
Neural Networks for Proof-Pattern Recognition

Ekaterina Komendantskaya and Kacper Lichota

School of Computing, University of Dundee, UK ?

Abstract. We propose a new method of feature extraction that allows
to apply pattern-recognition abilities of neural networks to data-mine
automated proofs. We propose a new algorithm to represent proofs for
first-order logic programs as feature vectors; and present its implementa-
tion. We test the method on a number of problems and implementation
scenarios, using three-layer neural nets with backpropagation learning.
Key words: Machine learning, pattern-recognition, data mining, neural
networks, first-order logic programs, automated proofs.

1 Introduction

Automated theorem proving has been applied to solve sophisticated mathemat-
ical problems (e.g., verification of the Four-Colour Theorem in Coq), and for
industrial-scale software and hard-ware verification (e.g., verification of micro-
processors in ACL2). However, such “computer-generated” proofs require consid-
erable programming skills, and overall, are time-consuming and hence expensive.

Programs in automated provers may contain thousands of theorems of vari-
able sizes and complexities. Some proofs will require programmer’s intervention.
In this case, a manually found proof for one problematic lemma may serve as a
template for several other lemmas needing a manual proof. Automated discov-
ery of common proof-patterns using tools of statistical machine learning such as
neural networks could potentially provide the much-sought automatisation for
statistically similar proof-steps; as was argued e.g. in [1–3, 11–13].

As was classified in [1], applications of machine-learning assistants to mech-
anised proofs can be divided into symbolic (akin e.g. Inductive logic program-
ming), numeric (akin neural networks or Kernels), and hybrid. In this paper,
we focus on neural networks. The advantages of the numeric methods over sym-
bolic is tolerance to noise and uncertainty, as well as availability of powerful
learning functions. For example, the standard multi-layer perceptrons with er-
ror back-propagation algorithm are capable of approximating any function from
finite-dimensional vector space with arbitrary precision. In this case, it is not
the power of the learning paradigm, but the feature selection and representation
method that sets the limits. Consider the following example.

Example 1. Let ListNat be a logic program defining lists of natural numbers:
1. nat(0) ← ; 2. nat(s(x)) ← nat(x);

? The work was supported by EPSRC grants EP/F044046/2 and EP/J014222/1.

3. list(nil) ← ; 4. list(cons x y) ← nat(x), list(y)

For ListNat and a goal G0 = list(cons(x, cons(y, z))), SLD-resolution
produces a sequence of subgoals: G1 = nat(x),list(cons(y, z)), G2 =
list(cons(y,z)), G3 = nat(y),list(z), G4 = list(z), G5 = 2. If we con-
sider applications of each of the clauses 1-4 as proof tactics, then the proof steps
above could be presented as a training example (feature vector) 4,1,4,1 to a neu-
ral network. However, we cannot statistically generalise this to future examples,
as with some frequency, the same sequence of “tactics” will fail, e.g. take the goal
G0 = list(cons(x,cons(y,x))). This happens because the given features do
not capture the essential proof context – given by the term structure, unification
procedure, and other parameters.

Recursive logic programs, such as the program above, are traditionally prob-
lematic for neural network representation, as they cannot be soundly proposi-
tionalised and represented by the vectors of truth values, but see e.g. [6, 8].

The method we present here is designed to steer away from these problems.
It covers (co-)recursive first-order logic programs. To manage (co-)recursion ef-
ficiently, we use the formalism of coinductive proof trees for logic programs, see
[9]. The coinductive trees possess more regular structure than e.g. SLD-trees.
In Section 2, we propose an original feature extraction algorithm for arbitrary
proof-trees. It allows to capture intricate structural features of the proof-trees
such as branching, dependencies between the terms and predicates; as well as
internal dependencies between structures of terms appearing at different stages
of the proof. We implement the feature extraction algorithm: see [7].

