
Coalgebraic Logic Programming:
from Semantics to Implementation

Ekaterina Komendantskaya∗

School of Computing,
University of Dundee, UK

John Power†

Department of Computer Science,
University of Bath, UK

Martin Schmidt
Institute of Cognitive Science,

University of Osnabrück, Germany

Abstract

Coinductive definitions, such as that of an infinite stream, may often be described by el-
egant logic programs, but ones for which SLD-refutation is of no value as SLD-derivations
fall into infinite loops. Such definitions give rise to questions of lazy corecursive derivations
and parallelism, as execution of such logic programs can have both recursive and corecur-
sive features at once. Observational and coalgebraic semantics have been used to study
them abstractly. The programming developments have often occurred separately and have
usually been implementation-led. Here, we give a coherent semantics-led account of the
issues, starting with abstract category theoretic semantics, developing coalgebra to char-
acterise naturally arising trees, and proceeding towards implementation of a new dialect,
CoALP, of logic programming, characterised by guarded lazy corecursion and parallelism.
Keywords: Logic Programming, Coalgebra, Observational Semantics, Corecursion,
Coinduction, Parallelism

1 Introduction
The central algorithm of logic programming is SLD-resolution [33, 35, 46]. It is primarily
used to obtain SLD-refutations; it is usually given least fixed point semantics; and it is
typically implemented sequentially [35, 46].

All three of these traditions have been challenged over the years, for related reasons.
For example, infinite streams of bits can be described naturally in terms of a logic program

∗The work was supported by the Engineering and Physical Sciences Research Council, UK: Postdoctoral Fel-
low in TCS grant EP/F044046/1-2, EPSRC First Grant EP/J014222/1, and EPSRC Grant EP/K031864/1.

†The work was supported by Royal Society grant ”Universal Algebra and its dual: monads and comonads,
Lawvere theories and what?”, EPSRC grant EP/K028243/1, and SICSA Distinguished Visiting Fellow grant.

1

Stream:

bit(0) ←
bit(1) ←

stream(scons(x,y)) ← bit(x),stream(y)

SLD-resolution is of value here, but SLD-refutations are not, and that is standard for coin-
ductively defined structures [18, 23, 35, 37, 45]. Consequently, least fixed point semantics,
which is based on finiteness of derivations, is unhelpful. Stream can be given greatest fixed
point semantics [35], but greatest fixed point semantics is incomplete in general, failing for
some infinite derivations. Stream can alternatively be given coalgebraic semantics [6, 9]
or observational semantics [9, 14]. Coalgebraic semantics is, in general, well-suited for
describing parallel processes [22, 43].

In this paper, we propose a single coherent, conceptual semantics-led framework for
this, developing and extending three conference papers [27, 29, 30]. We start from the
theoretical, with an abstract category theoretic semantics for logic programming, and we
proceed to the applied, ultimately proposing a new dialect, CoALP, of logic programming
based on our abstract development. We do not change the definition of a logic program; we
rather change the analysis of it. Stream is a leading and running example for us.

In more detail, a first-order logic program consists of a finite set of clauses of the form

A← A1, . . . ,An

where A and the Ai’s are atomic formulae, typically containing free variables, and with the
Ai’s mutually distinct. In the ground case, i.e., if there are no free variables, such a logic
program can be identified with a function p : At −→ Pf (Pf (At)), where At is the set of
atomic formulae and p sends an atomic formula A to the set of sets of atomic formulae
in each antecedent of each clause for which A is the head [6, 9, 22]. Such a function is
called a coalgebra for the endofunctor Pf Pf on the category Set. Letting C(Pf Pf) denote
the cofree comonad on Pf Pf , given a ground logic program qua Pf Pf -coalgebra, we charac-
terise and-or parallel derivation trees [17,19,41] in terms of the C(Pf Pf)-coalgebra structure
corresponding to p, see Section 3. And-or parallel derivation trees subsume SLD-trees and
support parallel implementation and the Theory of Observables [9, 14].

The extension from ground logic programs to first-order programs is subtle, requiring
new abstract category theory. Nevertheless, it remains in the spirit of the situation for
ground logic programs. Our characterisation of and-or parallel derivation trees does not
extend from ground to arbitrary logic programs exactly, but it fails in particularly interesting
ways: the relationship between and-or trees and ours is at the heart of the paper. Indeed,
the analysis of trees is fundamental to us. We end our abstract development by proving
soundness, completeness, correctness and full abstraction results for coalgebraic semantics
in Section 3.

Proceeding from the abstract to the applied, two aspects of logic programming that are
both desirable and problematic in practice are corecursion and parallelism.

Many accounts of corecursion in logic programming, e.g., CoLP [18, 45], use explicit
annotation of corecursive loops to terminate infinite derivations, see Section 4. In such
accounts, inductive and coinductive predicates are labelled in order to make the distinction
between admissible (in corecursion) and non-admissible (in recursion) infinite loops. But
some predicates need to be treated as recursive or corecursive depending on the context,

2

making annotation prior to program execution impossible. Example 48, extending Stream,
illustrates this.

