

|

list(y)) +« 0
The answer is x/O, y/nil, but we can get more substitutions by
backtracking. We can backtrack infinitely many times, but each time
computation will terminate.
Nice, clean semantics: least Herbrand model exists, sound&complete, etc...

Katya (Dundee) CoALP ICLP'14 6 /30

Corecursion in LP?

Example

bit (0)

bit(1) «+
stream(scons(x, y)) +

bit(x), stream(y)

Katya (Dundee) CoALP

Corecursion in LP?

Example

bit (0)
bit(1) «+
stream(scons(x, y)) +

bit(x), stream(y)

No answer, as derivation never
terminates.

Katya (Dundee) CoALP

Corecursion in LP?

Example

bit (0)

bit(1) «+
stream(scons(x, y)) «

bit(x), stream(y)

No answer, as derivation never
terminates.

Semantics may go wrong as well:
least Herbrand models will contain
an infinite term corresponding to

stream: so completeness fails.

Katya (Dundee)

<+ stream(scons(x,y))

+ bit(x), stream(y)

<+ stream(y)

< bit(xy), stream(y;)

<+ stream(y;)

+ bit(xz), stream(ys)

+ strean(ys)
\

CoALP ICLP'14

7/30

[t can be worse....

Example

bit (0) «

bit (1) «
list(cons(x, y)) «

bit(x), list(y)

list(nil) <

Katya (Dundee) CoALP

[t can be worse....

Example

bit (0) «
bit (1) «
list(cons(x, y)) «

bit(x), list(y)

list(nil) <

No answer, as derivation never
terminates.

Katya (Dundee) CoALP

[t can be worse....

Example

bit (0) «
bit (1) «

list(cons(x, y)) «

bit(x), list(y)

list(nil) <

v

No answer,
terminates.

as derivation never

Semantics goes wrong: this time,

soundness!

Katya (Dundee)

CoALP

+ list(cons(x,y))

|
+ bit(x),list(y)

«— list(y)

<« bit(xy),1list(y1)

— liSt(y1)

— bit(Xz), 1iSt(YQ)

— liSt(YQ)
\

ICLP'14

8 /30

Solution - 1 [Gupta, Simon et al., 2007 - 2008]

If a formula repeatedly appears as a resolvent (modulo a-conversion),
then conclude the proof. J

Example
Do) + stream(X)
bit (1) + ' |
stream(scons (X, Y)) « (—blt(Xl)l,stream(X)
bit(X), strea.m(Y)J + stream(X)
|
DC

Katya (Dundee) CoALP ICLP'14 9 /30

Solution - 1 [Gupta, Simon et al., 2007 - 2008]

If a formula repeatedly appears as a resolvent (modulo a-conversion),
then conclude the proof. J

Example

bit(0) «
bit(1) « R
stream(scons (X, Y)) + < bit(X1), strean(X)
|

bit (X), stream(Y) + stream(X)

+ stream(X)

The answer is: X /cons(0, X). |
. |:|C

Requires programs to be regular,

in order to be sound and complete

Katya (Dundee) CoALP ICLP'14 9 /30

CoALP: what is it about?

@ syntactically — first-order logic programming;

e operationally — lazy (co)recursion;

Katya (Dundee) CoALP ICLP'14 10 / 30

CoALP: what is it about?

@ syntactically — first-order logic programming;
e operationally — lazy (co)recursion;

@ inspired by coalgebraic fibrational semantics;
°

uses and-or parallel trees, but restricts unification to matching;

Term-matcher
A substitution 6 is a term-matcher for A and B is A0 = B. J

Katya (Dundee) CoALP ICLP'14 10 / 30

CoALP: what is it about?

@ syntactically — first-order logic programming;
@ operationally — lazy (co)recursion;
@ inspired by coalgebraic fibrational semantics;

@ uses and-or parallel trees, but restricts unification to matching;

Term-matcher
A substitution 6 is a term-matcher for A and B is A0 = B. J

@ explores the tree-structure of partial proofs — " coinductive trees”;

Coinductive tree...

is an and-or-parallel tree in which unification is restricted to
term-matching;

Katya (Dundee) CoALP ICLP'14 10 / 30

CoALP: what is it about?

