
Coalgebraic Logic Programming

Katya Komendantskaya, joint work with M. Schmidt, J. Heras

School of Computing, University of Dundee, UK

21 July 2014

Katya (Dundee) CoALP ICLP’14 1 / 30

Recursion and Corecursion in Logic Programming

1 in the 70s-80s: Apt, van Emden, Kowalski: study of recursion and
least Herbrand model semantics of LP

2 in the 80s; Abdallah, van Emden, Lloyd: “perpetual” computations in
LP and the greatest fixed point semantics of LP: incomplete, no finite
procedure for computations given

3 2000s: Gupta, Simon et al: CoLP: finite derivation procedure for
coinductive programs, soundness and completeness for programs
describing regular trees.

4 Our work, from 2010, – coalgebraic semantics for LP, and inspired
derivation procedures.

Katya (Dundee) CoALP ICLP’14 2 / 30

Recursion and Corecursion in Logic Programming

1 in the 70s-80s: Apt, van Emden, Kowalski: study of recursion and
least Herbrand model semantics of LP

2 in the 80s; Abdallah, van Emden, Lloyd: “perpetual” computations in
LP and the greatest fixed point semantics of LP: incomplete, no finite
procedure for computations given

3 2000s: Gupta, Simon et al: CoLP: finite derivation procedure for
coinductive programs, soundness and completeness for programs
describing regular trees.

4 Our work, from 2010, – coalgebraic semantics for LP, and inspired
derivation procedures.

Katya (Dundee) CoALP ICLP’14 2 / 30

Recursion and Corecursion in Logic Programming

1 in the 70s-80s: Apt, van Emden, Kowalski: study of recursion and
least Herbrand model semantics of LP

2 in the 80s; Abdallah, van Emden, Lloyd: “perpetual” computations in
LP and the greatest fixed point semantics of LP: incomplete, no finite
procedure for computations given

3 2000s: Gupta, Simon et al: CoLP: finite derivation procedure for
coinductive programs, soundness and completeness for programs
describing regular trees.

4 Our work, from 2010, – coalgebraic semantics for LP, and inspired
derivation procedures.

Katya (Dundee) CoALP ICLP’14 2 / 30

Recursion and Corecursion in Logic Programming

1 in the 70s-80s: Apt, van Emden, Kowalski: study of recursion and
least Herbrand model semantics of LP

2 in the 80s; Abdallah, van Emden, Lloyd: “perpetual” computations in
LP and the greatest fixed point semantics of LP: incomplete, no finite
procedure for computations given

3 2000s: Gupta, Simon et al: CoLP: finite derivation procedure for
coinductive programs, soundness and completeness for programs
describing regular trees.

4 Our work, from 2010, – coalgebraic semantics for LP, and inspired
derivation procedures.

Katya (Dundee) CoALP ICLP’14 2 / 30

Recursion and Corecursion in Logic Programming

Example

bit(0) ←
bit(1) ←

list(nil) ←
list(cons (X, Y)) ← bit(X), list(Y)

Example

stream(cons (X,Y)) ← bit(X), stream(Y)

Katya (Dundee) CoALP ICLP’14 3 / 30

SLD-resolution (+ unification and backtracking) behind
LP derivations.

Example

nat(0) ←
nat(s(x)) ← nat(x)

list(nil) ←
list(cons x y) ← nat(x),

list(y)

← list(cons(x, y))

← nat(x), list(y)

Katya (Dundee) CoALP ICLP’14 4 / 30

SLD-resolution (+ unification) is behind LP derivations.

Example

nat(0) ←
nat(s(x)) ← nat(x)

list(nil) ←
list(cons x y) ← nat(x),

list(y)

← list(cons(x, y))

← nat(x), list(y)

← list(y)

Katya (Dundee) CoALP ICLP’14 5 / 30

SLD-resolution (+ unification) is behind LP derivations.

Example

nat(0) ←
nat(s(x)) ← nat(x)

list(nil) ←
list(cons x y) ← nat(x),

list(y)

← list(cons(x, y))

← nat(x), list(y)

← list(y)

← �
The answer is x/O, y/nil , but we can get more substitutions by
backtracking. We can backtrack infinitely many times, but each time
computation will terminate.

