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Motivation: a happy start for programmed computing

In 1946, the first useful electronic digital computer (ENIAC) is
created: it was a happy start for the programmed computing.
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Motivation: a happy start?

One had to wait till 1976 to see the first personal computer -

Apple:
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Programmed computing involves:

devising an algorithm to solve a given problem;

using software to encode it;

using the hardware to implement the software

Note!

This has always had close theoretical relation to Turing machines,
Mathematical Logic (Church, λ-calculus, Kleene, etc.), the theory
of computable functions, and what we now call ”Classical
(conventional) models of computation”.
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Are there any other options?

Neurocomputing

Takes inspiration from (biological) neural networks, rather
than from logic.

Does not require a ready algorithm, but is capable to ”learn”
the algorithm from examples.

Artificial Neural networks are parallel, distributed, adaptive
processing systems that develop information processing
capabilities in response to exposure to an information
environment.

Note

The major advantages: parallelism, learning, ability to adapt.
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Neural Network: definitions
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Neurons
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Error-Correction (Supervised) Learning

We embed a new parameter, desired response dk into neurons;
Error-signal: ek(t) = dk(t)− vk(t);
Error-correction learning rule: ∆wkj(t) = ηek(t)vj(t).
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First Engineering insights:

Mark 1 and Mark 2 Perceptrons (1948 - 1958)
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First Engineering insights:

Frank Rosenblatt with 400 pixel Mark 1 Perceptron image sensor.
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First Engineering insights:

The Mark 1 Perceptron patchboard. The connection patterns were
typically random, so as to illustrate the ability of the perceptron to
learn the desired pattern without need for precise writing (in
contrast to a programmed computer).
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Hardware facts:

Often, ”Neurocomputers”
are attached to
”programmed” computers
as coprocessors.

The most successful
neurocomputers were built
from electronic or optical
hardware, or their mixture.

The other types of
hardware that were taken
for experiments were:
chemical, acoustic,
mechanical, and even ...

biological

.

Nerve cell connected to a
silicon chip, 2001
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Software facts:

For those who develop neural network software, there exists a
variety of neural network simulators, written on programming
languages: C (Stuttgart Neural Network Simulator), Matematica,
R, Matlab, JAVA, Predictive Model Markup Language (PMML) -
the latter is XML based.

Note:

I know nothing about NN software written on functional
languages... I know nothing about Coq libraries... but whatever
libraries for matrices exist, could be applied straightforwardly.

Ekaterina Komendantskaya St Andrews



Neural networks Neural Networks and Logic Kahn networks

Common applications:

Function approximation, or regression analysis, including time
series prediction and modeling.

Classification, including pattern and sequence recognition,
novelty detection and sequential decision making.

Data processing, including filtering, clustering, blind source
separation and compression.

Application areas: system identification and control (vehicle
control, process control), game-playing and decision making
(backgammon, chess, racing), pattern recognition (radar systems,
face identification, object recognition and more), sequence
recognition (gesture, speech, handwritten text recognition),
medical diagnosis, financial applications (automated trading
systems), data mining (or knowledge discovery in databases,
”KDD”), visualization and e-mail spam filtering.
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Logic and networks; Logic networks

Among early results relating logic and neural networks were:

Boolean networks - networks receiving and emitting boolean
values and performing boolean functions. The Boolean
functions could be pre-defined and given to a network; there
exist networks that can learn how to perform Boolean
functions from examples.

XOR problem and perceptron.

Finite Neural networks can simulate both Turing machines
and Universal Turing machines.

HALTING PROBLEM is proved to be solvable by infinite NNs.

Neural networks and Automata; curcuits.
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Example: NN - Automata (I.Alexander: Neurons and
Symbols)
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Logic and NNs: summary

Finite Automata → Binary threshold networks
Turing Machines → Neural networks with rational weights
Probabilistic Turing Machines → NNs with rational weights
Super-turing computations → NNs with real weights.
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Neuro-Symbolic Networks and Logic Programs

Logic Programs

A← B1, . . . ,Bn

TP(I ) = {A ∈ BP : A← B1, . . . ,Bn

is a ground instance of a clause in P and {B1, . . . ,Bn} ⊆ I}
lfp(TP ↑ ω) = the least Herbrand model of P.

Theorem

For each propositional program P, there exists a 3-layer
feedforward neural network which computes TP .

No learning or adaptation;

Require infinitely long layers in the first-order case.
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A Simple Example

B ←
A←
C ← A,B

TP ↑ 0 = {B,A}
lfp(TP) = TP ↑ 1 = {B,A,C}

A B C
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Another Example: First-Order Case
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Example 3

P(0)←
P(s(x))← P(x)

TP ↑ 0 = {P(0)}
lfp(TP) = TP ↑ ω =
{0, s(0), s(s(0)),
s(s(s(0))), . . .}

Paradox:
(computability,
complexity,
proof theory)
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Unification Algorithm

In my thesis, I suggested Neural networks of another architecture,
so that a two-neuron network could perform a unification of two
arbitrary first-order atoms.
Currently, I am implementing and testing these neural networks
using MATLAB neural network simulator.
The most ”inconvenient” part of the implementation is that
conventional Neural networks do not accept anything but scalar
numbers. They would not accept strings or lists, for example.
Scalars are needed to mimic the ‘unstructured’ signals that excite a
biological neuron.
A higher level of abstraction may be needed in the future?
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Why is this interesting?