@ syntactically — first-order logic programming;
@ operationally — lazy (co)recursion;
@ inspired by coalgebraic fibrational semantics;

@ uses and-or parallel trees, but restricts unification to matching;

Term-matcher
A substitution 6 is a term-matcher for A and B is A0 = B. J

@ explores the tree-structure of partial proofs — " coinductive trees”;

Coinductive tree...

is an and-or-parallel tree in which unification is restricted to
term-matching;

e Coinductive trees give a measure for lazy guarded corecursion, (cf.
"clocked corecursion™)

Katya (Dundee) CoALP ICLP'14 10 / 30

Lazy Corecursion in CoALP: Coinductive trees

&

stream(x)

Katya (Dundee) CoALP

Lazy Corecursion in CoALP: Coinductive trees

s L

stream(x) stream(scons(z,y))

A

bit(z) stream(y)

Katya (Dundee) CoALP

Lazy Corecursion in CoALP: Coinductive trees

s L

stream(x) stream(scons(z,y))

/K

bit(z) stream(y)
Note that transitions § may be determined in a number of ways:
@ using mgus;
@ non-deterministically;

@ in a distributed/parallel manner.

Katya (Dundee) CoALP ICLP'14

11 / 30

Lazy Corecursion in CoALP
4 .5

stream(x) stream(scons(z,y))

/K

bit(z) stream(y)

stream(scons(0, scons(y1,21)))

/K

bit(0) stream(scons(yi,z1))

bit(yi) stream(z;)
The above would correspond to one-branch of SLD-derivations we have

seen! The main driving force: separation of layers of computations into
different dimensions.

Katya (Dundee) CoALP ICLP'14

12 / 30

Computationally essential:

@ for coinductive Stream program, the coinductive-trees are finite!!! —
both in depth and in breadth;

@ ceach tree gives only a partial computation — it is not like eager
SLD-trees we have seen earlier;

Katya (Dundee) CoALP ICLP'14 13 / 30

Computationally essential:

@ for coinductive Stream program, the coinductive-trees are finite!!! —
both in depth and in breadth;

@ ceach tree gives only a partial computation — it is not like eager
SLD-trees we have seen earlier;

1. = gives hope for a formalism to describe termination and productivity,
as in functional languages
2. = hints there may be laziness involved...

Katya (Dundee) CoALP ICLP'14 13 / 30

What do we gain?

© A coherent theory of termination and productivity of recursion and
corecursion in LP

Katya (Dundee) CoALP ICLP'14 14 / 30

Theory of Productivity in LP

Typeful functional theorem provers:

(Terminating) (Non—terminating) CProductive} (Non—productive)
/ ~ _~

| Recursion I | Corecursion |

Katya (Dundee) CoALP ICLP'14 15 / 30

Theory of Productivity in LP

Typeful functional theorem provers:

(Terminating) (Non—terminating) (Productive} (Non—productive)
/ ™~

| Recursion I | Corecursion |

CoALP

Productive
N
|(Coinductive) Derivationsl (_ Finite)

Katya (Dundee) CoALP ICLP'14

(Non-productive)

15 / 30

What do we gain?

© A coherent theory of termination and productivity of recursion and
corecursion in LP

@ Extension of classes of inductive and coinductive programs we can
handle,

@ Mixing induction/coinduction.

Katya (Dundee) CoALP ICLP'14 16 / 30

Stream of Fibonacci numbers:

Falls into infinite loops in Prolog and ColLP.

add(0,Y,Y).

add(s(X),Y,s(Z)) :- add(X,Y,Z).
fibs(X,Y,cons(X,S)) :- add(X,Y,Z), fibs(Y,Z,S).
nth(0,cons(X,S) ,X).

nth(s(N),cons(X,S),Y) :- nth(N,S,Y).

fib(N,X) :- fibs(0,s(0),S), nth(N,S,X).

fib2(X) :- fib(s(s(0)),X).

~No ok WwN e

Katya (Dundee) CoALP ICLP'14

17 / 30

Examples of derivations with Fib: lazy step 1

£ib2(X)

%

£ib(s2(0)),X)

A

£ibs(0,s(0),8) nth(s2(0),S,X)

5,5/c(X1,51)
e

Katya (Dundee) CoALP

Examples of derivations with Fib: lazy step 1

£ib2(X)

|

£ib(s2(0)),X)

A

£ibs(0,s(0),8) nth(s2(0),S,X)

5,8/c(X1,81)
e

Katya (Dundee)

1. add(0,Y,Y).

2. add(s(X),Y,s(Z)) :-
add(X,Y,Z).

3. fibs(X,Y,cons(X,S)) :-
add(X,Y,z), fibs(Y,Z,S).

4. nth(0,cons(X,S),X).

5. nth(s(N),cons(X,S),Y) :-
nth(N,S,Y).
6. fib(N,X)
nth(N,S,X).
7. £ib2(X) :- fib(s(s(0)),X).