The main advantages of the feature selection method we propose are its accu-
racy, generality and robustness to changes in classification tasks. In Section 3, we
test this method on a range of classification tasks and possible implementation
scenarios with very high rates of success. All our experiments involving neural
networks were made in MATLAB Neural Network Toolbox (pattern-recognition
package), with a standard three-layer feed-forward network, with sigmoid hid-
den and output neurons. The network was trained with scaled conjugate gradi-
ent back-propagation. Such networks can classify vectors arbitrarily well, given
enough neurons in the hidden layer, we tested their performance on 40, 50, 60,
70, 90 hidden neurons for all experiments. All the software, datasets, and detailed
reference manual are available in [7].

2 Feature Extraction Method and Algorithm

In this Section, we will assume familiarity with first-order logic programming
[10]. The definitions of the signature Σ, the alphabet A, the first-order language
L, and logic programs P are standard, see also Appendices A and B.

For our experiments, we chose coinductive proof trees [9]: they resemble the
and-or trees used in concurrent logic programming [5]; but have more structured
approach to unification, by restricting it to term-matching. Moreover, they allow

li(c(x, c(y, z)))

nat(x) li(c(y, z))

nat(y) li(z)

→
li(c(s(w), c(s(w), nil)))

nat(s(w))

nat(w)

li(c(s(w), nil)

nat(s(w))

nat(w)

li(nil)

2

→
li(c(s(0), c(s(0), nil)))

nat(s(0))

nat(0)

2

li(c(s(0), nil)

nat(s(0))

nat(0)

2

li(nil)

2

Fig. 1. Coinductive trees for ListNat. We abbreviate cons by c and list by li. The
last tree is a success tree which implies that the sequence of derivation steps succeeded.

stream(x)

θ1→
stream(scons(z, y))

bit(z) stream(y)

θ2→ . . .
θ3→

stream(scons(0, scons(y1, z1)))

bit(0)

2

stream(scons(y1, z1))

bit(y1) stream(z1)

Fig. 2. Coinductive derivation for the goal G = stream(x) and the program Stream.

to treat (co-)recursive derivations in lazy (finite) steps. But note that the feature
extraction we present applies to many other kinds of proof trees.

Definition 1. Let P be a logic program and G =← A be an atomic goal. The
coinductive tree for A is a tree T satisfying the following properties.

– A is the root of T .
– Each node in T is either an and-node or an or-node: Each or-node is given

by •. Each and-node is an atomic formula.
– For every and-node A′ occurring in T , if there exist exactly m > 0 dis-

tinct clauses C1, . . . , Cm in P (a clause Ci has the form Bi ← Bi
1, . . . , B

i
ni

,
for some ni), such that A′ = B1θ1 = ... = Bmθm, for some substitu-
tions θ1, . . . , θm, then A′ has exactly m children given by or-nodes, such
that, for every i ∈ m, the ith or-node has n children given by and-nodes
Bi

1θi, . . . , B
i
ni
θi.

Example 2. The following corecursive program Stream defines infinite streams
of binary bits. The program will induce infinite derivations if the SLD-resolution
algorithms is applied, but only finite coinductive proof trees, see Figure 2.
bit(0) ← ; bit(1) ←
stream(scons (x,y)) ← bit(x),stream(y)

We represent coinductive trees as feature vectors. Several ways of representing
graphs as matrices are known from the literature: e.g., incidence matrix and
adjacency matrix. However, these traditional methods obscure some patterns
found in coinductive trees; but see [12] for adjacency matrix encoding of logic
formulae represented as trees. We propose a new method as follows.

1. Numerical encoding of the signature Σ and terms. Define a one-
to-one function J . K that assigns a numerical value to each function symbol
appearing in the given tree T , including nullary functions. Assign −1 to any
variable occurring in T . Gödel numbering is one of the classical ways to show
that first-order language can be enumerated. But in our case, the signature of
each given program is restricted, and we use a simplified version of enumeration
for convenience. In the method we present, the choice of the function J . K is not
crucial for proof classification.

Complex terms are encoded by simple concatenation of the values of the
function symbols and variables. If a term t = (f(x1, . . . xn)) contains variables
x1, . . . xn, the numeric values Jx1K . . . JxnK are negative. In this case, the posi-
tive values |Jx1K| . . . |JxnK| are concatenated, but the value of the whole term is
assigned a negative value.