We propose an alternative approach to corecursion in logic programming: a new deriva-
tion algorithm based on the coinductive trees – structures directly inspired by our coalge-
braic semantics. The resulting dialect CoALP is based on the same syntax of Horn-clause
logic programming, but, in place of SLD-resolution, it features a new coinductive deriva-
tion algorithm. CoALP’s lazy corecursive derivations and syntactic guardedness rules are
similar to those implemented in lazy functional languages, cf. [5,10,15]. Unlike alternative
approaches [18, 45], CoALP does not require explicit syntactic annotations of coinductive
definitions. We discuss coinductive trees and derivations in Section 4. There, we prove
soundness and completeness of CoALP relative to the coalgebraic semantics of Section 3.

Another distinguishing feature of logic programming languages is that they allow im-
plicit parallel execution of programs. The three main types of parallelism used in imple-
mentations are and-parallelism, or-parallelism, and their combination: [17, 19, 41]. How-
ever, many first-order algorithms are P-complete and hence inherently sequential [11, 24].
This especially concerns first-order unification and variable substitution in the presence of
variable dependencies. Care is required here. For example, in Stream, the goal
stream(scons(x, scons(y,x))), if processed sequentially, leads to a failed derivation
owing to ill-typing, whereas if proof search proceeds in a parallel fashion, it may find sub-
stitutions for x, e.g., 0 and scons(y,z), in distinct parallel branches of the derivation tree,
but such a derivation is not sound, see Example 74.

Existing implementations [17,19,41] of parallel SLD-derivations require keeping records
of previous substitutions and so involve additional data structures and algorithms that co-
ordinate variable substitution in different branches of parallel derivation trees; which ul-
timately restricts parallelism. If such synchronisation is omitted, parallel SLD-derivations
may lead to unsound results as in Stream above. Again, this can be seen as explicit re-
source handling, where resources are variables, terms, and substitutions. In Kowalski’s
terms [33], Logic Programming = Logic + Control. This leads to the separation of issues
of logic (unification and SLD-resolution) and control (underlying implementation tools) in
most parallel logic programming implementations, as we explain in Section 5.

CoALP offers an alternative solution to this problem. The coinductive resolution of
CoALP has an inherent ability to handle parallelism. Namely, coinductive trees with im-
posed guardedness conditions provide a natural formalism for parallel implementation of
coinductive derivations. Parallelisation of CoALP is sound by (guarded) program con-
struction and the construction of coinductive trees. The main distinguishing features of
parallelism in CoALP are implicit resource handling and convergence of the issues of logic
and control: no explicit scheduling of parallel processes is needed, and parallelisation is
handled by the coinductive derivation algorithm. We explain this in Section 5.

Ultimately, in Section 6, we propose the first implementation of CoALP, available for
download from [44]. Its main distinguishing features are guarded corecursion, parallelism,
and implicit handling of corecursive and parallel resources. In Section 7 we conclude and
discuss future work.

2 SLD Derivations and Trees they Generate
We recall the definitions surrounding the notion of SLD-derivation [35], and we consider
various kinds of trees the notion generates.

3

2.1 Background Definitions
Definition 1 A signature Σ consists of a set of function symbols f ,g, . . . each equipped
with an arity. The arity of a function symbol is a natural number indicating the number of
arguments it has. Nullary (0-ary) function symbols are called constants.

Given a countably infinite set Var of variables, denoted x,y,z, sometimes with indices
x1,x2,x3, . . ., terms are defined as follows.

Definition 2 The set Ter(Σ) of terms over Σ is defined inductively:

• x ∈ Ter(Σ) for every x ∈Var.

• If f is an n-ary function symbol and t1, . . . , tn ∈ Ter(Σ), then f (t1, . . . , tn) ∈ Ter(Σ).

Definition 3 A substitution is a function θ : Ter(Σ)→ Ter(Σ) which satisfies

θ(f (t1, . . . , tn)) = f (θ(t1), . . . ,θ(tn))

for every n-ary function symbol f .

An alphabet consists of a signature Σ, the set Var, and a set of predicate symbols
P1,P2, . . ., each assigned an arity. If P is a predicate symbol of arity n and t1, . . . , tn are
terms, then P(t1, . . . , tn) is a formula, also called an atomic formula or an atom. The first-
order language L given by an alphabet consists of the set of all formulae constructed from
the symbols of the alphabet.

Definition 4 Given a first-order language L , a logic program consists of a finite set of
clauses of the form A← A1, . . . ,An, where A is an atom and A1, . . .An (n ≥ 0) are distinct
atoms. The atom A is called the head of the clause, and A1, . . . ,An is called its body.
Clauses with empty bodies are called unit clauses. A goal is given by← A1, . . .An, where
A1, . . .An (n≥ 0) are distinct atoms.