:- fibs(0,s(0),S),

CoALP ICLP'14

18 / 30

Examples of derivations with Fib: lazy step 2

£ib2(X)

+

£ib(s2(0)),X)

A

£ibs(0,5(0),c(X1,51)) nth(s2(0),c(X1,51),X)

l

nth(s(0),81,X)

5,81/c(X2,82)
-

Katya (Dundee) CoALP

Examples of derivations with Fib: lazy step 2

£ib2(X)

+

£ib(s2(0)),X)

A

fibs(0,s(0),c(X1,51)) nth(s2(0),c(X1,51),X)

+

nth(s(0),81,X)

5,81/c(X2,82)
—_

Katya (Dundee)

1. add(o,Y,Y).
2. add(s(X),Y,s(Z)) :-

add(X,Y,Z).

3. fibs(X,Y,cons(X,S)) :-
add(X,Y,z), fibs(Y,Z,S).
4. nth(0,cons(X,S),X).

5. nth(s(),

cons(X,S),Y) :-

nth(N,S,Y).

6. fib(N,X) :- fibs(0,s(0),S),
nth(N,S,X).

7. £fib2(X) :- fib(s(s(0)),X).
CoALP ICLP'14

19 / 30

Examples of derivations with Fib: lazy step 3

£ib2(X)

+

£ib(s2(0)),X)

/l\

£ibs(0,s(0) ,c(X1,c(X2,82))) nth(s?(0),c(X1,c(X2,52)),X)

i

nth(s(0),c(X2,52),X)

{

nth(0,S2,X)

52/c(X,83)
I,

Katya (Dundee) CoALP

Examples of derivations with Fib: lazy step 4

£ib2(X)

|

£ib(s2(0)),X)
£ibs(0,s(0),c(X1,c(X2,c(X,83)))) nth(sz(O),c(Xl,c(XQ,C(X,S3))),X)

nth(s(0),c(X2,c(X,83)),X)

nth(0,c(X,S3),X)

nth(0,c(X,83),X)

l

Katya (Dundee) CoALP

Examples of derivations with Fib: lazy step 5

£ib2(X)

|

£1b(s2(0)),X)

/\

fibs(0,s(0),c(0,c(X2,c(X,S3))))

A

a(0,s(0),2) £ibs(s(0),Z,c(X2,c(X,83)))

Katya (Dundee)

CoALP

nth(s2(0),c(0,c(X2,c(X,$3))),X)

nth(s(0),c(X2,c(X,S3)),X)

nth(0,c(X,83),X)

nth(0,c(X,83),X)

l

Examples of derivations with Fib: lazy step 6

£ib2(X)

|

£ib(s2(0)),X)

/1\

fibs(0,s(0),c(0,c(X2,c(X,S3))))

A

a(0,s(0),s(0)) £ibs(s(0),s(0),c(X2,c(X,83)))

l

Katya (Dundee)

CoALP

nth(s%(0),c(0,c(X2,c(X,53))),X)

nth(s(0),c(X2,c(X,83)),X)

nth(0,c(X,S3),X)

nth(0,c(X,83),X)

l

X2/s(0)

Examples of derivations with Fib: lazy step 7

£ib2(X)
£ib(s2(0)),X)
£ibs(0,s(0),c(0,c(s(0),c(X,83)))) nth(s?(0),c(0,c(s(0),c(X,53))),X)
a(0,s(0),s(0)) fibs(s(0),s(0),c(s(0),c(X,83))) nth(s(0),c(s(0),c(X,83)),X)

l

a(s(0),s(0),2) £ibs(s(0),Z,c(X,83)) nth(0,c(X,83),X)

Z/s(s(0))

nth(0,c(X,S83),X)

1

Katya (Dundee) CoALP ICLP'14 24 / 30

Examples of derivations with Fib: lazy step 8

£ib2(X)

|

£ib(s2(0)),X)

/\

£ibs(0,s(0),c(0,c(s(0),c(X,83))))

A

a(0,s(0),s(0)) £ibs(s(0),s(0),c(s(0),c(X,83)))

| A

a(s(0),s(0),s(s(0))) fibs(s(0),s(s(0)),c(X,83))

|

a(0,s(0),s(0))

|

X/s(0)

Katya (Dundee) CoALP

nth(s?(0),c(0,c(s(0),c(X,53))),X)

nth(s(0),c(s(0),c(X,S3)),X)

nth(0,c(X,83),X)

nth(0,c(X,83),X)

|

ICLP'14

25 / 30

Examples of derivations with Fib: lazy step 9

£ib2(s(0))

}

£ib(s2(0)),5(0))

/L\

£ibs(0,5(0),c(0,c(s(0),c(s(0),83)))) nth(s2(0),c(0,c(s(0),c(s(0),53))),5(0))
/‘\ {
a(0,s(0),s(0)) £ibs(s(0),s(0),c(s(0),c(s(0),S3))) nth(s(0),c(s(0),c(s(0),83)),s(0))
a(s(0),s(0),s(s(0))) £ibs(s(0),s(s(0)),c(s(0),83)) nth(0,c(s(0),83),s(0))
! A \
a(0,s(0),s(0))a(s(0),s(s(0)),2) fibs(s(s(0)),Z,S3) nth(0,c(s(0),S3),s(0))

l !

