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Recursion and Corecursion in Logic Programming

1 in the 70s-80s: Apt, van Emden, Kowalski: study of recursion and
least Herbrand model semantics of LP

2 in the 80s; Abdallah, van Emden, Lloyd: “perpetual” computations in
LP and the greatest fixed point semantics of LP: incomplete, no finite
procedure for computations given

3 2000s: Gupta, Simon et al: CoLP: finite derivation procedure for
coinductive programs, soundness and completeness for programs
describing regular trees.

4 Our work, from 2010, – coalgebraic semantics for LP, and inspired
derivation procedures.
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Recursion and Corecursion in Logic Programming

Example

bit(0) ←
bit(1) ←

list(nil) ←
list(cons (X, Y)) ← bit(X), list(Y)

Example

stream(cons (X,Y)) ← bit(X), stream(Y)
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SLD-resolution (+ unification and backtracking) behind
LP derivations.

Example

nat(0) ←
nat(s(x)) ← nat(x)

list(nil) ←
list(cons x y) ← nat(x),

list(y)

← list(cons(x, y))

← nat(x), list(y)
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SLD-resolution (+ unification) is behind LP derivations.

Example

nat(0) ←
nat(s(x)) ← nat(x)

list(nil) ←
list(cons x y) ← nat(x),

list(y)

← list(cons(x, y))

← nat(x), list(y)

← list(y)

← �
The answer is x/O, y/nil , but we can get more substitutions by
backtracking. We can backtrack infinitely many times, but each time
computation will terminate.

Nice, clean semantics: least Herbrand model exists, sound&complete, etc...
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Corecursion in LP?

Example

bit(0) ←
bit(1) ←
stream(scons(x, y)) ←

bit(x), stream(y)

No answer, as derivation never
terminates.
Semantics may go wrong as well:
least Herbrand models will contain
an infinite term corresponding to
stream: so completeness fails.

← stream(scons(x, y))

← bit(x), stream(y)

← stream(y)

← bit(x1), stream(y1)

← stream(y1)

← bit(x2), stream(y2)

← stream(y2)

...
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It can be worse....

Example

bit(0) ←
bit(1) ←
list(cons(x, y)) ←

bit(x), list(y)

list(nil) ←

No answer, as derivation never
terminates.
Semantics goes wrong: this time,
soundness!

← list(cons(x, y))

← bit(x), list(y)

← list(y)

← bit(x1), list(y1)

← list(y1)

← bit(x2), list(y2)

← list(y2)

...
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Solution - 1 [Gupta, Simon et al., 2007 - 2008]

If a formula repeatedly appears as a resolvent (modulo α-conversion),
then conclude the proof.

Example

bit(0) ←
bit(1) ←
stream(scons (X, Y)) ←

bit(X), stream(Y)

The answer is: X/cons(0,X ).
Requires programs to be regular,
in order to be sound and complete

← stream(X)

← bit(X1), stream(X)

← stream(X)

�c
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CoALP: what is it about?

syntactically – first-order logic programming;

operationally – lazy (co)recursion;

inspired by coalgebraic fibrational semantics;

uses and-or parallel trees, but restricts unification to matching;

Term-matcher

A substitution θ is a term-matcher for A and B is Aθ = B.

explores the tree-structure of partial proofs – ”coinductive trees”;

Coinductive tree...

is an and-or-parallel tree in which unification is restricted to
term-matching;

Coinductive trees give a measure for lazy guarded corecursion, (cf.
”clocked corecursion”)
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Lazy Corecursion in CoALP: Coinductive trees

stream(x)

θ1→

stream(scons(z, y))

bit(z) stream(y)

θ2→ . . .
θ3→

Note that transitions θ may be determined in a number of ways:

using mgus;

non-deterministically;

in a distributed/parallel manner.
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Lazy Corecursion in CoALP

stream(x)

θ1→
stream(scons(z, y))

bit(z) stream(y)

θ2→ . . .
θ3→

stream(scons(0, scons(y1, z1)))

bit(0) stream(scons(y1, z1))

bit(y1) stream(z1)

The above would correspond to one-branch of SLD-derivations we have
seen! The main driving force: separation of layers of computations into
different dimensions.
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Computationally essential:

1 for coinductive Stream program, the coinductive-trees are finite!!! –
both in depth and in breadth;

2 each tree gives only a partial computation – it is not like eager
SLD-trees we have seen earlier;

1. ⇒ gives hope for a formalism to describe termination and productivity,
as in functional languages
2. ⇒ hints there may be laziness involved...
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What do we gain?

1 A coherent theory of termination and productivity of recursion and
corecursion in LP
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Theory of Productivity in LP

Typeful functional theorem provers:

Recursion

Terminating Non-terminating

Corecursion

Productive Non-productive>>gg cc 99

CoALP

(Coinductive) Derivations

Non-productive Productive

Coinductive

Inductive

Finite

aa 44

99

11

))
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What do we gain?