Nice, clean semantics: least Herbrand model exists, sound&complete, etc...

Katya (Dundee) CoALP ICLP’14 6 / 30

SLD-resolution (+ unification) is behind LP derivations.

Example

nat(0) ←
nat(s(x)) ← nat(x)

list(nil) ←
list(cons x y) ← nat(x),

list(y)

← list(cons(x, y))

← nat(x), list(y)

← list(y)

← �
The answer is x/O, y/nil , but we can get more substitutions by
backtracking. We can backtrack infinitely many times, but each time
computation will terminate.
Nice, clean semantics: least Herbrand model exists, sound&complete, etc...

Katya (Dundee) CoALP ICLP’14 6 / 30

Corecursion in LP?

Example

bit(0) ←
bit(1) ←
stream(scons(x, y)) ←

bit(x), stream(y)

No answer, as derivation never
terminates.
Semantics may go wrong as well:
least Herbrand models will contain
an infinite term corresponding to
stream: so completeness fails.

← stream(scons(x, y))

← bit(x), stream(y)

← stream(y)

← bit(x1), stream(y1)

← stream(y1)

← bit(x2), stream(y2)

← stream(y2)

...

Katya (Dundee) CoALP ICLP’14 7 / 30

Corecursion in LP?

Example

bit(0) ←
bit(1) ←
stream(scons(x, y)) ←

bit(x), stream(y)

No answer, as derivation never
terminates.

Semantics may go wrong as well:
least Herbrand models will contain
an infinite term corresponding to
stream: so completeness fails.

← stream(scons(x, y))

← bit(x), stream(y)

← stream(y)

← bit(x1), stream(y1)

← stream(y1)

← bit(x2), stream(y2)

← stream(y2)

...

Katya (Dundee) CoALP ICLP’14 7 / 30

Corecursion in LP?

Example

bit(0) ←
bit(1) ←
stream(scons(x, y)) ←

bit(x), stream(y)

No answer, as derivation never
terminates.
Semantics may go wrong as well:
least Herbrand models will contain
an infinite term corresponding to
stream: so completeness fails.

← stream(scons(x, y))

← bit(x), stream(y)

← stream(y)

← bit(x1), stream(y1)

← stream(y1)

← bit(x2), stream(y2)

← stream(y2)

...

Katya (Dundee) CoALP ICLP’14 7 / 30

It can be worse....

Example

bit(0) ←
bit(1) ←
list(cons(x, y)) ←

bit(x), list(y)

list(nil) ←

No answer, as derivation never
terminates.
Semantics goes wrong: this time,
soundness!

← list(cons(x, y))

← bit(x), list(y)

← list(y)

← bit(x1), list(y1)

← list(y1)

← bit(x2), list(y2)

← list(y2)

...

Katya (Dundee) CoALP ICLP’14 8 / 30

It can be worse....

Example

bit(0) ←
bit(1) ←
list(cons(x, y)) ←

bit(x), list(y)

list(nil) ←

No answer, as derivation never
terminates.

Semantics goes wrong: this time,
soundness!

← list(cons(x, y))

← bit(x), list(y)

← list(y)

← bit(x1), list(y1)

← list(y1)

← bit(x2), list(y2)

← list(y2)

...

Katya (Dundee) CoALP ICLP’14 8 / 30

It can be worse....

Example

bit(0) ←
bit(1) ←
list(cons(x, y)) ←

bit(x), list(y)

list(nil) ←

No answer, as derivation never
terminates.
Semantics goes wrong: this time,
soundness!

← list(cons(x, y))

← bit(x), list(y)

← list(y)

← bit(x1), list(y1)

← list(y1)

← bit(x2), list(y2)

← list(y2)

...

Katya (Dundee) CoALP ICLP’14 8 / 30

Solution - 1 [Gupta, Simon et al., 2007 - 2008]

If a formula repeatedly appears as a resolvent (modulo α-conversion),
then conclude the proof.

