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Abstract

In sequent calculi, cut elimination is a property that guarantees that any provable formula can
be proven analytically. For example, Gentzen’s classical and intuitionistic calculi LK and LJ
enjoy cut elimination. The property is less studied in coinductive extensions of sequent calculi.
In this paper, we use coinductive Horn clause theories to show that cut is not eliminable in a
coinductive extension of LJ, a system we call CLJ. We derive two further practical results from
this study. We show that CoLP by Gupta et al. gives rise to cut-free proofs in CLJ with fixpoint
terms, and we formulate and implement a novel method of coinductive theory exploration that
provides several heuristics for discovery of cut formulae in CLJ.

KEYWORDS: Sequent Calculus, Horn Clauses, Coinduction, Cut Elimination, Theory Explo-
ration.

1 Introduction

Cut elimination is one of the central properties of interest for sequent calculi (Gentzen
1969), and more generally, proof theory. Informally, whenever we want to prove a formula
ϕ relative to a given theory Γ, we can use cut to first prove another formula ψ, and then
show that ψ implies ϕ:

Γ ` ψ Γ, ψ ` ϕ
cut

Γ ` ϕ

The cut elimination property holds if every proof of a sequent that uses a cut, can
be transformed into a cut-free proof. Cut elimination serves as a form of completeness
result for the calculus: cut-free proofs can be constructed analytically by simply following
the structure of formulae, eliminating any need to discover a cut formula. For first-order
logic, the most famous example of a calculus with eliminable cut is Gentzen’s system LJ.

Recently, coinduction became a prominent proof method, and has been incorporated
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into a number of proof systems, see e.g. (Brotherston and Simpson 2011) for cyclic proof
systems or (Gupta et al. 2007) for coinductive logic programming (CoLP). Informally
speaking, coinductive extensions of proof systems give finitary methods to prove formulae
that would otherwise require an infinite proof. Usually, it comes in the shape of a fixpoint
rule:

Γ, ϕ ` ϕ
co-fix

Γ ` ϕ

The rule allows one to add the formula ϕ, that would otherwise cause infinite deriva-
tions, directly to the set of assumptions, and thus close the proof coinductively in a finite
number of steps. Sometimes ϕ is called a coinduction hypothesis. The co-fix rule usually
comes with certain guardedness or productivity conditions. These vary from system to
system, but always serve to guarantee soundness of the rule.

Only recently, the relation between these two principles, cut elimination and coin-
duction, attracted special attention of the proof-theoretic community. A series of pa-
pers (Saotome et al. 2020; Kimura et al. 2020) showed that cut is not eliminable in a
cyclic first-order Separation logic. In this paper, we show that this problem is more gen-
eral: Adding a coinduction rule to a first-order proof system destroys the property of cut
elimination. We show this for the Gentzen’s intuitionistic sequent calculus LJ, although
a similar argument works for Gentzen’s LK, and any sequent calculus for a logic with
implication and universal and existential quantification. We call LJ augmented with the
cofix rule Coinductive LJ, or simply CLJ, and show that cut is not eliminable in CLJ.

The system CLJ is very similar to coinductive uniform proofs (CUP) (Basold et al.
2019), only that CUP does not feature a cut rule. CUP is a coinductive extension of
uniform proofs, a fragment of the Gentzen’s sequent calculus introduced to model the
derivations obtained by first-order resolution in Prolog (Miller et al. 1991; Miller and
Nadathur 2012). As it turns out, CUP is sound with respect to the largest Herbrand
models of logic programs (Basold et al. 2019).

We apply our result in two ways. Firstly, we show that derivations in CoLP (Gupta
et al. 2007) in fact correspond to cut-free proofs in CLJ. This gives a proof-theoretic
characterisation to the well-known results of incompleteness of CoLP. Moreover, our char-
acterisation of CoLP’s loops by fixpoint terms may pave the way for future embeddings
of CoLP in richer theorem provers.

Secondly, seeing that we cannot hope to prove all theorems of interest analytically, we
propose to establish a stronger infrastructure for theory exploration in coinductive first-
order theories. Similarly to the Boyer-Moore Waterfall Model (Boyer and Moore 1979),
the methodology consists of four steps: (1) use a suitable coinductive sequent calculus (e.g.
CLJ without cut or CUP) to prove analytically as much as possible; (2) use first-order
resolution to explore the loops in derivations and suggest suitable coinductive lemmas;
(3) use the calculus to prove the discovered lemmas and discard those that cannot be
proven; (4) use the proven lemmas as cut formulae to complete previously failed proofs.

We present an implementation of this method, that comprises an implementation of
CUP, several coinductive theory exploration methods from the literature, including CoLP
and the method of Fu et al. (2016), as well as one novel theory exploration method.
The implementation is available on Github1. These results are of interest to either logic

1 https://github.com/CoUniform/theory-exploration

https://github.com/CoUniform/theory-exploration
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p(x) ≡ p(x)
(Axiom)

{p(x)}+ ∅+ {∀x. p(x)} ` p(x)

p(f(x)) ≡ p(f(x))
(Axiom)

∅+ {p(f(x))}+ ∅ ` p(f(x))
(∀-L-G)

∅+ {∀x. p(x)}+ ∅ ` p(f(x))
(→-L-T)

{p(f(x))→ p(x)}+ ∅+ {∀x. p(x)} ` p(x)
(∀-L-T)

ΓT + ∅+ {∀x. p(x)} ` p(x)
(∀-R)

ΓT + ∅+ {∀x. p(x)} ` ∀x. p(x)
(CO-FIX)

♠

♠
ΓT + ∅+ ∅ ` ∀x. p(x)

p(a) ≡ p(a)
(Axiom)

ΓT + {p(a)}+ ∅ ` p(a)
(∀-L-G)

ΓT + {∀x. p(x)}+ ∅ ` p(a)
(Cut)

ΓT + ∅+ ∅ ` p(a)

Fig. 1: A coinductive proof in CLJ with cut.

programmers who need to reason about richer coinductive properties than CoLP already
handles, or the developers of other theorem provers that feature coinduction.