1 A coherent theory of termination and productivity of recursion and
corecursion in LP

2 Extension of classes of inductive and coinductive programs we can
handle,

3 Mixing induction/coinduction.
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Stream of Fibonacci numbers:

Falls into infinite loops in Prolog and CoLP.

1. add(0,Y,Y).

2. add(s(X),Y,s(Z)) :- add(X,Y,Z).

3. fibs(X,Y,cons(X,S)) :- add(X,Y,Z), fibs(Y,Z,S).

4. nth(0,cons(X,S),X).

5. nth(s(N),cons(X,S),Y) :- nth(N,S,Y).

6. fib(N,X) :- fibs(0,s(0),S), nth(N,S,X).

7. fib2(X) :- fib(s(s(0)),X).
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Examples of derivations with Fib: lazy step 1

fib2(X)

fib(s2(0)),X)

fibs(0,s(0),S) nth(s2(0),S,X)

5,S/c(X1,S1)−−−−−−−−→

→

1. add(0,Y,Y).

2. add(s(X),Y,s(Z)) :-

add(X,Y,Z).

3. fibs(X,Y,cons(X,S)) :-

add(X,Y,Z), fibs(Y,Z,S).

4. nth(0,cons(X,S),X).

5. nth(s(N),cons(X,S),Y) :-

nth(N,S,Y).

6. fib(N,X) :- fibs(0,s(0),S),

nth(N,S,X).

7. fib2(X) :- fib(s(s(0)),X).
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Examples of derivations with Fib: lazy step 2

fib2(X)

fib(s2(0)),X)

fibs(0,s(0),c(X1,S1)) nth(s2(0),c(X1,S1),X)

nth(s(0),S1,X)

5,S1/c(X2,S2)−−−−−−−−−→

→

1. add(0,Y,Y).

2. add(s(X),Y,s(Z)) :-

add(X,Y,Z).

3. fibs(X,Y,cons(X,S)) :-

add(X,Y,Z), fibs(Y,Z,S).

4. nth(0,cons(X,S),X).

5. nth(s(N),cons(X,S),Y) :-

nth(N,S,Y).

6. fib(N,X) :- fibs(0,s(0),S),

nth(N,S,X).

7. fib2(X) :- fib(s(s(0)),X).
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Examples of derivations with Fib: lazy step 3

fib2(X)

fib(s2(0)),X)

fibs(0,s(0),c(X1,c(X2,S2))) nth(s2(0),c(X1,c(X2,S2)),X)

nth(s(0),c(X2,S2),X)

nth(0,S2,X)

S2/c(X,S3)−−−−−−−→

→
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Examples of derivations with Fib: lazy step 4

fib2(X)

fib(s2(0)),X)

fibs(0,s(0),c(X1,c(X2,c(X,S3)))) nth(s2(0),c(X1,c(X2,c(X,S3))),X)

nth(s(0),c(X2,c(X,S3)),X)

nth(0,c(X,S3),X)

nth(0,c(X,S3),X)

X1/0−−−→

→
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Examples of derivations with Fib: lazy step 5

fib2(X)

fib(s2(0)),X)

fibs(0,s(0),c(0,c(X2,c(X,S3))))

a(0,s(0),Z) fibs(s(0),Z,c(X2,c(X,S3)))

nth(s2(0),c(0,c(X2,c(X,S3))),X)

nth(s(0),c(X2,c(X,S3)),X)

nth(0,c(X,S3),X)

nth(0,c(X,S3),X)

Z/0−−→

→
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Examples of derivations with Fib: lazy step 6

fib2(X)

fib(s2(0)),X)

fibs(0,s(0),c(0,c(X2,c(X,S3))))

a(0,s(0),s(0)) fibs(s(0),s(0),c(X2,c(X,S3)))

nth(s2(0),c(0,c(X2,c(X,S3))),X)

nth(s(0),c(X2,c(X,S3)),X)

nth(0,c(X,S3),X)

nth(0,c(X,S3),X)

X2/s(0)−−−−−→

→
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Examples of derivations with Fib: lazy step 7

fib2(X)

fib(s2(0)),X)

fibs(0,s(0),c(0,c(s(0),c(X,S3))))

a(0,s(0),s(0)) fibs(s(0),s(0),c(s(0),c(X,S3)))

a(s(0),s(0),Z) fibs(s(0),Z,c(X,S3))

nth(s2(0),c(0,c(s(0),c(X,S3))),X)

nth(s(0),c(s(0),c(X,S3)),X)

nth(0,c(X,S3),X)

nth(0,c(X,S3),X)

Z/s(s(0))−−−−−−→

→
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Examples of derivations with Fib: lazy step 8
fib2(X)

fib(s2(0)),X)

fibs(0,s(0),c(0,c(s(0),c(X,S3))))

a(0,s(0),s(0)) fibs(s(0),s(0),c(s(0),c(X,S3)))

a(s(0),s(0),s(s(0)))

a(0,s(0),s(0))

fibs(s(0),s(s(0)),c(X,S3))

nth(s2(0),c(0,c(s(0),c(X,S3))),X)

nth(s(0),c(s(0),c(X,S3)),X)

nth(0,c(X,S3),X)

nth(0,c(X,S3),X)