Logic programs of Definition 4 are also called Horn-clause logic programs [35].

Example 5 Program Stream from Introduction defines infinite streams of binary bits. Its
signature consists of two constants, 0 and 1, and a binary function symbol scons. It
involves two predicate symbols, bit and stream, and it has five atoms, arranged into
three clauses, two of which are unit clauses. The body of the last clause contains two
atoms.

Example 6 ListNat denotes the logic program

nat(0) ←
nat(s(x)) ← nat(x)

list(nil) ←
list(cons(x,y)) ← nat(x), list(y)

Operational semantics for logic programs is given by SLD-resolution, a goal-oriented
proof-search procedure.

4

Definition 7 Let S be a finite set of atoms. A substitution θ is called a unifier for S if, for
any pair of atoms A1 and A2 in S, applying the substitution θ yields A1θ = A2θ. A unifier
θ for S is called a most general unifier (mgu) for S if, for each unifier σ of S, there exists a
substitution γ such that σ = θγ. If θ is an mgu for A1 and A2, moreover, A1θ = A2, then θ is
a term-matcher.

We assume that, given a goal G = ← B1, . . . ,Bn, there is an algorithm that, given
B1, . . . ,Bn, outputs Bi, i ∈ {1, . . . ,n}. The resulting atom Bi is called the selected atom.
Most PROLOG implementations use the algorithm that selects the left-most atom in the list
B1, . . . ,Bn and proceeds inductively.

Definition 8 Let a goal G be← A1, . . . ,Am, . . . ,Ak and a clause C be A← B1, . . . ,Bq. Then
G′ is derived from G and C using mgu θ if the following conditions hold:

• θ is an mgu of the selected atom Am in G and A;

• G′ is the goal← (A1, . . . ,Am−1,B1, . . . ,Bq,Am+1, . . . ,Ak)θ.

A clause C∗i is a variant of the clause Ci if C∗i =Ciθ, with θ being a variable renaming
substitution such that variables in C∗i do not appear in the derivation up to Gi−1. This
process of renaming variables is called standardising the variables apart; we assume it
throughout the paper without explicit mention.

Definition 9 An SLD-derivation of P∪{G} consists of a sequence of goals G = G0,G1, . . .
called resolvents, a sequence C1,C2, . . . of variants of program clauses of P, and a sequence
θ1,θ2, . . . of mgu’s such that each Gi+1 is derived from Gi and Ci+1 using θi+1. An SLD-
refutation of P∪{G} is a finite SLD-derivation of P∪{G} for which the last goal Gn is
empty, denoted by 2. If Gn = 2, we say that the refutation has length n. The composite
θ1θ2, . . . is called a computed answer.

Traditionally, logic programming has been modelled by least fixed point semantics [35].
Given a logic program P, one lets BP (also called a Herbrand base) denote the set of atomic
ground formulae generated by the syntax of P, and one defines TP(I) on 2BP by sending I to
the set {A ∈ BP : A← A1, ...,An is a ground instance of a clause in P with {A1, ...,An} ⊆ I}.
The least fixed point of TP is called the least Herbrand model of P and duly satisfies model-
theoretic properties that justify that expression [35].

SLD-resolution is sound and complete with respect to least fixed point semantics [35].
The classical theorems of soundness and completeness of this operational semantics [12,13,
35] show that every atom in the set computed by the least fixed point of TP has a finite SLD-
refutation, and vice versa. Alternatively, in [26,28], we described an algebraic (fibrational)
semantics for logic programming and proved soundness and completeness results for it with
respect to SLD-resolution. Other forms of algebraic semantics for logic programming have
been given in [2, 8]. See also Figure 1.

However, Programs like Stream induce infinite SLD-derivations and require a great-
est fixed point semantics. The greatest fixed point semantics for SLD derivations yields
soundness, but not completeness results.

Example 10 The program Stream is characterised by the greatest fixed point of the TP

operator, which contains stream(sconsω(X,Y)); whereas no infinite term can be
computed via SLD-resolution.

5

Finite
SLD-derivations

Least fixed
point of TP

Algebraic
fibrational
semantics

Finite and Infinite
SLD-derivations

Greatest fixed
point of TP

Coalgebraic
fibrational
semanticsCC

��

[[

��

[[CC

��

Figure 1: Alternative semantics for finite and infinite SLD-derivations. The arrows↔ show the semantics that
are both sound and complete, and the arrow→ indicates sound incomplete semantics. The dotted arrow indicates
the sound and complete semantics we propose here.

Example 11 For the program R(x)← R(f (x)), the greatest fixed point of the TP operator
contains R(f ω(a)), but no infinite term is computed by SLD-resolution.