Example 3. For program ListNat, JOK = 6, JSK = 5, JconsK = 2, JnilK = 3,
JxK = JyK = JzK = −1. Thus, Jcons(x,cons(y,x))K = −21211.

2. Matrix representation of the proof trees. For a given tree T , we
build a matrix M as follows. The size of M is (n+ 2)×m, where n and m are
the number of distinct predicates and terms appearing in T .

The entries of M are computed as follows. For the predicate Ri, and the
term tj , the ijth matrix entry is JtjK if R(t′, . . . , tj , . . . , t

′′) is a node of T , and
0 otherwise. The columns marked as • and 2 are added to allow to trace tree-
branching factors and patterns of success leaves. For the n+ 1 column and the
term tj , if every node containing tj has exactly k children given by or-nodes,
then the (n + 1)jth entry in M is equal to k; if the parameter k for tj varies,
then the (n + 1)jth entry is −1; and it is 0 otherwise. For the n + 2 column
and the term tj , if all children of the node Q(t), for some Q ∈ P are given by
or-nodes, such that all these or-nodes have children nodes 2, then (n + 2)jth
entry is 1; if some but not all such nodes are 2, then the (n+ 2)jth entry is −1;
and it is 0 otherwise. See Appendix C for the algorithm in pseudocode, Figure
3 for examples, and [7] for implementation and more examples.

3. Vector representation. The matrix M is then flattened into a vector.

Example 4. The matrix M1 above will be given by V1 =
[−21211,−211, 0, 0,−1, 0, 0,−1,−1, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0].

Proposition 1 (Properties of the encoding).

1. For a given matrix M , there may exist more than one corresponding coin-
ductive tree T ; i.e., the mapping from the set T of coinductive trees to the set
M of the corresponding matrices is not bijective.

Matrix M1 list nat • 2
cons(x, cons(y, z)) - 21211 0 2 0

cons(y, z)) - 211 0 2 0

x 0 -1 0 0

y 0 -1 0 0

z -1 0 0 0

Matrix M2 list nat • 2
cons(s0, cons(s0, nil)) 2562563 0 2 0

cons(s0, nil)) 2563 0 2 0

s0 0 56 1 0

0 0 6 1 1

nil 3 0 1 1

Fig. 3. Matrices M1 and M2 encode the left-most and right-most trees in Figure 1.

Neural Net - ListNat Neural net - Stream SVM - Stream

Problem 1 76.4% 84.3 % 89 %

Problem 2 96.3% 99.1 % 88 %

Problem 3 86 % n/a n/a

Problem 4 n/a 85.7 % 90%

Problem 5 82.4 % 82.4% n/a

Fig. 4. Summary of the best-average results (positive recall) of classification of coinduc-
tive proof trees for the classification problems of Section 3 and proof trees for programs
ListNat and Stream, performed in neural networks and SVMs.

2. If there exist two distinct root nodes F1 and F2 whose coinductive trees
are encoded by matrices M1 and M2 such that M1 ≡M2, then F1 and F2 differ
only in variables, however, F1 and F2 are not necessarily α-equivalent.

3 Evaluation in Neural Networks

Here, we test generality, accuracy, and robustness of the method on a range of
classification tasks and implementation scenarios.

For the experiments of this section, we used data sets of various sizes - from
120 to 400 examples of coinductive trees for various experiments; we sampled
trees produced for several distinct logic programs – such as ListNat and Stream

above, see [7]. Finally, we repeated all experiments using three-layer neural net-
works of various sizes, and compared the results with those given by the SVMs
with kernel functions.

Note that we deliberately did not tune the learning functions in neural net-
works to fit our symbolic data; but see e.g. [1, 12, 13].

3.1 Tests on various classification tasks

Problem 1. Classification of well-formed and ill-formed proofs. Figures 1, 2, 7, 8
show well-formed trees. Trees that do not conform to Definition 1 are ill-formed,
see Appendix D or [7] for more examples. This task is one of the most difficult for
pattern-recognition, due to a wide range of possible erroneous proofs compared
to the correct ones, the results are summarised in Figure 4.