Example

bit(0) ←
bit(1) ←
stream(scons (X, Y)) ←

bit(X), stream(Y)

The answer is: X/cons(0,X).
Requires programs to be regular,
in order to be sound and complete

← stream(X)

← bit(X1), stream(X)

← stream(X)

�c

Katya (Dundee) CoALP ICLP’14 9 / 30

Solution - 1 [Gupta, Simon et al., 2007 - 2008]

If a formula repeatedly appears as a resolvent (modulo α-conversion),
then conclude the proof.

Example

bit(0) ←
bit(1) ←
stream(scons (X, Y)) ←

bit(X), stream(Y)

The answer is: X/cons(0,X).
Requires programs to be regular,
in order to be sound and complete

← stream(X)

← bit(X1), stream(X)

← stream(X)

�c

Katya (Dundee) CoALP ICLP’14 9 / 30

CoALP: what is it about?

syntactically – first-order logic programming;

operationally – lazy (co)recursion;

inspired by coalgebraic fibrational semantics;

uses and-or parallel trees, but restricts unification to matching;

Term-matcher

A substitution θ is a term-matcher for A and B is Aθ = B.

explores the tree-structure of partial proofs – ”coinductive trees”;

Coinductive tree...

is an and-or-parallel tree in which unification is restricted to
term-matching;

Coinductive trees give a measure for lazy guarded corecursion, (cf.
”clocked corecursion”)

Katya (Dundee) CoALP ICLP’14 10 / 30

CoALP: what is it about?

syntactically – first-order logic programming;

operationally – lazy (co)recursion;

inspired by coalgebraic fibrational semantics;

uses and-or parallel trees, but restricts unification to matching;

Term-matcher

A substitution θ is a term-matcher for A and B is Aθ = B.

explores the tree-structure of partial proofs – ”coinductive trees”;

Coinductive tree...

is an and-or-parallel tree in which unification is restricted to
term-matching;

Coinductive trees give a measure for lazy guarded corecursion, (cf.
”clocked corecursion”)

Katya (Dundee) CoALP ICLP’14 10 / 30

CoALP: what is it about?

syntactically – first-order logic programming;

operationally – lazy (co)recursion;

inspired by coalgebraic fibrational semantics;

uses and-or parallel trees, but restricts unification to matching;

Term-matcher

A substitution θ is a term-matcher for A and B is Aθ = B.

explores the tree-structure of partial proofs – ”coinductive trees”;

Coinductive tree...

is an and-or-parallel tree in which unification is restricted to
term-matching;

Coinductive trees give a measure for lazy guarded corecursion, (cf.
”clocked corecursion”)

Katya (Dundee) CoALP ICLP’14 10 / 30

CoALP: what is it about?

syntactically – first-order logic programming;

operationally – lazy (co)recursion;

inspired by coalgebraic fibrational semantics;

uses and-or parallel trees, but restricts unification to matching;

Term-matcher

A substitution θ is a term-matcher for A and B is Aθ = B.

explores the tree-structure of partial proofs – ”coinductive trees”;

Coinductive tree...

is an and-or-parallel tree in which unification is restricted to
term-matching;

Coinductive trees give a measure for lazy guarded corecursion, (cf.
”clocked corecursion”)

Katya (Dundee) CoALP ICLP’14 10 / 30

Lazy Corecursion in CoALP: Coinductive trees

stream(x)

θ1→

stream(scons(z, y))

bit(z) stream(y)

θ2→ . . .
θ3→

Note that transitions θ may be determined in a number of ways:

using mgus;

non-deterministically;

in a distributed/parallel manner.

Katya (Dundee) CoALP ICLP’14 11 / 30

Lazy Corecursion in CoALP: Coinductive trees

stream(x)

θ1→
stream(scons(z, y))

bit(z) stream(y)

θ2→ . . .
θ3→

Note that transitions θ may be determined in a number of ways:

using mgus;

non-deterministically;

in a distributed/parallel manner.

Katya (Dundee) CoALP ICLP’14 11 / 30

Lazy Corecursion in CoALP: Coinductive trees

stream(x)

θ1→
stream(scons(z, y))

bit(z) stream(y)

θ2→ . . .
θ3→

Note that transitions θ may be determined in a number of ways:

using mgus;

non-deterministically;

in a distributed/parallel manner.