There have been numerous attempts to resolve the mismatch between infinite deriva-
tions and greatest fixed point semantics [18, 23, 35, 37, 45]. Here, extending [29, 30], we
give a uniform semantics of infinite SLD derivations for both finite and infinite objects,
see Figure 1. Coalgebraic semantics has been used to model various aspects of program-
ming [22, 39, 43], in particular, logic programming [6, 9]; here, we use it to remedy incom-
pleteness for corecursion.

2.2 Tree Structures in Analysis of Derivations
Coalgebraic Logic Programming (CoALP) we introduce in later sections uses a variety of
tree-structures both for giving semantics to logic programming and for implementation of
CoALP. Here, we briefly survey the kinds of trees traditionally used in logic programming.

For a given goal G, there may be several possible SLD-derivations as there may be
several clauses with the same head. The definition of SLD-tree allows for this as follows.

Definition 12 Let P be a logic program and G be a goal. An SLD-tree for P∪{G} is a
possibly infinite tree T satisfying the following:

1. the root node is G

2. each node of the tree is a (possibly empty) goal

3. if ← A1, . . . ,Am, m > 0 is a node in T , and it has n children, then there exists
Ak ∈ A1, . . . ,Am such that Ak is unifiable with exactly n distinct clauses C1 = A1 ←
B1

1, . . . ,B
1
q, ..., Cn = An ← Bn

1, . . . ,B
n
r in P via mgu’s θ1, . . .θn, and, for every i ∈

{1, . . .n}, the ith child node is given by the goal

← (A1, . . . ,Ak−1,Bi
1, . . . ,B

i
q,Ak+1, . . . ,Am)θi

4. nodes which are the empty clause have no children.

Each branch of an SLD-tree is an SLD-derivation of P∪{G}. Branches corresponding
to successful derivations are called success branches, branches corresponding to infinite
derivations are called infinite branches, and branches corresponding to failed derivations
are called failure branches. A distinctive feature of the SLD-trees is that they allow to

6

exploit alternative choices of clauses in the proof-search; for this reason, they are also
known as or-trees. See Figure 2.

In parallel logic programming [19], or-parallelism is exploited when more than one
clause unifies with the goal. It is thus a way of efficiently searching for solutions to a goal,
by exploring alternative solutions in parallel. It has been implemented in Aurora [36] and
Muse [1], both of which have shown good speed-up results over a considerable range of
applications.

Each SLD-derivation, or, equivalently, each branch of an SLD-tree, can be represented
by a proof-tree, defined as follows.

Definition 13 Let P be a logic program and G =← A be an atomic goal. A proof-tree for
A is a possibly infinite tree T such that

• A is the root of T .

• Each node in T is an atom.

• For every node A′ occurring in T , if A′ has children C1, . . . ,Cm, then there exists a
clause B←B1, . . . ,Bm in P such that B and A′ are unifiable with mgu θ, and B1θ=C1,
... ,Bmθ =Cm.

Proof-trees exploit the branching occurring when one constructs derivations for several
atoms in a goal; and are also known as and-trees. In parallel logic programming, and-
parallelism arises when more than one atom is present in the goal. That is, given a goal
G =← B1, . . .Bn, an and-parallel algorithm for SLD-resolution looks for SLD-derivations
for each Bi simultaneously, subject to the condition that the atoms must not share variables.
Such cases are known as independent and-parallelism. Independent and-parallelism has
been successfully exploited in &-PROLOG [20].

Example 14 Figure 2 depicts a proof tree and an SLD-tree for the goal list(x) in
ListNat.

Example 15 Stream , i.e., Example 5, allows the following infinite SLD-derivation

stream(x)
x/scons(y,z)−−−−−−→ bit(y),stream(z)

y/0−−→ stream(z)→ . . .

containing an infinite repetition of stream(x) for various variables x. So Stream gives
rise to infinite SLD-trees.

The and-trees, or-trees and their combination have been used in parallel implementa-
tions of logic programming, [17,19,41]. The main idea was that branches in the SLD-trees
and proof-trees can be exploited in parallel. For certain cases of logic programs, such as
ground logic programs or some fragments of DATALOG programs, one can do refutations
for all the atoms in the goal in parallel [24, 32, 48]. But in general, SLD-resolution is P-
complete, and hence inherently sequential [11].

The next definition formalises the notion of and-or parallel trees [17,19], but we restrict
it to the ground cases, where such derivations are sound.

Definition 16 Let P be a ground logic program and let ← A be an atomic goal (possibly
with variables). The and-or parallel derivation tree for A is the possibly infinite tree T
satisfying the following properties.

7

list(x)

nat(y)

2θ0θ1

list(z)

2θ0θ2

list(x)

2

θ4

nat(y),list(z)

list(z)

2
θ2

list(z1)

2 ...

θ1

nat(y1),list(z)

list(z)

2 list(z1)

2 ...

nat(y2),list(z)

list(z)

2 ...

nat(y3),list(z)

...