X/s(0)−−−−→

→
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Examples of derivations with Fib: lazy step 9

fib2(s(0))

fib(s2(0)),s(0))

fibs(0,s(0),c(0,c(s(0),c(s(0),S3))))

a(0,s(0),s(0)) fibs(s(0),s(0),c(s(0),c(s(0),S3)))

a(s(0),s(0),s(s(0)))

a(0,s(0),s(0))

fibs(s(0),s(s(0)),c(s(0),S3))

a(s(0),s(s(0)),Z) fibs(s(s(0)),Z,S3)

nth(s2(0),c(0,c(s(0),c(s(0),S3))),s(0))

nth(s(0),c(s(0),c(s(0),S3)),s(0))

nth(0,c(s(0),S3),s(0))

nth(0,c(s(0),S3),s(0))
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CoALP Properties:

Komendantskaya, Power, Schmidt: Coalgebraic Logic Programming: from
Semantics to Implementation, Journal of Logic and Computation, 2014.

Sound and complete with respect to the coalgebraic semantcs;

Finite computations are sound and complete with respect to the least
Herbrand model semantics (so, we can do as much as standard
Prolog).

Adequacy result for observational semantics.
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Logic Programming dialects, compared

Prolog Parallel Prolog Co-LP CoALP

Fib example No No No
Yes

Execution Eager Eager Eager
Lazy

Corecursion

No No by Regular Loop
detection

Guardedness by
constructors

Mode of execu-
tion

Sequential Parallel Sequential Parallel

Declarative se-
mantics

lfp lfp gfp (restricted) coalgebraic

Operational se-
mantics

transitions;
states: lists of
formulae

transitions;
states: lists of
formulae

transitions;
states: lists of
formulae

transitions;
states: coinduc-
tive trees

Katya (Dundee) CoALP ICLP’14 28 / 30



Logic Programming dialects, compared

Prolog Parallel Prolog Co-LP CoALP

Fib example No No No
Yes

Execution Eager Eager Eager
Lazy

Corecursion
No No by Regular Loop

detection
Guardedness by
constructors

Mode of execu-
tion

Sequential Parallel Sequential Parallel

Declarative se-
mantics

lfp lfp gfp (restricted) coalgebraic

Operational se-
mantics

transitions;
states: lists of
formulae

transitions;
states: lists of
formulae

transitions;
states: lists of
formulae

transitions;
states: coinduc-
tive trees

Katya (Dundee) CoALP ICLP’14 28 / 30



Logic Programming dialects, compared

Prolog Parallel Prolog Co-LP CoALP

Fib example No No No
Yes

Execution Eager Eager Eager
Lazy

Corecursion
No No by Regular Loop

detection
Guardedness by
constructors

Mode of execu-
tion Sequential Parallel Sequential Parallel

Declarative se-
mantics

lfp lfp gfp (restricted) coalgebraic

Operational se-
mantics

transitions;
states: lists of
formulae

transitions;
states: lists of
formulae

transitions;
states: lists of
formulae

transitions;
states: coinduc-
tive trees

Katya (Dundee) CoALP ICLP’14 28 / 30



Logic Programming dialects, compared

Prolog Parallel Prolog Co-LP CoALP

Fib example No No No
Yes

Execution Eager Eager Eager
Lazy

Corecursion
No No by Regular Loop

detection
Guardedness by
constructors

Mode of execu-
tion Sequential Parallel Sequential Parallel

Declarative se-
mantics lfp lfp gfp (restricted) coalgebraic

Operational se-
mantics

transitions;
states: lists of
formulae

transitions;
states: lists of
formulae

transitions;
states: lists of
formulae

transitions;
states: coinduc-
tive trees

Katya (Dundee) CoALP ICLP’14 28 / 30



Logic Programming dialects, compared

Prolog Parallel Prolog Co-LP CoALP

Fib example No No No
Yes

Execution Eager Eager Eager
Lazy

Corecursion
No No by Regular Loop

detection
Guardedness by
constructors

Mode of execu-
tion Sequential Parallel Sequential Parallel

Declarative se-
mantics lfp lfp gfp (restricted) coalgebraic

Operational se-
mantics transitions;

states: lists of
formulae

transitions;
states: lists of
formulae

transitions;
states: lists of
formulae

transitions;
states: coinduc-
tive trees

Katya (Dundee) CoALP ICLP’14 28 / 30



Current and future work

1 Using CoALP to formally define a general theory of Termination and
Productivity for Recursion and Corecursion in LP

2 Finalise guardedness conditions

3 Establish soundness criteria for termination of coinductive derivations.

4 Extension of CoALP with constraints

5 Applications to type inference

... join us!
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Thank you!

Download your copy of CoALP today:

CoALP webpage: http://staff.computing.dundee.ac.uk/katya/CoALP/
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