Problem 2. Discovery of proof families.

Definition 2. Given a logic program P , and an atomic formula A, we say that
a tree T belongs to the family of coinductive trees determined by A, if
– T is a coinductive tree with root A′ and;
– there is a substitution θ such that Aθ = A′.

Example 5. The three trees in Figure 1 belong to the family of proofs determined
by list(cons(x,cons(y,z))); similarly for Figure 2.

The results of pattern-recognition for proof families are exceptionally robust;
cf. Figure 4. Determining whether a given tree belongs to a certain proof family
has practical applications. For Figure 1, knowing that the right-hand side tree
belongs to the same family as the left-hand side tree would save the intermediate
derivation step. Note that unlike [12], it is not the shape of a formula, but proof
patterns it induces when the program is run, that influence classification.

Problem 3. Discovery of potentially successful proofs. Significance of this classi-
fication problem is asserted in the proposition below.

Definition 3. We say that a proof-family F is a success family if, for all T ∈ F ,
T generates a proof-family that contains a success subtree (cf. Definition 4).

Proposition 2. Given a coinductive tree T , there exists a success family F such
that T ∈ F if and only if T has a successful derivation.

This problem has solutions only for inductive definitions. Trees like the ones
given in Figure 7 were negative examples for the training purposes, and trees
akin Figure 1 were given as positive examples. Bearing in mind subtlety of the
notion of a success family, the accuracy of classification was astonishing (86%),
cf. Figure 4.

Problem 4. Discovery of ill-typed proofs in a proof family. In our examples, an
ill-typed formula would e.g. be nat(cons(x,y)), as by definition, the term
cons(x,y) must be of type list. A tree is ill-typed if it contains ill-typed terms.

When it comes to coinductive logic programs like Stream, detection of success
families is impossible, see Figures 2 and 8. In such cases, detection of well-typed
and ill-typed proofs within a proof family will be an alternative. Figures 7 and
8 show ill-typed proof families induced by the trees from Figure 1 and 2.

Problem 5. Discovery of ill-typed proofs. The problem is similar to Problem 4,
however, the restriction that all proofs belong to the same proof family is lifted.

Problems 4 and 5 have conceptual significance for future applications, see
[4]; our experiments show high accuracy in recognition of such proofs. We will
experiment with Problem 5 in later sections. Overall, the proposed method works
well, and applies to the variety of classification tasks.

X-Y — Problem Initial accuracy for X Test 1 on Y Test 2 Test 3 X-Y Mixed data

List-Stream — P1 76.4% 44.2% 51.9% 63.9% 67.1%

Stream-List — P1 84.3% 36.7% 44% 67% 67.1%

List-Stream — P5 82.4% 65.6% 80.% 99% 80.1%

Stream-List — P5 79% 43.5% 63.5% 85.9% 80.1%

Fig. 5. Gradual adaptation to new types of proofs. Letters X and Y stand for
logic programs ListNat and Stream interchangeably; P1 and P5 stand for Problems 1
and 5. First logic program X is taken, and neural network’s accuracy is shown in the
first column. Then these trained networks were used to classify examples of the proofs
for a new logic program Y. The accuracy drops at the start, see the “Test 1” column.
Further columns show how the neural network regains its accuracy as it is trained
and tested on more examples of type Y. For comparison, the last column shows batch
learning on mixed data without gradual adaptation.

3.2 Testing on a range of implementation scenarios

In real-life extensions of this technique, the neural network proof assistant (NN-
tool) will be used on a wide variety of problems. How robust will be neural
network learning when it comes to less regular and more varied data structures?
We designed three Implementation Scenarios (IS) below to test the method:

IS 1 NN-tool can create a new neural network for every new logic program.

Example 6. Using our running examples, a separate sets of feature vectors for
ListNat and Stream can be used to train two separate neural networks, see also
Figure 4 for experiments supporting this approach.

The obvious objection to such approach is that creating a new neural network for
every new fragment of a big program development may be cumbersome; it will
not capture possible common patterns across different programs and fragments,
but also, it will handle badly the cases where some apparently disconnected
programs are bound by a newly added definition. The next two implementation
scenarios address these problems.