θ0

Figure 2: A proof tree and an SLD-tree for ListNat with the goal list(x). A possible computed answer is given
by the composition of θ0 = x/cons(y,z), θ1 = y/0, θ2 = z/nil; Another computed answer is θ4 = x/nil.

• A is the root of T .

• Each node in T is either an and-node or an or-node.

• Each or-node is given by •.
• Each and-node is an atom.

• For every node A′ occurring in T , if A′ is unifiable with only one clause B←B1, . . . ,Bn

in P with mgu θ, then A′ has n children given by and-nodes B1θ, . . .Bnθ.

• For every node A′ occurring in T , if A′ is unifiable with exactly m > 1 distinct clauses
C1, . . . ,Cm in P via mgu’s θ1, . . . ,θm, then A′ has exactly m children given by or-nodes,
such that, for every i ∈ {1, . . . ,m}, if Ci = Bi← Bi

1, . . . ,B
i
n, then the ith or-node has n

children given by and-nodes Bi
1θi, . . . ,Bi

nθi.

Examples of and-or trees are given in Figures 3 and 9. In Section 5, we return to the
questions of parallelism for CoALP.

3 Coalgebraic Semantics
In this section, we develop the coalgebraic semantics of logic programming, starting from
the coalgebraic calculus of infinite trees, through to the observational semantics of SLD-
derivations.

3.1 A Coalgebraic Calculus of Infinite Trees
For the purposes of this paper, a tree T consists of a set Tn for each natural number n,
together with a function δn : Tn+1 −→ Tn, yielding

. . . Tn+1 −→ Tn −→ . . . −→ T1 −→ T0 = 1

An element of Tn is called a node of T at height n. The unique element of T0 is the
root of the tree; for any x ∈ Tn+1, δn(x) is called the parent of x, and x is called a child of
δn(x). Observe that trees may have infinite height, but if all Tn’s are finite, the tree is finitely
branching.

8

An L-labelled tree is a tree T together with a function l :
⊔

n∈N Tn −→ L. The definitions
of SLD-tree and proof tree, Definitions 12 and 13 respectively, are of finitely branching
labelled trees. Both satisfy a further property: for any node x, the children of x, i.e., the
elements of δ−1(x), have distinct labels. This reflects the definition of a logic program,
following [35], as a set of clauses rather than as a list, and the distinctness of atoms in the
body of a clause. We accordingly say an L-labelled tree is locally injective if for any node
x, the children of x have distinct labels. Given a set L of labels, we denote the set of finitely
branching locally injective L-labelled trees by TreeL.

We briefly recall fundamental constructs of coalgebra, see also [22].

Definition 17 For any endofunctor H : C−→C, an H-coalgebra consists of an object X of
C together with a map x : X −→ HX. A map of H-coalgebras from (X ,x) to (Y,y) is a map
f : X −→ Y in C such that the diagram

X

HX

Y

HY

commutes.

H-coalgebras and maps of H-coalgebras form a category H-coalg, with composition de-
termined by that in C, together with a forgetful functor U : H-coalg −→ C, taking an H-
coalgebra (X ,x) to X .

Example 18 Let Pf denote the endofunctor on Set that sends a set X to the set of its finite
subsets, and sends a function h : X −→Y to the function Pf (h) : Pf (X)−→ Pf (Y) sending a
subset A of X to its image f (A) in Y . A Pf -coalgebra (X ,x) is a finitely branching transition
system, one of the leading examples of coalgebra [22].

For any set L, the set TreeL of finitely branching locally injective L-labelled trees pos-
sesses a canonical Pf -coalgebra structure on it, sending (T, l) to the set of L-labelled trees
determined by the children of the root of T . With mild overloading of notation, we denote
this Pf -coalgebra by TreeL.

Theorem 19 The functor U : Pf -coalg −→ Set has a right adjoint sending any set L to
TreeL.

Proof We have already seen that for any set L, the set TreeL possesses a canonical Pf -
coalgebra structure given by sending an L-labelled tree (T, l) to the set of labelled trees
determined by the children of the root of T .

For the universal property, suppose we are given a Pf -coalgebra (X ,x) and a function
h : X −→ L. Put h0 = h : X −→ L. For any a∈X , x(a) is a finite subset of X . So Pf (h0)(x(a))
is a finite subset of L. Send a to the tree generated as follows: the root is labelled by h0(a);
it has Pf (h0)(x(a)) children, each labelled by the corresponding element of Pf (h0)(x(a));
replace h0 : X −→ L by h1 = Pf (h0)(x(−)) : X −→ Pf (L), and continue inductively.

The unicity of this as a map of coalgebras is determined by its construction together
with the local injectivity condition; its well-definedness follows from the finiteness of any
element of Pf (X). 2

9

We adapt this analysis to give a semantic account of the way in which a logic program
generates a tree of computations.