Katya (Dundee) CoALP ICLP’14 11 / 30

Lazy Corecursion in CoALP

stream(x)

θ1→
stream(scons(z, y))

bit(z) stream(y)

θ2→ . . .
θ3→

stream(scons(0, scons(y1, z1)))

bit(0) stream(scons(y1, z1))

bit(y1) stream(z1)

The above would correspond to one-branch of SLD-derivations we have
seen! The main driving force: separation of layers of computations into
different dimensions.

Katya (Dundee) CoALP ICLP’14 12 / 30

Computationally essential:

1 for coinductive Stream program, the coinductive-trees are finite!!! –
both in depth and in breadth;

2 each tree gives only a partial computation – it is not like eager
SLD-trees we have seen earlier;

1. ⇒ gives hope for a formalism to describe termination and productivity,
as in functional languages
2. ⇒ hints there may be laziness involved...

Katya (Dundee) CoALP ICLP’14 13 / 30

Computationally essential:

1 for coinductive Stream program, the coinductive-trees are finite!!! –
both in depth and in breadth;

2 each tree gives only a partial computation – it is not like eager
SLD-trees we have seen earlier;

1. ⇒ gives hope for a formalism to describe termination and productivity,
as in functional languages
2. ⇒ hints there may be laziness involved...

Katya (Dundee) CoALP ICLP’14 13 / 30

What do we gain?

1 A coherent theory of termination and productivity of recursion and
corecursion in LP

Katya (Dundee) CoALP ICLP’14 14 / 30

Theory of Productivity in LP

Typeful functional theorem provers:

Recursion

Terminating Non-terminating

Corecursion

Productive Non-productive>>gg cc 99

CoALP

(Coinductive) Derivations

Non-productive Productive

Coinductive

Inductive

Finite

aa 44

99

11

))

Katya (Dundee) CoALP ICLP’14 15 / 30

Theory of Productivity in LP

Typeful functional theorem provers:

Recursion

Terminating Non-terminating

Corecursion

Productive Non-productive>>gg cc 99

CoALP

(Coinductive) Derivations

Non-productive Productive

Coinductive

Inductive

Finite

aa 44

99

11

))

Katya (Dundee) CoALP ICLP’14 15 / 30

What do we gain?

1 A coherent theory of termination and productivity of recursion and
corecursion in LP

2 Extension of classes of inductive and coinductive programs we can
handle,

3 Mixing induction/coinduction.

Katya (Dundee) CoALP ICLP’14 16 / 30

Stream of Fibonacci numbers:

Falls into infinite loops in Prolog and CoLP.

1. add(0,Y,Y).

2. add(s(X),Y,s(Z)) :- add(X,Y,Z).

3. fibs(X,Y,cons(X,S)) :- add(X,Y,Z), fibs(Y,Z,S).

4. nth(0,cons(X,S),X).

5. nth(s(N),cons(X,S),Y) :- nth(N,S,Y).

6. fib(N,X) :- fibs(0,s(0),S), nth(N,S,X).

7. fib2(X) :- fib(s(s(0)),X).

Katya (Dundee) CoALP ICLP’14 17 / 30

Examples of derivations with Fib: lazy step 1

fib2(X)

fib(s2(0)),X)

fibs(0,s(0),S) nth(s2(0),S,X)

5,S/c(X1,S1)−−−−−−−−→

→

1. add(0,Y,Y).

2. add(s(X),Y,s(Z)) :-

add(X,Y,Z).

3. fibs(X,Y,cons(X,S)) :-

add(X,Y,Z), fibs(Y,Z,S).

4. nth(0,cons(X,S),X).

5. nth(s(N),cons(X,S),Y) :-

nth(N,S,Y).

6. fib(N,X) :- fibs(0,s(0),S),

nth(N,S,X).

7. fib2(X) :- fib(s(s(0)),X).