We can illustrate this paper’s results by means of three examples.

Cut Non-Eliminability. Consider the following logic program ΓT :

κu : ∀x. p(f(x))→ p(x) ,

and the goal formula p(a) for some constant a. We may attempt to prove p(a) by means
of an infinite tree that follows the rules of the system LJ:

... (∀-L)
ΓT ` p(f(a))

p(a) ≡ p(a)
(Axiom)

ΓT , p(a) ` p(a)
(→-L)

ΓT , p(f(a))→ p(a) ` p(a)
(∀-L)

ΓT ,ΓT ` p(a)
(C-L)

ΓT ` p(a)

In fact, p(a) is not directly (analytically) provable in LJ. However, if we proved the
lemma ∀x. p(x), we could derive p(a) as an instance. Such a proof for p(a) in our system
CLJ is shown in Figure 1. Sequents in CLJ have contexts that consist of three parts that
are separated by “+”: the logic program ΓT , a context with ordinary proof assumptions
(see the application of the rule (→-L-T)), and one which holds coinduction hypotheses
(see the application of the rule (CO-FIX)). This splitting of contexts allows us to ensure
guardedness, and therefore soundness of coinductive proofs. The proof proceeds by intro-
ducing ∀x. p(x) through the cut rule into the proof of p(a) in the lower part of Figure 1.
We then proceed to prove ∀x. p(x) by using the (CO-FIX)-rule, and we therefore call this
formula a coinduction hypothesis.

In Section 3, we will use this example to prove cut non-eliminability in CLJ. That is,
we will show that it is impossible to give a cut-free proof for ΓT +∅+∅ ` p(a). It is worth
noting that coinductive inference for p(a) also cannot be accomplished in CoLP (Gupta
et al. 2007), and this logic program has been used to show incompleteness of CoLP.
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Understanding the Proof-Theoretic Power of CoLP. Looking with proof-theoretic spec-
tacles at CoLP, we notice that CoLP requires circular unifiers seen as fixpoint terms to
represent rational terms but does not require the cut rule. For example, consider the
logic program Pstream0 that defines the stream of zeros:

κstream0 : ∀x. stream(x)→ stream(scons(0, x))

CoLP finds a loop in the resolution trace stream(x)
x/scons(0,x)→ stream(x)→ . . ., and

generates a circular unifier x = scons(0, x) as a finitary representation of the stream.
The Prolog query stream(x) corresponds to the goal ∃t. stream(t) in CLJ. In order to
obtain a proof for Pstream + ∅ + ∅ ` ∃t. stream(t) in CLJ, we will need to instantiate
the existential variable t with the term s := fixx. scons(0, x). Note the use of a fixpoint
at the term level as an alternative representation for circular unifiers. We can then prove
Pstream + ∅ + ∅ ` stream(s) by (CO-FIX) with stream(s) as coinduction hypothesis.
More generally, all CoLP proofs yield cut-free proofs in CLJ, as we will show in Section 4.

Going Beyond State of the Art. The above results allow us to look at the picture more
generally, and notice that proofs of some propositions in coinductive first-order Horn
clause theories in fact require proving coinduction lemmas that are formulated in a richer
language. Already in our simple example, ∀x. p(x) is a goal in hereditary Harrop logic,
rather than Horn clause logic because universal goals cannot be proven in Prolog. One
can find examples when higher-order coinductive lemmas are needed to complete proofs
arising from logic programs. Take, for example, the logic program Pfrom that defines
streams of successive natural numbers, e.g., 0, s(0), s(s(0)), · · · :

κfrom : ∀x y. from(s(x), y)→ from(x, scons(x, y))

To prove the goal ∃t. from(0, t), we have to find a finitary representation of the (infinite)
term scons(0, scons(s(0), · · · ). This is not possible with circular unifiers, but rather with
higher-order fixpoint terms. Moreover, we also have to generalise our goal, which leads to
the coinduction lemma ∀x. from(x, fix f. λx. scons(x, f(s x))). From this lemma, we are
able to obtain ∃t. from(0, t) as a corollary.

In order to prove lemmas at this level of generality, one could use λ-Prolog (Miller and
Nadathur 2012) that features both higher-order terms and hereditary Harrop clauses.
CUP (Basold et al. 2019) shows that a coinductive extension of λ-Prolog is sound rela-
tive to the greatest Herbrand models. However, CUP itself has no capacity to search for
lemmas that can serve as coinduction hypotheses, it can only prove one correct if it is
already found. In Section 5, we contribute several theory exploration techniques. Coin-
ductive theory exloration for the example ΓT from above has already been introduced
in Fu et al. (2016). Our implementation incorporates this method, the CoLP-style search
for fixpoint terms, and one novel extension that also searches for higher-order coinduction
hypotheses, as required for the example Pfrom.

