
Machine Learning Coalgebraic Proofs

Ekaterina Komendantskaya1

Department of Computing, University of Dundee, UK ?

Abstract. This position paper argues for a novel method to machine
learn patterns in formal proofs using statistical machine learning meth-
ods. The method exploits coalgebraic approach to proofs. The success of
the method is demonstrated on three applications allowing to distinguish
well-formed proofs from ill-formed proofs, identify families of proofs and
even families of potentially provable goals.
Key words: Logic Programming, Coalgebra, Coinductive Proofs, Sta-
tistical Machine Learning, Neural Networks

1 Background

Research in Formal logic has always aspired to design a formal theory based upon
a language expressive enough to allow formalisation of complex mathematical
theories and (later) programming tasks. Once a given problem is formulated in
the language of such a theory, one can use the theory to prove or verify various
statements, theorems and properties.

One of the major steps towards this goal was made in the mid’60s, when
Logic Programming - a family of programming languages based upon first-order
logic - was designed and implemented. The two major methods used in logic
programming were first-order unification and resolution [22]; first order unifica-
tion is decidable and SLD-resolution based on it yields efficient implementations.
Many state-of-the art tools currently used in formal methods, are based on this
methodology.

Over the past decade, higher-order proof assistants (also called Interactive
Theorem Provers, or ITPs), such as ACL2, AGDA, Coq and Isabelle(HOL)
have proven to be suitable for expressing and solving sophisticated mathematical
problems (e.g., verification of the Four-Colour Theorem in Coq), and industrial-
scale verification of very complex computer systems (e.g., verification of com-
puter micro-processors in ACL2).

However, currently, ITPs require considerable programming skills, constant
interaction between the prover and the programmer, and overall, are time-
consuming and hence expensive. Some aspects of higher-order theorem proving
may never be fully automated due to their hardness: for example, higher-order
unification is undecidable; termination of functions cannot be automatically de-
cided in the general case due to the Halting Problem.

? The work was supported by the Engineering and Physical Sciences Research Council,
UK; Postdoctoral Fellow research grant EP/F044046/2.



Programs in ITPs contain thousands of lemmas and theorems of variable
sizes and complexities; each proof is constructed by combining a finite number
of tactics. Some proofs may yield the same pattern of tactics, and can be fully
automated, and others may require programmer’s intervention. In this case, a
manually found proof for one problematic lemma may serve as a template for
several other lemmas needing a manual proof. Automated discovery of com-
mon proof-patterns using tools of statistical machine learning is the goal of the
method ML-CAP (for Machine-Learning Coalgebraic Automated Proofs).

Another feature of theorem proving is that unsuccessful attempts at proofs,
although discarded when the correct proof is found, play an important role in
proof discovery. This kind of “negative” information finds no place in mathemat-
ical textbooks or libraries of automated proofs. Conveniently, analysis of both
positive and negative examples is inherent in statistical machine learning [3, 8];
and the ML-CAP method we propose exploits this.

Figure 1 shows other AI methods that may eventually serve for various au-
tomation or optimisation tasks in ITPs. ML-CAP is one possible Proof-pattern
recognition method in this figure.

©

©

©Proof-Pattern Recognition

Constraint-Solving

Inductive Logic

ITPs

AI

Fig. 1. Possible extensions of formal methods coming from AI

Many related attempts to exploit the inductive nature of formal reasoning
are related to methods of Inductive Logic, (e.g. [1, 5, 7, 11, 13, 14, 25]). In contrast
to them, we propose to enrich the inductive logic methods with the tools of
statistical machine learning [8, 3], such as e.g. neural networks or kernels/SVMs,
known for applications in statistical pattern-recognition.

Unlike logic programming, that has been successfully adapted to AI purposes,
higher-order theorem proving and ITPs are commonly seen as areas completely
disjoint from AI. Our ML-CAP method is intended to fill this gap. A related
attempt to apply machine learning methods in higher-order logics was the ap-
plication of kernel methods to manipulate terms of λ-calculus [9, 18, 20].



2 Methodology

The method ML-CAP we propose here is a pilot attempt to advance imple-
mentation of formal proofs by employing methods from Machine Learning and
Coalgebra; see Figure 2.

Machine
Learning

Formal
Methods

Coalgebra

ML-CAP +3+3
��

Fig. 2. Methods used in ML-CAP.

There are some serious constraints on the way of merging machine-learning
and formal methods. The first constraint is zero-tolerance to “noise” in the
syntax of ITPs (which made them so valuable for formal verification), whereas
noise is part of statistical approximation and is endemic in machine-learning
methods. This makes for a clash in approaches to the syntax. Neuro-Symbolic
systems often solve this problem by “propositionalising” the syntax and working
with (vectors of) truth values instead. This solution, however, does not work for
some fragments of first-order logics or for higher-order logics.