Given a set L of labels, an L-labelled &∨-tree is a finitely branching tree T together
with a function l :

⊔
n∈N T2n −→ L. In an L-labelled &∨-tree, the nodes of even height are

called &-nodes, and the nodes of odd height are called ∨-nodes. So the &-nodes, such as
the root, are labelled, while the ∨-nodes are not.

The and-or parallel derivation trees of Definition 16 are labelled &∨-trees satisfying
an additional property that reflects logic programs consisting of sets rather than lists of
clauses and the distinctness of atoms in the body of a clause. We express the condition
semantically as follows: an L-labelled &∨-tree is locally injective if the children of any
∨-node have distinct labels, and if, for any two distinct children of an &-node, the sets of
labels of their children are distinct (but may have non-trivial intersection), i.e., for any x,
for any y,z ∈ δ−1(x), one has l(δ−1(y)) 6= l(δ−1(z)). Given a set L of labels, we denote the
set of locally injective L-labelled &∨-trees by &∨-TreeL.

For any set L, the set &∨-TreeL has a canonical Pf Pf -coalgebra structure on it, sending
(T, l) to the set of sets of labelled &∨-trees given by the set of sets of L-labelled &∨-trees
determined by the children of each child of the root of T . Again, we overload notation,
using &∨-TreeL to denote this coalgebra.

Theorem 20 The functor U : Pf Pf -coalg −→ Set has a right adjoint sending any set L to
&∨-TreeL.

Proof A proof is given by a routine adaption of the proof of Theorem 19. 2
There are assorted variants of Theorem 20. We shall need one for L-labelled &∨c-trees,

an L-labelled &∨c-tree being the generalisation of L-labelled &∨-tree given by allowing
countable branching at even heights, i.e., allowing the root to have countably many children,
but each child of the root to have only finitely many children, etcetera. Letting Pc denote
the functor sending a set X to the set of its countable subsets, we have the following result.

Theorem 21 The functor U : PcPf -coalg −→ Set has a right adjoint sending any set L to
&∨c-TreeL.

3.2 Coalgebraic Semantics for Ground Programs
Using our coalgebraic calculus of trees, we now make precise, in the ground case, the
relationship between logic programs and Gupta et al’s and-or parallel derivation trees of
Definition 16.

In general, if U : H-coalg−→C has a right adjoint G, the composite functor UG : C−→
C possesses the canonical structure of a comonad C(H), called the cofree comonad on H. A
coalgebra for a comonad is subtly different to a coalgebra for an endofunctor as the former
must satisfy two axioms, see also [4, 34]. We denote the category of C(H)-coalgebras by
C(H)-Coalg.

Theorem 22 [22] For any endofunctor H : C −→C for which the forgetful functor U : H-
coalg −→ C has a right adjoint, the category H-coalg is canonically isomorphic to the
category C(H)-Coalg. The isomorphism commutes with the forgetful functors to C.

Theorem 22 implies that for any H-coalgebra (X ,x), there is a unique C(H)-coalgebra
structure corresponding to it on the set X .

10

Recall from the Introduction that, in the ground case, a logic program can be identified
with a coalgebra for the endofunctor Pf Pf on Set. By Theorem 20, the forgetful functor
U : Pf Pf -coalg−→ Set has a right adjoint taking a set L to the coalgebra &∨-TreeL. Thus
the cofree comonad C(Pf Pf) on Pf Pf sends the set L to the set &∨-TreeL.

So Theorem 22 tells us that every ground logic program P seen as a Pf Pf -coalgebra
induces a canonical C(Pf Pc)-coalgebra structure on the set At of atoms underlying P, i.e.,
a function from At to &∨-TreeAt .

Theorem 23 Given a Pf Pf -coalgebra p : At −→ Pf Pf (At), the corresponding C(Pf Pf)-
coalgebra has underlying set At and action p̄ : At −→&∨-TreeAt as follows:

For A ∈ At, the root of the tree p̄(A) is labelled by A. If p(A) ∈ Pf Pf (At) consists of
n subsets of Pf (At), then the root of p̄(A) has n children. The number and labels of each
child of each of those n children are determined by the number and choice of elements of
At in the corresponding subset of Pf (A). Continue inductively.

Proof In general, for any endofunctor H for which the forgetful functor U : H-coalg−→C
has a right adjoint G, the C(H)-coalgebra induced by an H-coalgebra (X ,x) is given as
follows: U(X ,x) = X , so the identity map id : X −→ X can be written as id : U(X ,x)−→ X .
By the definition of adjoint, it corresponds to a map of the form ε(X ,x) : (X ,x) −→ GX .
Applying U to ε(X ,x) gives the requisite coalgebra map Uε(X ,x) : X −→C(H)X .

Applying this to H = Pf Pf , this C(Pf Pf)-coalgebra structure is determined by the con-
struction in the proof of Theorem 20, which is rewritten as the assertion of this theorem.
2

Comparing Theorem 23 with Definition 16, subject to minor reorganisation, given a
logic program P seen as a Pf Pf -coalgebra, the corresponding C(Pf Pf)-coalgebra structure
on At sends an atom A to Gupta et al’s and-or parallel derivation tree, characterising their
construction in the ground case.