2 Background: Fixpoint Terms and Horn Clause theories

We will only work with first-order Horn clause theories in this paper. However, in presence
of coinduction, even these theories may require formulae with higher-order fixpoint terms,
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c : τ ∈ Σ

Γ ` c : τ

x : τ ∈ Γ

Γ ` x : τ

Γ `M : σ → τ Γ ` N : σ
Γ `M N : τ

Γ, x : σ `M : τ

Γ ` λx.M : σ → τ

Γ, x : τ `M : τ

Γ ` fixx.M : τ

(p : τ1 → · · · → τn → o) ∈ Π Γ `M1 : τ1 · · · Γ `Mn : τn

Γ  p M1 · · · Mn

Γ  ϕ Γ  ψ � ∈ {∧,∨,→}
Γ  ϕ � ψ

Γ, x : τ  ϕ

Γ  ∀x : τ. ϕ

Γ, x : τ  ϕ

Γ  ∃x : τ. ϕ

Fig. 2: Top: Well-formed Terms. Bottom: Well-formed Formulae.

as we saw in the introduction. This motivates the use of simply typed λ- and fixpoint-
terms (Barendregt et al. 2013; Basold et al. 2019). For Horn clause theory definitions,
we follow closely the notation used in Uniform proofs (Miller and Nadathur 2012).

We define the sets T of types and P of proposition types by the following grammars,
where ι and o are the base type and base proposition type.

T 3 σ, τ ::= ι | σ → τ P 3 ρ ::= o | σ → ρ, σ ∈ T

A term signature Σ is a set of pairs c : τ , where τ ∈ T, and a predicate signature is a
set Π of pairs p : ρ with ρ ∈ P. The elements in Σ and Π are called term symbols and
predicate symbols, respectively. Given term and predicate signatures Σ and Π, we refer
to the pair (Σ,Π) as signature. Let Var be a countable set of variables, the elements of
which we denote by x, y, . . . We call a finite list Γ of pairs x : τ of variables and types a
context. The set ΛΣ of (well-typed) terms over Σ is the collection of allM with Γ `M : τ

for some context Γ and type τ ∈ T, where Γ ` M : τ is defined in Figure 2. A term is
called closed if ` M : τ , otherwise it is called open. We say that ϕ is a (well-formed)
formula in context Γ, if Γ  ϕ is inductively derivable from the rules in Figure 2.

It is customary in logic programming to write the arguments to symbols as tuples like,
for example, in f(t1, t2). Our definition uses juxtaposition instead for simplicity, that
is, we would write this term as f t1 t2. Throughout this paper, we will, however, often
employ the logic programming style for the benefit of the reader.

We will use a standard β- and fix-reduction relation on terms, see (Basold et al. 2019).
The equivalence closure of the reduction relation (convertibility) is denoted by ≡.

The order of a type τ ∈ T is given as usual by ord(ι) = 0 and ord(σ → τ) =

max{ord(σ) + 1, ord(τ)}. If ord(τ) ≤ 1, then the arity of τ is given by ar(ι) = 0 and
ar(ι → τ) = ar(τ) + 1. A signature Σ is called first-order, if for all f : τ ∈ Σ we have
ord(τ) ≤ 1; similarly for Π. We let the arity of f then be ar(τ) and denote it by ar(f).

The guarded base terms over a first-order signature Σ are given by the following rules.

x : τ ∈ Γ ord(τ) ≤ 1

Γ `g x : τ

f : τ ∈ Σ

Γ `g f : τ

Γ `g M : σ → τ Γ `g N : σ

Γ `g M N : τ

f : σ ∈ Σ ord(τ) ≤ 1 Γ, x : τ, y1 : ι, . . . , yar(τ) : ι `g Mi : ι 1 ≤ i ≤ ar(f)

Γ `g fixx. λ~y. f ~M : τ

General guarded terms are generated by the following grammar.

G ::= M (with `g M : τ for some type τ) | c ∈ Σ | x ∈ Var | G G | λx.G
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Finally, M is a first-order term over Σ with Γ `M : τ if ord(τ) ≤ 1 and the types of all
variables occurring in Γ are of order 0.

Note that an important aspect of guarded terms is that no free variable occurs under
a fix-operator. Guarded base terms should be seen as specific fixpoint terms that we will
be able to unfold into potentially infinite trees. Guarded terms close guarded base terms
under operations of the simply typed λ-calculus. Basold et al. (2019) provides examples
and further discussion of guarded terms. In what follows, we will use the following sets
of well-typed terms: the set Λ−Σ of all simple terms, i.e. terms that do not involve fix; the
set ΛG,1Σ of guarded first-order terms; the set Λ−,1Σ of simple first-order terms.

Definition 2.1 (Atoms)
A formula ϕ of the shape p M1 · · · Mn is an atom and a

• first-order atom, if p and all the terms Mi are first-order;
• guarded atom, if all terms Mi are guarded; and
• simple atom, if all terms Mi are simple.

The sets of first-order, guarded and simple atoms are denoted by At1, Atgω and Atsω. We
denote intersections of these sets by Atg1 = At1 ∩Atgω and Ats1 = At1 ∩Atsω.

Definition 2.2 (D- and G-formulae, Logic Programs, Coinduction Hypothesis)
Let D and G be generated by the following grammar.

D ::= Atgω | G→ D | D ∧D | ∀x : τ.D

G ::= Atgω | G ∧G | G ∨G | ∃x : τ.G | D → G | ∀x : τ.G

A D-formula of the shape ∀~x.A1 ∧ · · · ∧An → A0 is called H-formula or Horn clause
if Ak ∈ Ats1. Finally, a logic program (or program) P is a set of H-formulae.

A formula ϕ is a coinduction hypothesis if ϕ simultaneously is a D- and a G-formula.

D- and G-formulae are also known as definite clauses and goal clauses in the logic
programming literature. The above syntax of D and G-formulae in fact presents an
extension of Horn clause syntax to hereditary Harrop formulae (that allow universal and
implicative goals). Coming back to our running example of ΓT formulated in Section 1,
we see that ΓT was given by a Horn clause. However, the proof of a goal p(a) required
to prove ∀x. p(x) first, which is a goal of hereditary Harrop logic.