IS 2 NN-tool can use only one neural network, and re-train it irrespective of the
changes in program clauses, new predicates or proof structures.

In this case, the main question is how quickly the neural network will adapt
to new patterns determined by a new logic program. We designed an experiment
to test it, see Figure 5. It shows that gradual adaptation of previously trained
neural network is at least as efficient as training on a mixed data. In fact, for
Problem 5, it is more successful than training on mixed data! This suggests that
there are common patterns in well-formed proofs for two different logic programs.

IS 3 NN-tool re-defines and extends feature vectors to fit all available programs.

Matrix M3 listream stream bit list nat • 2
cons(x, x) - 211411 0 0 -211 0 2 0

scons(y, z)) - 211411 -411 0 0 0 2 0

x 0 0 0 -1 -1 0 0

y 0 0 -1 0 0 0 0

z 0 -1 0 0 0 0 0

Prob 1 Prob 5

Merged matrices 84.3% 82%

Listream 76.3% 88.6%

Merged-Listream 51.2% 64.9%

Fig. 6. Left: Feature matrix for coinductive tree for listream(cons(x,x),

cons(y,z)). Right: Accuracy of pattern recognition for feature matrices extended
to encode trees for both ListNat and Stream (“Merged matrix” row); proofs for ex-
tended program Listream (“Listream” row); and experiment on first training neural
networks on “Merged Matrix”, and testing the trained network on Listream (last row).

Example 7. Suppose the NN-tool was used to work with proofs constructed for
two programs – ListNat and Stream; and maintains two corresponding neural
networks. However, a new clause is added by the user:
listream(x,y) ← list(x), stream(y).

This new program Listream subsumes also ListNat and Stream.

The old neural networks will not accept the changed feature vectors for new
proofs, as additional new predicate will infer the change in size of the feature
vectors. In this case, it is possible to extend matrices, and thus treat the proof
features from different programs as features of one meta-proof. An example of
an extended feature matrix and results of tests are given in Figure 6. Note that
accuracy for Listream exceeds accuracy for Stream and List separately (cf.
Figure 4), despite of the growth of the feature vectors, which is exceptional.

Finally, as Figure 6 shows, we tried to mix the Scenarios 2 and 3. It is en-
couraging that for Problem 5, training on merged-matrix features over-performed
simple mixing of data sets (as in Figure 5). When working with extended fea-
ture vectors, Listream over-performed the simpler merged-matrix data training.
This shows that the feature-selection method we present allows extensions that
capture significant and increasingly intricate proof-patterns.

4 Conclusions

The advantage of the learning method presented here lies in its ability to capture
intricate relational information hidden in proof trees, such as patterns arising
from interdependencies of predicate type, term structure, branching of proofs
and ultimate proof success. This method allows to apply neural networks to a
wide range of data mining tasks; and universality of the method is its another
advantage. We implemented it in [7]. The future work is to integrate the neural
network tool into one of the existing theorem provers. Another direction is to
apply the method to other kinds of contextually-rich data, such as e.g. web-pages.

References

1. J. Denzinger, M. Fuchs, C. Goller, and S. Schulz. Learning from previous proof
experience: A survey. Technical report, Technische Universitat Munchen, 1999.

2. J. Denzinger and S. Schulz. Automatic acquisition of search control knowledge
from multiple proof attempts. Inf. Comput., 162(1-2):59–79, 2000.

3. H. Duncan. The use of Data-Mining for the Automatic Formation of Tactics. PhD
thesis, University of Edinburgh, 2002.

4. G.Grov, E.Komendantskaya, and A.Bundy. A statistical relational learning chal-
lenge - extracting proof strategies from exemplar proofs. In ICML’12 worshop on
Statistical Relational Learning, Edinburgh, 30 July 2012, 2012.

5. G. Gupta and V. Costa. Optimal implementation of and-or parallel prolog. In
Conference proceedings on PARLE’92, pages 71–92, NY, 1994. Elsevier.