Example 24 Consider the ground logic program

q(b,a) ←
s(a,b) ←
p(a) ← q(b,a), s(a,b)

q(b,a) ← s(a,b)

The program has three atoms, namely q(b,a), s(a,b) and p(a).
So At = {q(b,a),s(a,b),p(a)}. The program can be identified with the Pf Pf -coalgebra
structure on At given by
p(q(b,a)) = {{},{s(a,b)}}, where {} is the empty set.
p(s(a,b)) = {{}}, i.e., the one element set consisting of the empty set.
p(p(a)) = {{q(b,a),s(a,b)}}.

The corresponding C(Pf Pf)-coalgebra sends p(a) to the parallel refutation of p(a)
depicted on the left side of Figure 3. Note that the nodes of the tree alternate between those
labelled by atoms and those labelled by •. The set of children of each • represents a goal,
made up of the conjunction of the atoms in the labels. An atom with multiple children is the
head of multiple clauses in the program: its children represent these clauses. We use the
traditional notation 2 to denote {}.

Where an atom has a single •-child, we can elide that node without losing any informa-
tion; the result of applying this transformation to our example is shown on the right side of

11

Figure 3. The resulting tree is precisely the and-or parallel derivation tree for the atomic
goal← p(a).

← p(a)

q(b,a)

s(a,b)

2

2

s(a,b)

2

← p(a)

q(b,a)

s(a,b)

2

2

s(a,b)

2

Figure 3: The action of p : At−→C(Pf Pf)(At) on p(a) and the corresponding and-or parallel derivation tree.

3.3 Coalgebraic Semantics for Arbitrary Programs
Extending from ground logic programs to first-order programs is not routine. Following
normal category theoretic practice, we model the first-order language underlying a logic
program by a Lawvere theory [2, 6, 8].

Definition 25 Given a signature Σ of function symbols, the Lawvere theory LΣ generated
by Σ is the following category: ob(LΣ) is the set of natural numbers. For each natural
number n, let x1, . . . ,xn be a specified list of distinct variables. Define ob(LΣ)(n,m) to be
the set of m-tuples (t1, . . . , tm) of terms generated by the function symbols in Σ and variables
x1, . . . ,xn. Define composition in LΣ by substitution.

One can describe LΣ without the need for a specified list of variables for each n: in a
term t, a variable context is always implicit, i.e., x1, . . . ,xm ` t, and the variable context may
be considered as a binder.

For each signature Σ, we extend the set At of atoms for a ground logic program to
the functor At : Lop

Σ
→ Set that sends a natural number n to the set of all atomic formulae

generated by Σ, variables among a fixed set x1, . . . ,xn, and the predicate symbols appearing
in the logic program. A map f : n→ m in LΣ is sent to the function At(f) : At(m)→ At(n)
that sends an atomic formula A(x1, . . . ,xm) to A(f1(x1, . . . ,xn)/x1, . . . , fm(x1, . . . ,xn)/xm),
i.e., At(f) is defined by substitution.

Given a logic program P with function symbols in Σ, we would like to model P by
the putative [Lop

Σ
,Pf Pf]-coalgebra p : At −→ Pf Pf At on the category [Lop

Σ
,Set] whose n-

component takes an atomic formula A(x1, . . . ,xn) with at most n variables, considers all
substitutions of clauses in P whose head agrees with A(x1, . . . ,xn), and gives the set of sets
of atomic formulae in antecedents. Unfortunately, it does not work.

Consider the logic program ListNat of Example 6. There is a map in LΣ of the form
0→ 1 that models the nullary function symbol 0. Naturality of the map p : At −→ Pf Pf At
in [Lop

Σ
,Set] yields commutativity of the diagram

12

At(1)

At(0)

Pf Pf At(1)

Pf Pf At(0)

There being no clause of the form nat(x)← in ListNat, commutativity implies that there
cannot be a clause in ListNat of the form nat(0)← either, but in fact there is one.

We resolve this by relaxing the naturality condition on p to a subset condition, yielding
lax naturality. To define it, we extend At : Lop

Σ
→ Set to have codomain Poset, which we

do by composing At with the inclusion of Set into Poset. Mildly overloading notation, we
denote the composite by At : Lop

Σ
→ Poset.

Poset canonically possesses the structure of a locally ordered category, i.e., there is a
canonical partial order on each homset Poset(P,Q) and it is respected by composition. It is
given pointwise: f ≤ g if and only if for all x ∈ P, one has f (x)≤ g(x) in Q. The category
LΣ also has a canonical locally ordered structure given by the discrete structure, i.e., f ≤ g if
and only if f = g. Any functor from Lop

Σ
to Poset is trivially locally ordered, i.e., preserves

the partial orders.