3 Coinductive Sequent Calculus CLJ; Proof of Cut Non-Elimination

We start with introducing CLJ, a coinductive dialect of the Gentzen’s intuitionistic
sequent calculus LJ (Gentzen 1969). The rules in Figure 3 follow the standard formulation
of LJ (Sorensen and Urzyczyn 2006) (including notation Γ, ψ for Γ∪{ψ}), except for the
following three differences. Firstly, we restrict ourselves to logic programs for ΓT , and we
allow only G-formulae in ΓA and ΓC . As a result, we omit some LJ rules for existential
and disjunctive formulae on the left. Secondly, we introduce the rule (CO-FIX) in its
standard formulation, see e.g. (Basold et al. 2019). Finally, we ensure guardedness of
coinduction in CLJ by splitting the context into logic programs ΓT , intermediate proof
assumptions ΓA, and coinduction assumptions ΓC . Applying the rule (CO-FIX) is the
only way of introducing a coinduction assumption in ΓC . But, to complete a proof that



We Cannot Eliminate Cuts, But We Can Explore Them 7

ϕ′ ∈ ΓT ∪ ΓA ϕ ≡ ϕ′
(Axiom)

ΓT + ΓA + ΓC ` ϕ
ΓT + ΓA + ΓC ` ϕ1 ΓT + ΓA + ΓC ` ϕ2 (∧-R)

ΓT + ΓA + ΓC ` ϕ1 ∧ ϕ2

ΓT , ψi + ΓA + ΓC ` ϕ i ∈ {1, 2}
(∧-L-T)

ΓT , ψ1 ∧ ψ2 + ΓA + ΓC ` ϕ
ΓT + ΓA, ψi + ΓC ` ϕ i ∈ {1, 2}

(∧-L-G)
ΓT + ΓA, ψ1 ∧ ψ2 + ΓC ` ϕ

ΓT + ΓA + ΓC ` ϕ x 6∈ FV (ΓT ∪ ΓA ∪ ΓC)
(∀-R)

ΓT + ΓA + ΓC ` ∀x. ϕ
ΓT + ΓA + ΓC ` ϕ [N/x ]

(∃-R)
ΓT + ΓA + ΓC ` ∃x. ϕ

ΓT , ψ [N/x ] + ΓA + ΓC ` ϕ (∀-L-T)
ΓT , ∀x. ψ + ΓA + ΓC ` ϕ

ΓT + ΓA, ψ [N/x ] + ΓC ` ϕ (∀-L-G)
ΓT + ΓA, ∀x. ψ + ΓC ` ϕ

ΓT + ΓA, ψ + ΓC ` ϕ (→-R)
ΓT + ΓA + ΓC ` ψ → ϕ

ΓT , ψ + ΓA + ΓC ` ϕ ΓT + ΓA,ΓC + ∅ ` ξ
(→-L-T)

ΓT , ξ → ψ + ΓA + ΓC ` ϕ

ΓT + ΓA, ψ + ΓC ` ϕ ΓT + ΓA + ΓC ` ξ (→-L-G)
ΓT + ΓA, ξ → ψ + ΓC ` ϕ

ΓT + ΓA + ΓC , ϕ ` ϕ (CO-FIX)
ΓT + ΓA + ΓC ` ϕ

ΓT + ΓA + ΓC ` ψ ΓT + ΓA, ψ + ΓC ` ϕ (Cut)
ΓT + ΓA + ΓC ` ϕ

Fig. 3: The rules for CLJ, standard structural rules are assumed.

starts with (CO-FIX), we can never use formulae from ΓC . The only rule that allows us
to shift the coinduction hypotheses from ΓC to ΓA and thus make them usable in proofs
is the rule (→-L-T). Inuitively, this means we can only use a coinduction assumption after
we “resolved” our current goal against some clause from ΓT .

For this section only, it is sufficient to take a much smaller fragment of CLJ, and
restrict ourselves to only simple first-order atoms in ΓA and ΓC . In later sections, it will
be made clear how and why higher-order and fixpoint terms can be useful.

LJ has four structural rules: weakening, exchange and contraction on the left, and
weakening on the right. We omit the latter, as we extend the (Axiom) rule in a way
that renders right weakening opaque. To mimic LJ, we need to add the remaining three
structural rules (WL-T), (XL-T) and (CL-T) for ΓT :

ΓT + ΓA + ΓC ` ϕ
ΓT , ψ + ΓA + ΓC ` ϕ

ΓT , φ, ψ,Γ
′
T + ΓA + ΓC ` ϕ

ΓT , ψ, φ,Γ
′
T + ΓA + ΓC ` ϕ

ΓT , ψ, ψ + ΓA + ΓC ` ϕ
ΓT , ψ + ΓA + ΓC ` ϕ

and similarly for ΓA. We assume these 6 rules additionally to those in Figure 3.
We do not state soundness of CLJ here, as soundness of a very similar proof system

CUP relative to the greatest Herbrand models of logic programs was already proven in
(Basold et al. 2019). Here, our main goal is to prove cut non-elimnation in CLJ. We use
the example of Section 1 to show this.

Theorem 3.1 (Cut is not eliminable in CLJ )
Any proof of {∀x. p(f(x))→ p(x)}+ ∅+ ∅ ` p(a) uses the (Cut) rule.

Proof. To prove the theorem we will construct a set S of bad sequents in a proof tree for
{∀x. p(f(x))→ p(x)}+ ∅+ ∅ ` p(a), such that the following conditions hold:

1. The rule (Axiom) does not belong to S;
2. For every instance of any rule except (Cut), if the conclusion belongs to S then at

least one premise belongs to S;
3. Sequent {∀x. p(f(x))→ p(x)}+ ∅+ ∅ ` p(a) belongs to S.
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If these three conditions hold, then there are no finite proofs without cut for any
sequent in S, including the sequent from the theorem statement.