6. P. Hitzler, S. Hölldobler, and A. K. Seda. Logic programs and connectionist net-
works. Journal of Applied Logic, 2(3):245–272, 2004.

7. E. Komendantskaya. ML-CAP home page, 2012.
http://www.computing.dundee.ac.uk/staff/katya/MLCAP-man/.

8. E. Komendantskaya, K. Broda, and A. S. d’Avila Garcez. Neuro-symbolic repre-
sentation of logic programs defining infinite sets. In ICANN (1), volume 6352 of
LNCS, pages 301–304. Springer, 2010.

9. E. Komendantskaya and J. Power. Coalgebraic derivations in logic programming.
In CSL’11, 2011.

10. J. Lloyd. Foundations of Logic Programming. Springer-Verlag, 2nd edition, 1987.

11. J. Lloyd. Logic for Learning: Learning Comprehensible Theories from Structured
Data. Springer, Cognitive Technologies Series, 2003.

12. E. Tsivtsivadze, J. Urban, H. Geuvers, and T. Heskes. Semantic graph kernels for
automated reasoning. In SDM’11, pages 795–803. SIAM / Omnipress, 2011.

13. J. Urban, G. Sutcliffe, P. Pudlák, and J. Vyskocil. Malarea sg1- machine learner for
automated reasoning with semantic guidance. In IJCAR, LNCS, pages 441–456.
Springer, 2008.

A First-order Logic Programs and Coinductive
derivations

A signature Σ consists of a set of function symbols f, g, . . . each equipped with a fixed
arity. The arity of a function symbol is a natural number indicating the number of its
arguments. Nullary (0-ary) function symbols are allowed: these are called constants.
Terms and substitution are defined in a standard way [10].

We define an alphabet to consist of a signature Σ, the set V ar, and a set of predicate
symbols P, P1, P2, . . ., each assigned an arity. Let P be a predicate symbol of arity n
and t1, . . . , tn be terms. Then P (t1, . . . , tn) is a formula (also called an atomic formula
or an atom). The first-order language L given by an alphabet consists of the set of all
formulae constructed from the symbols of the alphabet.

Given a first-order language L, a logic program consists of a finite set of clauses
of the form A ← A1, . . . , An, where A,A1, . . . , An(n ≥ 0) are atoms. The atom A is
called the head of a clause, and A1, . . . , An is called its body. Clauses with empty bodies
are called unit clauses. A goal is given by ← B1, . . . Bn, where B1, . . . Bn(n ≥ 0) are
atoms.

The algorithm of SLD-resolution [10] is a sequential proof-search algorithm. It takes
a goal G, typically written as ← B1, . . . , Bn, where the list of Bi’s is again understood
to mean a conjunction of atomic formulae, typically containing free variables, and
constructs a proof for an instantiation of G from substitution instances of the clauses
in P [10]. The algorithm uses Horn-clause logic, with variable substitution determined
universally to make a selected atom in G agree with the head of a clause in P , then
proceeding inductively.

B Coinductive derivations

Definition 1 introduced coinductive trees, below are formal explanations of how they
can be used to build derivations.

The notion of a successful proof is captured by the definition of success subtrees
[9], they correspond to refutations in SLD-resolution.

Definition 4. Let P be a logic program, A be a goal, and T be the coinductive deriva-
tion tree determined by P and A. A subtree T ′ of T is called a success subtree of T if
it satisfies the following conditions:

– the root of T ′ is the root of T ;

– if an and-node belongs to T ′, and the node has k children in T given by or-nodes,
only one of these or-nodes belongs to T ′.

– if an or-node belongs to T ′, then all its children given by and-nodes in T belong to
T ′.

– all the leaves of T ′ are and-nodes represented by 2.