Katya (Dundee) CoALP ICLP’14 18 / 30

Examples of derivations with Fib: lazy step 1

fib2(X)

fib(s2(0)),X)

fibs(0,s(0),S) nth(s2(0),S,X)

5,S/c(X1,S1)−−−−−−−−→

→

1. add(0,Y,Y).

2. add(s(X),Y,s(Z)) :-

add(X,Y,Z).

3. fibs(X,Y,cons(X,S)) :-

add(X,Y,Z), fibs(Y,Z,S).

4. nth(0,cons(X,S),X).

5. nth(s(N),cons(X,S),Y) :-

nth(N,S,Y).

6. fib(N,X) :- fibs(0,s(0),S),

nth(N,S,X).

7. fib2(X) :- fib(s(s(0)),X).

Katya (Dundee) CoALP ICLP’14 18 / 30

Examples of derivations with Fib: lazy step 2

fib2(X)

fib(s2(0)),X)

fibs(0,s(0),c(X1,S1)) nth(s2(0),c(X1,S1),X)

nth(s(0),S1,X)

5,S1/c(X2,S2)−−−−−−−−−→

→

1. add(0,Y,Y).

2. add(s(X),Y,s(Z)) :-

add(X,Y,Z).

3. fibs(X,Y,cons(X,S)) :-

add(X,Y,Z), fibs(Y,Z,S).

4. nth(0,cons(X,S),X).

5. nth(s(N),cons(X,S),Y) :-

nth(N,S,Y).

6. fib(N,X) :- fibs(0,s(0),S),

nth(N,S,X).

7. fib2(X) :- fib(s(s(0)),X).

Katya (Dundee) CoALP ICLP’14 19 / 30

Examples of derivations with Fib: lazy step 2

fib2(X)

fib(s2(0)),X)

fibs(0,s(0),c(X1,S1)) nth(s2(0),c(X1,S1),X)

nth(s(0),S1,X)

5,S1/c(X2,S2)−−−−−−−−−→

→

1. add(0,Y,Y).

2. add(s(X),Y,s(Z)) :-

add(X,Y,Z).

3. fibs(X,Y,cons(X,S)) :-

add(X,Y,Z), fibs(Y,Z,S).

4. nth(0,cons(X,S),X).

5. nth(s(N),cons(X,S),Y) :-

nth(N,S,Y).

6. fib(N,X) :- fibs(0,s(0),S),

nth(N,S,X).

7. fib2(X) :- fib(s(s(0)),X).

Katya (Dundee) CoALP ICLP’14 19 / 30

Examples of derivations with Fib: lazy step 3

fib2(X)

fib(s2(0)),X)

fibs(0,s(0),c(X1,c(X2,S2))) nth(s2(0),c(X1,c(X2,S2)),X)

nth(s(0),c(X2,S2),X)

nth(0,S2,X)

S2/c(X,S3)−−−−−−−→

→

Katya (Dundee) CoALP ICLP’14 20 / 30

Examples of derivations with Fib: lazy step 4

fib2(X)

fib(s2(0)),X)

fibs(0,s(0),c(X1,c(X2,c(X,S3)))) nth(s2(0),c(X1,c(X2,c(X,S3))),X)

nth(s(0),c(X2,c(X,S3)),X)

nth(0,c(X,S3),X)

nth(0,c(X,S3),X)

X1/0−−−→

→

Katya (Dundee) CoALP ICLP’14 21 / 30

Examples of derivations with Fib: lazy step 5

fib2(X)

fib(s2(0)),X)

fibs(0,s(0),c(0,c(X2,c(X,S3))))

a(0,s(0),Z) fibs(s(0),Z,c(X2,c(X,S3)))

nth(s2(0),c(0,c(X2,c(X,S3))),X)

nth(s(0),c(X2,c(X,S3)),X)

nth(0,c(X,S3),X)

nth(0,c(X,S3),X)

Z/0−−→

→

Katya (Dundee) CoALP ICLP’14 22 / 30

Examples of derivations with Fib: lazy step 6

fib2(X)

fib(s2(0)),X)

fibs(0,s(0),c(0,c(X2,c(X,S3))))

a(0,s(0),s(0)) fibs(s(0),s(0),c(X2,c(X,S3)))

nth(s2(0),c(0,c(X2,c(X,S3))),X)

nth(s(0),c(X2,c(X,S3)),X)

nth(0,c(X,S3),X)

nth(0,c(X,S3),X)