Let us now construct S. It consists of sequents of the form ΓT +ΓA+ΓC ` p(N) (with
an arbitrary term N ∈ Λ−,1Σ ) such that:

• ΓT ⊆ {p(t) | t ∈ Λ−,1Σ : t 6= f i(N) ∀i ≥ 0} ∪ {∀x. p(f(x))→ p(x)} ∪ {p(f(t))→ p(t) | t ∈ Λ−,1Σ },
• ΓA ⊆ {p(t) | t ∈ Λ−,1Σ : t 6= f i(N) ∀i ≥ 0},
• ΓC ⊆ {p(t) | t ∈ Λ−,1Σ : t 6= f i(N) ∀i > 0}.

So, we allow in premises only formulae of the form p(t) with t different from N with f
applied any number of times, we also allow succedent in the set of unguarded premises
(note > instead of ≥ there) and the given clause ∀x. p(f(x))→ p(x) in the set of theory
assumptions (uninstatiated or instantiated with an arbitrary term).

We now only need to check that the conditions for a set of bad sequents hold.
(1) Obvious, as we explicitly forbade the succedent from the guarded assumptions.
(2) There are very few rules except (Cut) that we can apply to a sequent of this form.

We can apply (∀-L-T), (CO-FIX) or the structural rules, which will keep us in S simply
by its definition. The only non-trivial case is if we apply the (→-L-T)-rule to use an
assumption p(f(M))→ p(M) with some term M . We will consider two subcases here:

(2.1) M 6= f i(N) for all i ≥ 0. Then the premise

ΓT , p(M) + ΓA + ΓC ` p(N)

belongs to S, as in this subcase p(M) satisfies the condition for assumptions from ΓT .
(2.2) M = fk(N) for some k ≥ 0. Then we can show that the other premise

ΓT + ΓA,ΓC + ∅ ` p(f(M))

belongs to S. We can rewrite it as

ΓT + ΓA,ΓC + ∅ ` p(fk+1(N)).

As all assumptions of the form p(t) safisfy t 6= f i(N) ∀i > 0, because the conclusion
belongs to S, they therefore satisfy t 6= f i+k+1(N) ∀i ≥ 0.

(3) Obvious. �
Note that, because of its simplicity, this result will be replicable in many sequent calculi

like, for instance, the classical system LK (Troelstra and Schwichtenberg 2000; Sorensen
and Urzyczyn 2006).

4 CoLP Derivations as Cut-free Proofs

Intuitively, the loop detection method of CoLP (Gupta et al. 2007) amounts to finding
atoms A and B in an SLD-derivation such that A and B unify. This, possibly circular,
unifier gives rise to a possibly infinite atom given by a rational tree (Courcelle 1983). It
may seem plausible to conjecture that CoLP’s set of all provable atoms corresponds to
the set of all rational trees in the program’s model, but this conjecture is disproven by our
example of the logic program ΓT and the goal p(a), that can be represented by a rational
tree, but cannot be proven in CoLP. This section proposes an alternative characterisation
of provability in CoLP as a set of atoms provable in cut-free CLJ. Providing a different
perspective on this result, Dagnino et al. (2020) have recently shown that CoLP covers
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all regular infinite SLD-trees. The regular proofs of Dagnino et al. (2020) correspond
to finite cut-free CLJ proofs in which the coinduction hypothesis/goal encapsulates the
structure of the entire infinite regular proof.

To establish our result, we need to allow first-order guarded fixpoint terms in goals
and in (coinductive) assumptions in ΓT , ΓA and ΓC . The main technical idea of this
section is to show how circular unifiers of CoLP convert into first-order fixpoint terms.
This conversion delivers us the theoretical result we seek, and may also open the way for
using CoLP within richer coinductive theorem provers.

We will use σ, σ0, σ1, . . . to denote substitutions defined on simple first order terms.
We say a substitution σ = [ t/x ] is circular if x appears among the free variables of t.
For example, [ scons(0, x)/x ] is a circular substitution.

In order to represent circular substitutions as fixpoint terms, we need to extend the
notion of substitution to fix-substitution, which is defined as a finitely supported func-
tion from variables to guarded first-order terms, i.e. terms in ΛG,1Σ . We will denote fix-
substitutions by δ, δ0, δ1, . . . to distinguish them from simple first-order substitutions.
Fix-substitutions extend to functions ΛG,1Σ → ΛG,1Σ by capture-avoiding substitution.

A fix-substitution δ is a fixpoint unifier for t, u ∈ ΛG,1Σ , if t[δ] ≡ u[δ], where we recall
≡ to be conversion with fix- and β-reduction (see (Basold et al. 2019)).

We first show that, given a circular substitution σ = [f ~t/x], we can obtain a fix-
substitution δ =

[
fixx. f ~t

/
x
]
. For example, the circular substitution [ scons(0, x)/x ] gives

rise to the fix-substitution [fixx. scons(0, x)/x]. Finding circular and fix-substitutions in
the general case requires some additional machinery, as the following example shows.

Example 4.1 (Finding Fix-substitutions)
For the two atoms p(f(x, y), g(x, y)) and p(x, y), let σ1 = [f(x, y)/x] and σ2 = [g(x, y)/y].
We would like to define a unifier by σ = σ2 ◦ σ1. However, the composition will result in
σ = [f(x, g(x, y))/x, g(x, y)/y], which is not quite the unifier [f(x, y)/x, g(x, y)/y] that
we expect. For this reason, the circular substitutions are not composed in CoLP, but are
simply taken as sets of equations, like {x = f(x, y) , y = g(x, y)}.

We need a notion of composition for circular substitutions, in order to generate fixpoint
terms. We start with a formal definition of unifying equations.