Making use of parallelism when unifying atoms...

Second-order unification: could the parallelism help?

General interest of obtaining a neural network interpreter for
logic programs.
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Definition of Kahn networks

Definition

A Kahn network is a directed graph, where nodes represent
processes or computing stations, and edges link the processes.
The processes can be linked sequentially or in parallel.
To each communication line, we assign a type of data that can be
communicated.
Each node can use the history of communications to produce an
output, so it can be seen as a function from the streams of inputs
to the streams of outputs.
The function is continuous, which means that an output can be
delivered without waiting for an infinite amount of information on
the input lines.

Motivation: designed as a simple language for parallel
programming, it was used later to give a semantics for parallel
computations.
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Visual transformation of a neural network into a Kahn
network

v ′

''OOOOOOO vj wkj + ∆wkj

��

ek

v ′′ // ONMLHIJKpj // _^]\XYZ[Θk , dk
//ek , vk

ss

v ′′′

77nnnnnn
j wkj k
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Visual transformation of a neural network into a Kahn
network

v ′
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Visual transformation of a neural network into a Kahn
network

v ′
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//ek , vk
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Visual transformation of a neural network into a Kahn
network

v ′
))RRRRRRR

v ′′ // _^]\XYZ[vj(pj)
vj // _^]\XYZ[vk(pk) //vk

v ′′′

55llllll

Ekaterina Komendantskaya St Andrews



Neural networks Neural Networks and Logic Kahn networks

Visual transformation of a neural network into a Kahn
network

v ′

((PPPPPPP

v ′′ //ONMLHIJKf
vj // ONMLHIJKf 2 //vk

v ′′′

66nnnnnn

We specify the data types for channels v ′, v ′′, v ′′′, vj , vk . E.g., N.
We associate continuous functions
f : (v ′)ω ∗ (v ′′)ω ∗ (v ′′′)ω− > vj

ω and f 2 : vj
ω− > vk

ω to the
nodes. E.g., f outputs a stream whose nth element is the sum of
nth elements of (v ′)ω, (v ′′)ω and (v ′′′)ω; and f 2 outputs a stream
whose nth elemnt is the sum of the first (n-1) elements.
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Kahn network that computes Eratosthenes’ sieve, [Kahn,
Paulin-Mohring]
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Neural networks and Kahn networks: similarities

The Structure: computing units with a function embedded in
them, that are connected in parallel, and communicate signals
in a particular direction.

Neural networks have different functions, such as activation
functions, transfer functions, learning functions, that are
combined in a particular way and particular sequence, but
their composition may be seen as one processing function in a
Kahn network. And vice versa, a Kahn process function can
be represented as a neuron whose transfer function is equal to
the function used by Kahn networks, and all other functions
are identities.

If learning and reals are removed from the picture, and signals to
the network are sent continuously, then one might prove the exact
correspondence between the two models.

Ekaterina Komendantskaya St Andrews



Neural networks Neural Networks and Logic Kahn networks

Neural networks and Kahn networks: similarities

The Structure: computing units with a function embedded in
them, that are connected in parallel, and communicate signals
in a particular direction.

Neural networks have different functions, such as activation
functions, transfer functions, learning functions, that are
combined in a particular way and particular sequence, but
their composition may be seen as one processing function in a
Kahn network. And vice versa, a Kahn process function can
be represented as a neuron whose transfer function is equal to
the function used by Kahn networks, and all other functions
are identities.

If learning and reals are removed from the picture, and signals to
the network are sent continuously, then one might prove the exact
correspondence between the two models.

Ekaterina Komendantskaya St Andrews



Neural networks Neural Networks and Logic Kahn networks

Neural networks and Kahn networks: differences

Neural networks can use real or complex numbers.

Neural networks do not accept structured data, such as lists
and strings, for the reason that biological neurons can be only
excited or inhibited, but there is no structure in the signals.

There is learning in Neural networks.

The Kahn networks were constructively formalised in Coq
(Paulin-Mohring), using libraries for streams, corecursive
functions and cpos. As for neural networks, following the
tradition of NN implementations, such a formalisation could
rely on libraries for matrices.

The notion of a ”structure” of an input is the tricky one here: in
what sense processing matrices is better than processing streams?
Why networks processing streams are ”logic” networks, and the
nets processing matrices are ”neural”? Can real numbers be seen
as ”streams”?
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Thank you!
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