X2/s(0)−−−−−→

→

Katya (Dundee) CoALP ICLP’14 23 / 30

Examples of derivations with Fib: lazy step 7

fib2(X)

fib(s2(0)),X)

fibs(0,s(0),c(0,c(s(0),c(X,S3))))

a(0,s(0),s(0)) fibs(s(0),s(0),c(s(0),c(X,S3)))

a(s(0),s(0),Z) fibs(s(0),Z,c(X,S3))

nth(s2(0),c(0,c(s(0),c(X,S3))),X)

nth(s(0),c(s(0),c(X,S3)),X)

nth(0,c(X,S3),X)

nth(0,c(X,S3),X)

Z/s(s(0))−−−−−−→

→

Katya (Dundee) CoALP ICLP’14 24 / 30

Examples of derivations with Fib: lazy step 8
fib2(X)

fib(s2(0)),X)

fibs(0,s(0),c(0,c(s(0),c(X,S3))))

a(0,s(0),s(0)) fibs(s(0),s(0),c(s(0),c(X,S3)))

a(s(0),s(0),s(s(0)))

a(0,s(0),s(0))

fibs(s(0),s(s(0)),c(X,S3))

nth(s2(0),c(0,c(s(0),c(X,S3))),X)

nth(s(0),c(s(0),c(X,S3)),X)

nth(0,c(X,S3),X)

nth(0,c(X,S3),X)

X/s(0)−−−−→

→
Katya (Dundee) CoALP ICLP’14 25 / 30

Examples of derivations with Fib: lazy step 9

fib2(s(0))

fib(s2(0)),s(0))

fibs(0,s(0),c(0,c(s(0),c(s(0),S3))))

a(0,s(0),s(0)) fibs(s(0),s(0),c(s(0),c(s(0),S3)))

a(s(0),s(0),s(s(0)))

a(0,s(0),s(0))

fibs(s(0),s(s(0)),c(s(0),S3))

a(s(0),s(s(0)),Z) fibs(s(s(0)),Z,S3)

nth(s2(0),c(0,c(s(0),c(s(0),S3))),s(0))

nth(s(0),c(s(0),c(s(0),S3)),s(0))

nth(0,c(s(0),S3),s(0))

nth(0,c(s(0),S3),s(0))

Katya (Dundee) CoALP ICLP’14 26 / 30

CoALP Properties:

Komendantskaya, Power, Schmidt: Coalgebraic Logic Programming: from
Semantics to Implementation, Journal of Logic and Computation, 2014.

Sound and complete with respect to the coalgebraic semantcs;

Finite computations are sound and complete with respect to the least
Herbrand model semantics (so, we can do as much as standard
Prolog).

Adequacy result for observational semantics.