Definition 4.1 (Unifying equations)
Given t, u ∈ Λ−,1Σ , a set Ut,u of unifying equations is defined inductively as follows:

1. if t = x for some x ∈ Var, then Ut,u = {x = u},
2. if u = x for some x ∈ Var, then Ut,u = {x = t},
3. if t = f t1 · · · tn and u = f u1 · · · un, then Ut,u =

⋃n
k=1 Utk,uk

, and
4. Ut,u = ∅ otherwise.

Two simple first-order atoms A = p t1 · · · tm and B = p u1 · · · um have as set of unifying
equations UA,B =

⋃m
k=1 Utk,uk

.

Clearly, if Ut,u is empty, then t and u are not unifiable. If the set of unifying equations
contains at most one equation for each variable, we say that it is linear unifying.

The mentioned set {x = f(x, y), y = g(x, y)} is linear unifying for p(f(x, y), g(x, y))

and p(x, y). We refer an interested reader to (Courcelle 1983; Gupta et al. 2007) for a
more detailed study of properties of unifying equations. Notably, every system of such
equations has the most general unifier that is rational.
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Definition 4.2 (Circular Unifier)
Let A,B ∈ Ats1 have a set of linear unifying equations UA,B =

⋃n
i=1{xi = ti}. We

can define a sequence of fix-substitutions δ0, δ1, . . . , δn, such that δk unifies the first k
equations, as follows:

δ0 = id

δi+1 =


δi, if ti+1[δi] = xi+1

[ti+1[δi]/ xi+1] ◦ δi, if xi+1 6∈ FV (ti+1[δi])

[fixxi+1. ti+1[δi]/ xi+1] ◦ δi, if ti+1[δi] 6= xi+1, xi+1 ∈ FV (ti+1[δi])

Then the fix-substitution δn is called the circular unifier for A and B.

Example 4.2 (Circular Unifiers)
Given the set U = {x = f(y), y = g(x)} for the atoms p(f(y), (g(x)) and p(x, y), the
circular unifier will be δ = [fix y. g(f(y))/y] ◦ [f(y)/x], which amounts to
[f(fix y. g (f(y)))/x,fix y. g(f(y))/y].

We continue with the equations {x = f(x, y), y = g(x, y)}, and atoms p (f(x, y), g(x, y))

and p(x, y) from Example 4.1. From Definition 4.2, we obtain the desired circular unifier
[fix y. g (fix z. f(z, y), y)/y] ◦ [fixx. f(x, y)/x], which in turn is equal to the substitution
[fixx. f(x, fix y. g(fix z. f(z, y), y))/ x, fix y. g(fix z. f(z, y), y)/ y].

The following lemma shows that circular unifiers are fixpoint unifiers.

Lemma 4.1 (Circular unifier is a fixpoint unifier)
Let A,B ∈ Ats1 and let σ be their circular unifier. Then, A[σ] ≡ B[σ].

We can now use circular unifiers to generate coinduction hypotheses.

Example 4.3 (Coinduction Hypothesis from Circular Unifiers)
Taking Pstream0 and the goal stream (scons(0, x′)), CoLP finds {x′ = scons(0, x′)} as cir-
cular unifier. This corresponds to the coinduction hypothesis stream (fixx. scons(0, x)).

Simon et al. (2006) have shown that the method of loop detection is sound relative to
the complete Herbrand models of logic programs. CUP, a cut-free fragment of CLJ was
also shown to be sound relative to the complete Herbrand models(Basold et al. 2019).
We only need to show that we form fixpoint terms from loops correctly.

Theorem 4.1 (CoLP proofs in cut-free CLJ )
Let ΓT be a logic program and A ∈ Ats1. If CoLP returns a proof and a circular substi-
tution θ for ΓT and A that is given by a set U of linear unifying equations, then:

• there exists a circular unifier δ for U ,
• and there is a cut-free proof for ΓT + ∅+ ∅ ` ∃~x.A.

Proof. The first property follows from the construction of Definition 4.2 and Lemma 4.1.
The second property is also proven constructively, by constricting a CLJ proof in which,
as the first step, the existential variables ~x are substituted as in δ, and then the proof
for ΓT + ∅+ ∅ ` A[δ] proceeds by (CO-FIX), taking A[δ] as coinduction hypothesis. The
proof is completed by following the same resolution steps (emulated by a combination
of (∀-L-T), (∧-L-T), (→-L-T), (Axiom)) as in the given CoLP derivation, applying the
coinduction hypothesis where loop detection was applied by CoLP (using (Axiom)). �
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Taking, for example, the logic program Pstream0 and the input formula streamx, and
having obtained stream (fixx. scons(0, x)) from CoLP’s circular unifier, we will be able
to prove Pstream0 + ∅+ ∅ ` stream (fixx. scons(0, x)) by coinduction.

5 Coinductive Theory Exploration and Implementation

Coinductive proofs in first-order logic are, in general, not recursively enumerable. We
thus have to resort to smaller, cut-free, fragments of coinductive theories, as in CoLP or
CUP, for automated proving. As a consequence, we can only hope for heuristics to find
suitable cut formulae (and coinduction hypotheses) in the general case.

We present here a new method of coinductive theory exploration for CLJ, and provide
its implementation.1 We automate cut-free proof search in CLJ (equivalently in CUP).
That is, given a logic program P and a goal G, we can (semi)decide whether P+∅+∅ ` G
holds. If the automated search fails, a theory exploration method is invoked. It analyses
proof-patterns and in particular loops that arose in the failed proof of G. It generalises
this information in a form of a candidate coinduction hypothesis CH. The tool then tries
to prove P + ∅+ ∅ ` CH by coinduction. If the proof fails, CH is discarded. If the proof
succeeds, the tool re-attempts to prove P + CH + ∅ ` G.