We can go further and introduce a new derivation algorithm that allows proof
search using coinduction trees. We modify the definition of a goal by taking it to be a
pair < A, T >, where A is an atom, and T is the coinduction tree determined by A. ,
as in Definition 1, in which we restrict the choice of substitutions θ1, . . . θm to the most
general unifiers only, in which case T is uniquely determined by A.

list(c(x, c(y, x)))

nat(x) list(c(y, x))

nat(y) list(x)

→
list(c(0, c(y, 0)))

nat(0)

2

list(c(y, 0)

nat(y) list(0)

→
list(c(0, c(0, 0)))

nat(0)

2

list(c(0, 0)

nat(0)

2

list(0)

Fig. 7. The unsuccessful derivation and ill-typed proof family for the program ListNat
and the goal list(cons(x,cons(x,x))). We abbreviate cons by c.

stream(x)

θ1→
stream(scons(y, y))

bit(y) stream(y)

θ2→
stream(scons(scons(z, z), scons(z, z)))

bit(scons(z, z)) stream(scons(z, z))

bit(z) stream(z)

. . .

Fig. 8. Ill-typed derivation for the goal G = stream(x) and the program Stream.

Definition 5. Let G be a goal given by an atom ← A and the coinductive tree T
induced by A, and let C be a clause H ← B1, . . . , Bn. Then goal G′ is coinductively
derived from G and C using mgu θ if the following conditions hold:

• A′ is a leaf atom, called the selected atom, in T .

• θ is an mgu of A′ and H.

• G′ is given by the atom ← Aθ and the coinduction tree T ′ determined by Aθ.

Definition 6. A coinductive derivation of P ∪ {G} consists of a sequence of goals
G = G0, G1, . . . called coinductive resolvents and a sequence θ1, θ2, . . . of mgus such
that each Gi+1 is derived from Gi using θi+1. A coinductive refutation of P ∪ {G}
is a finite coinductive derivation of P ∪ {G} such that its last goal contains a success
subtree. If Gn contains a success subtree, we say that the refutation has length n.

Programs like Stream or ListNat always give rise to finite coinductive trees. This
applies equally to any potentially infinite data defined using constructors, such as scons
in Stream or cons and nil in ListNat. If a logic program P defines data in a guarded
manner , we call it a well-founded Logic Program. So one may view infinite coinductive
trees as indicating “bad” cases, in which (co)recursion is not guarded by constructors.

C Algorithm for feature extraction: proof trees to
matrices

Here, we give the feature extraction algorithm in pseudocode, see Algorithm 1.

Algorithm 1 Feature extraction: proof trees to matrices

Require: T – finite coinductive tree.
n = number of distinct predicates in T .
m = number of distinct terms appearing in the nodes of T .
Construct a (n+ 2)×m matrix M , as follows:
for i = 1, . . . n do

for j = 1, . . . ,m do
if Pi(t

′, . . . , tj , . . . , t
′′) is a node of T then

Mij = JtjK
else Mij = 0
end if

end for
end for
for i = n+ 1 do

for j = 1, . . . ,m do
if every node containing tj has branching factor k then

Mij = k
else if nodes containing tj have different branching factors then

Mij = −1
else Mij = 0
end if

end for
end for
for i = n+ 2 do

for j = 1, . . . ,m do
if all nodes containing tj have children given by 2 then

Mij = 1
else if some nodes containing tj have children given by 2, and some - con-

taining other formulas then
Mij = −1

else Mij = 0
end if

end for
end for

return M .

D Examples of the trees from the training set for
Problem 1.

We present a sample of various negative and positive examples of coinductive trees for
Problem 1, as, unlike other four problems, these examples were not shown in previous
sections. The full datasets covering all results described in this paper are available in
[7].

list(cons(x, cons(y, x)))

nat(x) list(cons(y, x))

nat(y) list(x)

list(cons(x, cons(y, x)))

nat(x)

2

list(cons(y, x))

nat(y)

2

list(x)

2

Fig. 9. An example of the training set for Problem 1. Left-hand-side tree is a positive
example, and the right-hand-side — negative.

nat(s(s(s(s(O)))))

nat(s(s(s(O)))

nat(s(s(O)))

nat(s(O))

nat(O)

2

nat(s(s(s(s(O)))))

nat(s(s(s(O)))

nat(s(s(O)))

Fig. 10. An example of the training set for Problem 1. Left-hand-side tree is a positive
example, and the right-hand-side — negative.