The second obstacle is that many conventional algorithms used in formal
methods and involving variable dependencies tend to be implemented sequen-
tially, while statistical machine learning lends itself to concurrency, with many
algorithms coming from linear algebra.

These two obstacles can be avoided if we use coalgebraic representation of
proofs, [17, 16]. Coalgebraic representation of formal proofs facilitates extraction
of important proof features that can be classified and “learned” using statistical
machine-learning methods, see also Figure 2.

Coalgebraic methods occur in different areas of computer science, and range
from categorical (structural) semantics of programming languages, [12, 23, 26,
21, 17, 16] and models of concurrent systems [19] to programming with infinite
data-structures in Type Theory [6, 2] or in Logic Programming [10, 24, 17, 16].
However, the potential of coalgebraic methods in statistical machine learning has
not yet received equal attention, but see e.g. [4] for a relation between coalgebra
and probabilistic systems.

Generally, the coalgebraic approach to computation brings two advantages:
coinductive proofs and programs are often concurrent and/or potentially infinite.
Coalgebraic methods offer ways to reform the classical approach to (semantics
of) computations in terms of input/output in favor of an approach that pays
attention to structure, repeating patterns in computations, and observables of
program execution. The main hypothesis of the ML-CAP method is that these
properties of coalgebraic methods make it possible to tackle some problematic



aspects of formal reasoning using machinery developed by statistical pattern-
recognition [3, 8].

The method ML-CAP arose from the work on coalgebraic semantics for logic
programming [17], which gave rise to the novel algorithm for performing coinduc-
tive concurrent derivations in logic programs [16]. Our recent experiments have
shown that these coalgebraic proofs yield excellent results in statistical pattern-
recognition. All experiments we report here concern first-order logic programs
corresponding to inductive and coinductive types in ITPs, see also [15].

3 Agenda and preliminary results

In this section, we summarise some of the results concerning data-mining proofs
in logic programming; they are also formally stated and explained in [15]. When
working with automated proofs, we use their representation as coinductive proof
trees, [16]. We have identified four bench-mark problems for machine-learning
formal proofs, as follows.

Problem 1. Classification of well-formed and ill-formed proofs.
Given a set of examples of well-formed and ill-formed coinductive trees, clas-
sify any new example of a coinductive tree in either of the two classes.

This task is one of the most difficult for pattern-recognition (see Table 3),
and in the same time, perhaps the least significant for practical purposes, as
automated proof methods already work well for such tasks.

A more interesting task in practical terms is recognition of various proof-
families among well-formed proofs, as this is something that may help to optimize
proof-search.

Problem 2. Discovery of proof families. Given a set of positive and
negative examples of well-formed coinductive proof trees belonging to a proof
family, classify any new example of a coinductive tree, whether it belongs to the
given proof family.

This problem has practical applications: finding that some unfinished proof
belongs to a family of successful proofs may safe intermediate derivation steps;
and knowing that some unfinished proof belongs to the family of failed proofs,
may serve as a hint to abandon any future attempts.

The next problem is discovery of the proof families comprised of coinductive
proof trees that may potentially lead to successful proofs – success families.

Problem 3. Discovery of potentially successful proofs. Given a set
of positive and negative examples of well-formed coinductive trees belonging to a
success family, classify any new example of a coinductive tree, whether it belongs
to the given success family.

Finally, when it comes to coinductive logic programs defining infinite data
structures, such as streams, detection of success families is impossible. In such
cases, detection of well-typed and ill-typed proofs within a proof family will be
an alternative to determining success families.

Problem 4. Discovery of ill-typed proofs. Given a set of positive and
negative examples of ill-typed coinductive trees belonging to a given proof family,



classify any new example of a coinductive tree, whether it is ill-typed or well-
typed.

To machine-learn classes of proof trees using statistical pattern-recognition,
we used several well-known tools, such as neural networks and SVMs. All ex-
periments involving neural networks were made in MATLAB Neural Network
Toolbox (pattern-recognition package), with a standard three-layer feed-forward
network, with sigmoid hidden and output neurons. The network was trained with
scaled conjugate gradient back-propagation. Such networks can classify vectors
arbitrarily well, given enough neurons in the hidden layer, we used 40, 50, 60,
70, 90 hidden neurons for various experiments. All experiments involving SVMs
were performed in MATLAB Bioinformatics toolbox, SVM package with Gaus-
sian Radial Basis kernel.

We used data sets of coinductive proof trees of various sizes - from 120 to
400 examples of coinductive derivation trees for various experiments; we tested
all four problems stated above using proof trees for two distinct logic programs
– ListNat defining lists of natural numbers and Stream defining infinite streams
of bits. The table below shows the results.