Throughout the remaining section, we will focus on the coinductive theory exploration
method that finds such CH. Our implementation incorporates three kinds of methods.
Firstly, we benefit from CoLP’s method of searching for circular unifiers, whenever such
exists. Secondly, we implement the method of Fu et al. (2016) that worked for cases when
CH was limited to H-formulae (without fixpoint or λ-terms). Finally, we implement a
completely novel heuristic that covers the case when CH is a G-formula with (guarded)
higher-order fixpoint terms. This method is restricted to logic programs that define non-
periodic streams, such as Pfrom or the program that defines the stream of Fibonacci
numbers in Example 5.2.

Our method is based on three ideas that we will explain in the following.

Idea 1: Non-periodic streams can be described by higher-order fixpoint terms. Usually,
definitions of non-periodic streams rely on iterating some function that modifies its argu-
ments recursively, and thus computes the stream members that do not unify among each
other. In the case of Pfrom, the map s modifies, say, 0 to s(0), s(s(0)), and so on. Thus,
definitions of such streams involve construction of a fixpoint of a function, rather than of
a term variable. We explore this connection between non-periodic stream patterns and
higher-order recursive functions.

We assume for the remainder of this section that the goal of our proof is an atom
A ∈ Ats1 that is built of a predicate that defines some infinite stream, that is,

A = pstream tin1 · · · tinj xout ,

and the program that defines pstream is productive. Moreover, xout is the output argument
in the process of computation of streams, the terms tin1 , . . . , tinj contain no variables and
provide the inputs for the stream construction. For example, in the goal from(0, y), 0 is
the input and y is the output.

We thus exclude programs like Pdouble:

κdouble : ∀x y z1 z2. double(s(x), s(s(y)), z1, z2)→ double(x, y, scons(x, z1), scons(y, z2))
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that defines two streams of numbers. This restriction is made in order to reduce the
notational clutter. The method we present should generalise well to these cases, modulo
keeping track of term positions.

Finally, we require that all clauses in the given program are linear, that is, contain at
most one recursive call (all examples given so far are linear).

Definition 5.1 (Higher-order fixpoint stream definition)
Given a logic program P , and an n-ary predicate pstream in P that defines a stream s

with the function (stream constructor) scons in its last argument, we say sfix given by
fix f. λx1 · · · xn−1. sconsx1 (f t?1 · · · t?n−1) is a higher-order fixpoint definition of s if there
exist t?1, . . . , t?n−1 ∈ Ats1 such that

P + ∅+ ∅ ` ∀x1 · · · xn−1. pstream x1 · · · xn−1 s
fix.

In this case we call ∀x1 · · · xn−1. pstream x1 · · · xn−1 s
fix the candidate coinduction hy-

pothesis for P and pstream.

We can now see that coinductive theory exploration for higher-order fixpoint stream
definitions amounts to search for suitable t?1, . . . , t?n−1 ∈ Λ−,1Σ ; these terms contain the
functions that will be iterated by fix. We next define a possible heuristic for this search.

Idea 2: Resolution by term matching helps to analyse recursive proof patterns. SLD-
resolution of logic programming (also implemented in CoLP) explores the search space us-
ing unification. Patterns that arise in unification work well for detecting regular patterns
as CoLP does, but do not work well for analysing irregular patterns. S-resolution (Komen-
dantskaya and Li 2017) helps to separate out the term-matching and unification com-
ponents of computations, by doing term-matching steps eagerly, and unification steps
lazily.2 Figure 4 shows term-matching steps as vertical transitions and unification steps
as horizontal transitions. Each vertical block, also called a rewriting tree, shows clearly
reductions of the stream constructor. This is a useful property, as it helps to see the
relation between the constructor and other arguments. If T is a rewriting tree, we will
use notation T (u) to index the tree node at position u, with some standard tree indexing
method. T (ε) will refer to tree root, and T (u, i) refers to the ith child node of T (u). If a
branch of a rewriting tree terminates with the empty goal, we use � to denote its leaf.

Given the rewriting tree T (for P and A ∈ Ats1), such that some leaf T (u) unifies
with the head of a clause in P via a substitution θ, we can construct a rewriting tree
T1 for P and A[θ]. We write T θ

 T1 to denote this tree transition. Figures 4 and 5
show such transitions. We say that a logic program is productive (Komendantskaya and
Li 2017) if it admits only finite rewriting trees, thus requiring tree transitions for any
infinite computation. Pstream0 and Pfrom are productive programs, whereas ΓT is not.
For the rest of this section, we will be working only with productive programs (as all
stream definitions give rise to such). Our implementation1 also covers coinductive theory
exploration for non-productive programs, following the method of Fu et al. (2016).

We use the famous Paterson condition to analyse recursive patterns in rewriting trees:

2 A substitution σ is a unifier for A and B if A[σ] ≡ B[σ], it is a matcher for A against B if A[σ] ≡ B.
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�� ��stream x (scons 0 x′)/x
 

�� ��stream (scons 0 x′)

stream x′

κstream0

(scons 0 x′′)/x′
 

�� ��stream (scons 0 (scons (0 x′′))

stream (scons 0 x′′)

stream x′′

κstream0

κstream0

Fig. 4: Rewriting tree transitions for Pstream0. Boxes show tree roots.

Definition 5.2 (Paterson Condition (Sulzmann et al. 2007))
Let Σ(A), FVar(A) denote the multiset of term symbols and the multiset of free variables
in A. The Paterson condition is satisfied by an H-formula ∀~x. (B1 ∧ · · · ∧ Bn → A) if
(Σ(Bi)∪FVar(Bi)) ⊂ (Σ(A)∪FVar(A)) for each Bi. The pair of simple first-order atoms
〈A,B〉 is called a critical pair, if ∀~x.B → A does not satisfy the Paterson condition.