Katya (Dundee) CoALP ICLP'14 26 / 30

CoALP Properties:

Komendantskaya, Power, Schmidt: Coalgebraic Logic Programming: from
Semantics to Implementation, Journal of Logic and Computation, 2014. J

@ Sound and complete with respect to the coalgebraic semantcs;

@ Finite computations are sound and complete with respect to the least
Herbrand model semantics (so, we can do as much as standard
Prolog).

@ Adequacy result for observational semantics.

Katya (Dundee) CoALP ICLP'14 27 / 30

Logic Programming dialects, compared

|| Prolog

| Parallel Prolog | Co-LP

| CoALP

Fib example

|| No

|No

|No

| Yes

Execution

Eager

Eager

Eager

Lazy

Corecursion

Mode of execu-
tion

Declarative se-
mantics

Operational se-
mantics

Katya (Dundee)

CoALP

ICLP'14

28 /30

Logic Programming dialects, compared

Parallel Prolog |

Prolog Co-LP CoALP
| Fib example No No | No
Yes
Execution Eager Eager Eager
Lazy
Corecursion
No No by Regular Loop | Guardedness by
detection constructors
Mode of execu-
tion
Declarative se-
mantics
Operational se-
mantics
Katya (Dundee) CoALP ICLP'14 28 / 30

Logic Programming dialects, compared

Parallel Prolog |

Prolog Co-LP CoALP
| Fib example || No | No | No
Yes
Execution Eager Eager Eager
Lazy
Corecursion
No No by Regular Loop | Guardedness by
detection constructors
Mode of execu-
tion Sequential Parallel Sequential Parallel
Declarative se-
mantics
Operational se-
mantics
Katya (Dundee) CoALP ICLP'14 28 / 30

Logic Programming dialects, compared

|| Prolog

Parallel Prolog |

Co-LP CoALP
| Fib example || No | No | No
Yes
Execution Eager Eager Eager
Lazy
Corecursion
No No by Regular Loop | Guardedness by
detection constructors
Mode of execu-
tion Sequential Parallel Sequential Parallel
Declarative se-
mantics Ifp Ifp gfp (restricted) coalgebraic
Operational se-
mantics
Katya (Dundee) CoALP ICLP'14 28 / 30

Logic Programming dialects, compared

Parallel Prolog ‘

‘ CoALP ‘

Co-LP
‘ Fib example H No ‘ No ‘ No ‘ ‘
Yes
Execution Eager Eager Eager
Lazy
Corecursion
No No by Regular Loop | Guardedness by
detection constructors
Mode of execu-
tion Sequential Parallel Sequential Parallel
Declarative se-
mantics Ifp Ifp gfp (restricted) coalgebraic
Operational se-
mantics transitions; transitions; transitions; transitions;
states: lists of | states: lists of | states: lists of | states: coinduc-
formulae formulae formulae tive trees
Katya (Dundee) CoALP ICLP'14 28 / 30

Current and future work

@ Using CoALP to formally define a general theory of Termination and
Productivity for Recursion and Corecursion in LP

Katya (Dundee) CoALP ICLP'14 29 / 30

Current and future work

@ Using CoALP to formally define a general theory of Termination and
Productivity for Recursion and Corecursion in LP

@ Finalise guardedness conditions

Katya (Dundee) CoALP ICLP'14 29 / 30

Current and future work

@ Using CoALP to formally define a general theory of Termination and
Productivity for Recursion and Corecursion in LP

@ Finalise guardedness conditions

@ Establish soundness criteria for termination of coinductive derivations.

Katya (Dundee) CoALP ICLP'14 29 / 30

Current and future work

@ Using CoALP to formally define a general theory of Termination and
Productivity for Recursion and Corecursion in LP

@ Finalise guardedness conditions
@ Establish soundness criteria for termination of coinductive derivations.
© Extension of CoALP with constraints

Katya (Dundee) CoALP ICLP'14 29 / 30

Current and future work

@ Using CoALP to formally define a general theory of Termination and
Productivity for Recursion and Corecursion in LP

@ Finalise guardedness conditions

© Establish soundness criteria for termination of coinductive derivations.
© Extension of CoALP with constraints

© Applications to type inference

... join us!

Katya (Dundee) CoALP ICLP'14 29 / 30

Thank you!

Download your copy of CoALP today:
CoALP webpage: http://staff.computing.dundee.ac.uk/katya/CoALP/ J

Katya (Dundee) CoALP

	Recursion and Corecursion
	Coalgebraic Logic Programming