Katya (Dundee) CoALP ICLP’14 27 / 30

Logic Programming dialects, compared

Prolog Parallel Prolog Co-LP CoALP

Fib example No No No
Yes

Execution Eager Eager Eager
Lazy

Corecursion

No No by Regular Loop
detection

Guardedness by
constructors

Mode of execu-
tion

Sequential Parallel Sequential Parallel

Declarative se-
mantics

lfp lfp gfp (restricted) coalgebraic

Operational se-
mantics

transitions;
states: lists of
formulae

transitions;
states: lists of
formulae

transitions;
states: lists of
formulae

transitions;
states: coinduc-
tive trees

Katya (Dundee) CoALP ICLP’14 28 / 30

Logic Programming dialects, compared

Prolog Parallel Prolog Co-LP CoALP

Fib example No No No
Yes

Execution Eager Eager Eager
Lazy

Corecursion
No No by Regular Loop

detection
Guardedness by
constructors

Mode of execu-
tion

Sequential Parallel Sequential Parallel

Declarative se-
mantics

lfp lfp gfp (restricted) coalgebraic

Operational se-
mantics

transitions;
states: lists of
formulae

transitions;
states: lists of
formulae

transitions;
states: lists of
formulae

transitions;
states: coinduc-
tive trees

Katya (Dundee) CoALP ICLP’14 28 / 30

Logic Programming dialects, compared

Prolog Parallel Prolog Co-LP CoALP

Fib example No No No
Yes

Execution Eager Eager Eager
Lazy

Corecursion
No No by Regular Loop

detection
Guardedness by
constructors

Mode of execu-
tion Sequential Parallel Sequential Parallel

Declarative se-
mantics

lfp lfp gfp (restricted) coalgebraic

Operational se-
mantics

transitions;
states: lists of
formulae

transitions;
states: lists of
formulae

transitions;
states: lists of
formulae

transitions;
states: coinduc-
tive trees

Katya (Dundee) CoALP ICLP’14 28 / 30

Logic Programming dialects, compared

Prolog Parallel Prolog Co-LP CoALP

Fib example No No No
Yes

Execution Eager Eager Eager
Lazy

Corecursion
No No by Regular Loop

detection
Guardedness by
constructors

Mode of execu-
tion Sequential Parallel Sequential Parallel

Declarative se-
mantics lfp lfp gfp (restricted) coalgebraic

Operational se-
mantics

transitions;
states: lists of
formulae

transitions;
states: lists of
formulae

transitions;
states: lists of
formulae

transitions;
states: coinduc-
tive trees

Katya (Dundee) CoALP ICLP’14 28 / 30

Logic Programming dialects, compared

Prolog Parallel Prolog Co-LP CoALP

Fib example No No No
Yes

Execution Eager Eager Eager
Lazy

Corecursion
No No by Regular Loop

detection
Guardedness by
constructors

Mode of execu-
tion Sequential Parallel Sequential Parallel

Declarative se-
mantics lfp lfp gfp (restricted) coalgebraic

Operational se-
mantics transitions;

states: lists of
formulae

transitions;
states: lists of
formulae

transitions;
states: lists of
formulae

transitions;
states: coinduc-
tive trees

Katya (Dundee) CoALP ICLP’14 28 / 30

Current and future work

1 Using CoALP to formally define a general theory of Termination and
Productivity for Recursion and Corecursion in LP

2 Finalise guardedness conditions

3 Establish soundness criteria for termination of coinductive derivations.

4 Extension of CoALP with constraints

5 Applications to type inference

... join us!

Katya (Dundee) CoALP ICLP’14 29 / 30

Current and future work

1 Using CoALP to formally define a general theory of Termination and
Productivity for Recursion and Corecursion in LP

2 Finalise guardedness conditions

3 Establish soundness criteria for termination of coinductive derivations.

4 Extension of CoALP with constraints

5 Applications to type inference

... join us!

Katya (Dundee) CoALP ICLP’14 29 / 30

Current and future work

1 Using CoALP to formally define a general theory of Termination and
Productivity for Recursion and Corecursion in LP

2 Finalise guardedness conditions

3 Establish soundness criteria for termination of coinductive derivations.

4 Extension of CoALP with constraints

5 Applications to type inference

... join us!

Katya (Dundee) CoALP ICLP’14 29 / 30

Current and future work

1 Using CoALP to formally define a general theory of Termination and
Productivity for Recursion and Corecursion in LP

2 Finalise guardedness conditions

3 Establish soundness criteria for termination of coinductive derivations.

4 Extension of CoALP with constraints

5 Applications to type inference

... join us!

Katya (Dundee) CoALP ICLP’14 29 / 30

Current and future work

1 Using CoALP to formally define a general theory of Termination and
Productivity for Recursion and Corecursion in LP

2 Finalise guardedness conditions

3 Establish soundness criteria for termination of coinductive derivations.

4 Extension of CoALP with constraints

5 Applications to type inference

... join us!

Katya (Dundee) CoALP ICLP’14 29 / 30

Thank you!

Download your copy of CoALP today:

CoALP webpage: http://staff.computing.dundee.ac.uk/katya/CoALP/

Katya (Dundee) CoALP ICLP’14 30 / 30

	Recursion and Corecursion
	Coalgebraic Logic Programming