Irregular proof traces usually give rise to critical pairs. To use this fact, we say a
rewriting tree T is a template irregular rewriting tree if, each leaf T (u) is either a � or
forms a critical pair 〈T (ε), T (u)〉 with the root T (ε). In Figure 5, the second tree is a
template irregular rewriting tree, but Figure 4 has none.

Idea 3: We need anti-unification to abstract away recursive patterns. As Figure 5 shows,
just having finite irregular rewriting trees does not solve the problem of finding higher-
order stream definitions. Given a sequence of rewriting tree transitions, we need to be able
to abstract from concrete constants to general recursive patterns. We use the algorithm
of anti-unification by (Plotkin 1970) to obtain abstract representations of rewriting trees.
Given two simple first-order atoms A and B we denote their anti-unifier by A u B. For
example, p a u p b = p x.

Definition 5.3 (Abstract Representation of a Rewriting Tree)
Let T be a rewriting tree. Suppose that 〈T (ε), T (v1)〉, . . . , 〈T (ε), T (vn)〉 are all critical
pairs, where T (v1), . . . , T (vn) are leaves of T . Let us define A ∈ Ats1 to be the anti-unifier
T (ε) u (

dn
i=1 T (vi)). The abstract representation T ′ of T is defined as:

• T ′(ε) = A
• T ′(u, i) = Bi[σ] if T ′(u) = B[σ] and (B1, ..., Bn → B) ∈ P . When n = 0, we write
T ′(u, i) = �.
• T ′(u) is undefined if u > vi for some T (vi) (1 ≤ i ≤ n), i.e. T ′(v1), . . . , T ′(vn) are

leaves of T ′.
It is easy to see that there exists an abstract representation for each template irregular

rewriting tree. In Figure 5 the third tree is the abstract representation of the second tree.
It abstracts away from concrete terms to more general recursive patterns. However, it is
really the fourth tree obtained by transition from the third tree that is of interest. We
formalise the above intuition as follows. When a proof search

• starts with a program P , a goal A and a rewriting tree T for P and A,
• finds a template irregular rewriting tree T ′ and its corresponding abstract tree T ′′

• and then proceeds constructing tree transitions from T ′′,

we will say the search is done in an abstract search domain for P and A. Figure 5 shows
rewriting trees in an abstract search domain for Pfrom and from(0, y).
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�� ��from 0 y (scons 0 y′)/y
 

�� ��from 0 (scons 0 y′)

from (s 0)y′

κfrom0
1 �� ��from x z (scons x z′)/z

 

�� ��from x (scons x z′)

from (s x) z′

κfrom0
1

Fig. 5: Left: Transition of two rewriting trees for the goal formula from(0, y). Underlined are the critical

pairs. Right: abstract representation of the second tree on the left, and a transition for the abstract tree.

Definition 5.4 (Heuristic Search for Coinduction Hypotheses for Irregular Streams)
Let T be a template irregular rewriting tree in an abstract search domain for P , with
the root A = p x1 · · · xn−1 tn, where p defines a stream s. Let A and a leaf T (v) =

p t1 · · · tn−1 xn form a critical pair. Then a candidate higher-order fixpoint definition of
s is obtained by taking t?i = ti (as in Definition 5.1).

Example 5.1 (Candidate Coinduction Hypothesis)
The final tree in Figure 5 gives rise to a critical pair. Applying Definitions 5.1 and 5.4,
we obtain the candidate fixpoint term ffrom := fix f. λ x.scons(x, f(s(x)) and the candidate
coinduction hypothesis ∀x. from(x, ffrom). Then we prove Pfrom+∅+∅ ` ∀x. from(x, ffrom).
The original goal, ∃z. from(0, z) is then obtained by an application of (Cut), i.e. we prove
Pfrom + (∀x. from(x, ffrom) + ∅ ` ∃z. from(0, z) by instantiating z with ffrom 0.

Example 5.2 (More Complex Coinduction Hypotheses)
Taking the program Pfib computing pseudo-Fibonacci sequence

κfib : ∀xy. fib(y, x+ y, z)→ fib(x, y, scons(x, z))

and a goal ∃z. fib(0, 1, z), we obtain an abstract representation of a rewriting tree with
the root fib(x, y, scons(x, z)), and the leaf fib(y, (x+y), z). The corresponding candidate
stream definition ffib is given by fix f. λx y. scons(x, f(y, x + y)), and the coinduction
hypothesis is ∀x y. fib(x, y, ffib).

6 Conclusions, Related and Future Work

This paper contributes to previous attempts to give proof-theoretic and constructive
interpretation to logic and answer-set programming: (Miller et al. 1991; Miller and Na-
dathur 2012; Fu and Komendantskaya 2016; Schubert and Urzyczyn 2018; Basold et al.
2019). Here, our goal was two-fold. Firstly, we showed that cut is not eliminable in a coin-
ductive first-order sequent calculus. Secondly, we analysed the current state of the art in
coinductive logic programming (given by CoLP) in the proof-theoretic terms, exposing
that CoLP derivations in fact correspond to cut-free proofs in CLJ. Both of these results
led to a conclusion that any further progress in coinductive logic programming is only
possible by introducing richer heuristics of coinductive theory exploration. With this in
mind, we proposed a composite method, similar to the famous Boyer-Moore Waterfall
Model (Boyer and Moore 1979), which incorporates automated proofs in CLJ, as well as
several existing and one novel heuristics searching for suitable coinduction hypotheses.
We provided a prototype implementation.1

Coinduction is now implemented in major theorem provers, like Coq, Agda, Abella,
Isabelle/HOL (Blanchette et al. 2017), and term-rewriting systems (Endrullis et al. 2015).
The methods we described here will be applicable in many of these. For example, we
supply Coq implementation of all our running examples on the implememtation page.1
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