ListNat ListNat Stream Stream SVM SVM
best test best average best test best average best test best average

Problem 1 88.2% 76.4% 85 84.3 % 100 % 89 %

Problem 2 100 % 92.3% 100 % 99.1 % n/a 88 %

Problem 2’ n/a n/a 100 % 90.6 % n/a 88%

Problem 3 100 % 99 % n/a n/a n/a n/a

Problem 4 n/a n/a 100 % 85.7 % n/a 90%

Fig. 3. Summary of the results of classification of coinductive derivation trees for the
four main classification problems, performed in neural networks (first four columns),
and in SVMs with kernel functions (the columns 5 and 6); the latter is only tested for
the derivation trees for Stream.

Overall, the success rate of the classification results well exceeded our initial
expectations. Only Problem 1 results were somewhat disconcerting, but we
think this problem has less practical impact. The results indicate that well-
founded coinductive proof trees possess a number of strongly correlated features
that determine the variety of meta-properties of the trees given by Problems 1 -
4, and such properties can be detected by the state-of-the-art pattern-recognition
methods.

References

1. D. Basin, A. Bundy, D. Hutter, and A. Ireland. Rippling: Meta-level Guidance for
Mathematical Reasoning. Cambridge University Press, 2005.



2. Y. Bertot and E. Komendantskaya. Inductive and coinductive components of core-
cursive functions in coq. Electr. Notes Theor. Comput. Sci., 203(5):25–47, 2008.

3. C. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.
4. P. Chaput, V. Danos, P. Panangaden, and G. D. Plotkin. Approximating labelled

markov processes again! In CALCO, volume 5728 of Lecture Notes in Computer
Science, pages 145–156. Springer, 2009.

5. S. Colton. Automated Theory Formation in Pure Mathematics. Springer-Verlag,
2002.

6. T. Coquand. Infinite objects in type theory. In Types for Proofs and Programs, Int.
Workshop TYPES’93, volume 806 of LNCS, pages 62–78. Springer-Verlag, 1994.

7. L. de Raedt. Logical and Relational Learning. 2008.
8. R. Duda, P. Hart, and D. Stork. Pattern Classification. John Wiley, 2001.
9. T. Gartner, J. Lloyd, and P. Flach. Kernels and distances for structured data.

Machine Learning, 3(57):205–232, 2004.
10. G. Gupta, A. Bansal, R. Min, L. Simon, and A. Mallya. Coinductive logic pro-

gramming and its applications. In ICLP 2007, volume 4670 of LNCS, pages 27–44.
Springer, 2007.

11. A. Ireland, G. Grov, and M. Butler. Reasoned modelling critics: Turning failed
proofs into modelling guidance. In ASM, pages 189–202, 2010.

12. B. Jacobs and J. Rutten. A tutorial on coalgebras and coinduction. EATCS
Bulletin, (62), 1997.

13. M. Johansson, L. Dixon, and A. Bundy. Case-analysis for rippling and inductive
proof. In ITP, volume 6172 of Lecture Notes in Computer Science, pages 291–306.
Springer, 2010.

14. K. Kersting, L. D. Raedt, and T. Raiko. Logical hidden markov models. J. Artif.
Intell. Res. (JAIR), 25:425–456, 2006.

15. E. Komendantskaya and R. Alamghairbe. Machine-learning coalgebraic automated
proofs, submitted, 2011.

16. E. Komendantskaya and J. Power. Coalgebraic derivations in logic programming.
In CSL’11, 2011.

17. E. Komendantskaya and J. Power. Coalgebraic semantics for derivations in logic
programming. In CALCO’11, 2011.

18. J. Lloyd. Logic for Learning: Learning Comprehensible Theories from Structured
Data. Springer, Cognitive Technologies Series, 2003.

19. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
20. A. Passerini, P. Frasconi, and L. D. Raedt. Kernels on prolog proof trees: Statistical

learning in the ilp setting. Journal of Machine Learning Research, 7:307–342, 2006.
21. G. D. Plotkin. A structural approach to operational semantics. J. Log. Algebr.

Program., 60-61:17–139, 2004.
22. J. Robinson. A machine-oriented logic based on resolution principle. Journal of

ACM, 12(1):23–41, 1965.
23. J. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Science,

2000.
24. L. Simon, A. Bansal, A. Mallya, and G. Gupta. Co-logic programming: Extending

logic programming with coinduction. In ICALP, volume 4596 of LNCS, pages
472–483. Springer, 2007.

25. V. Sorge, A. Meier, R. L. McCasland, and S. Colton. Automatic construction and
verification of isotopy invariants. J. Autom. Reasoning, 40(2-3):221–243, 2008.

26. D. Turi and G. Plotkin. Towards a mathematical operational semantics. In LICS,
pages 280–291, 1997.