Definition 26 Given locally ordered functors H,K : D−→C, a lax natural transformation
from H to K is the assignment to each object d of D, of a map αd : Hd −→ Kd such that
for each map f : d −→ d′ in D, one has (K f)(αd)≤ (αd′)(H f).

Locally ordered functors and lax natural transformations, with pointwise composition and
pointwise ordering, form a locally ordered category we denote by Lax(D,C).

A final problem arises in regard to the finiteness of the outer occurrence of Pf in Pf Pf .
The problem is that substitution can generate infinitely many instances of clauses with the
same head. For instance, if one extends ListNat with a clause of the form A← nat(x)
with no occurrences of x in A, substitution yields the clause A← nat(sn(0)) for every
natural number n, giving rise to a countable set of clauses with head A. Graph connectivity,
GC, gives another example, see Example 35.

We address this issue by replacing Pf Pf by PcPf , where Pc is the countable powerset
functor, extending PcPf from Set to a locally ordered endofunctor on Poset, upon which
composition yields the locally ordered endofunctor we seek on Lax(Lop

Σ
,Poset).

Definition 27 Define Pf : Poset −→ Poset by letting Pf (P) be the partial order given by the
set of finite subsets of P, with A≤ B if for all a ∈ A, there exists b ∈ B for which a≤ b in P,
with behaviour on maps given by image. Define Pc similarly but with countability replacing
finiteness.

A cofree comonad C(PcPf) exists on PcPf and, by Theorem 21, we can describe it:
C(PcPf)(P) = &∨c-TreeP, with partial order structure generated by Definition 27. In order
to extend the correspondence between PcPf -coalgebras p : At −→ PcPf At and C(PcPf)-
coalgebras p̄ : At −→ C(PcPf)At from Poset to Lax(Lop

Σ
,Poset), we need to do some ab-

stract category theory.
Let H be an arbitrary locally ordered endofunctor on an arbitrary locally ordered cate-

gory C. Denote by H-coalgoplax the locally ordered category whose objects are H-coalgebras
and whose maps are oplax maps of H-coalgebras, meaning that, in the square

13

X

HX

≤

Y

HY

the composite via HX is less than or equal to the composite via Y . Since C and H are
arbitrary, one can replace C by Lax(D,C), for any category D; and replace H by Lax(D,H),
yielding the locally ordered category Lax(D,H)-coalgoplax.

Proposition 28 The locally ordered category Lax(D,H)-coalgoplax is canonically isomor-
phic to Lax(D,H-coalgoplax).

Proof Unwinding the definitions, to give a functor J : D−→ H-coalgoplax is, by definition,
to give, for each object d of D, a map in C of the form Jd : J0d −→ HJ0d, and, for each
map f : d −→ d′ in D, a map in C of the form J0 f : J0d −→ J0d′, such that

J0d
J0 f //

Jd

��

J0d′

Jd

��

≤

HJ0d
HJ0 f

//HJ0d′

subject to locally ordered functoriality equations.
These data and axioms can be re-expressed as a locally ordered functor J0 : D −→ C

together with a lax natural transformation j : J0 −→HJ0, the condition for lax naturality of
j in regard to the map f in D being identical to the condition that J0 f be an oplax map of
coalgebras from Jd to Jd′.

This yields a canonical bijection between the sets of objects of Lax(D,H-coalgoplax)
and Lax(D,H)-coalgoplax, that bijection canonically extending to a canonical isomorphism
of locally ordered categories. 2

Proposition 29 Given a locally ordered comonad G on a locally ordered category C, the
data given by Lax(D,G) : Lax(D,C)→ Lax(D,C) and pointwise liftings of the structural
natural transformations of G yield a locally ordered comonad we also denote by Lax(D,G)
on Lax(D,C).

Proof This holds by tedious but routine checking of all the axioms in the definition of
locally ordered comonad. 2
Given a locally ordered comonad G, denote by G-Coalgoplax the locally ordered category
whose objects are G-coalgebras and whose maps are oplax maps of G-coalgebras.

Proposition 30 Given a locally ordered comonad G, Lax(D,G)-Coalgoplax is canonically
isomorphic to Lax(D,G-Coalgoplax).

Proof A proof is given by routine extension of the proof of Proposition 28. 2

14

Theorem 31 [25] Given a locally ordered endofunctor H on a locally ordered category
with finite colimits C, if C(H) is the cofree comonad on H, then H-coalgoplax is canonically
isomorphic to C(H)-Coalgoplax.

Combining Proposition 28, Proposition 30 and Theorem 31, we can conclude the fol-
lowing:

Theorem 32 Given a locally ordered endofunctor H on a locally ordered category with
finite colimits C, if C(H) is the cofree comonad on H, then there is a canonical isomorphism

Lax(D,H)-coalgoplax ' Lax(D,C(H))-Coalgoplax

Corollary 33 For any locally ordered endofunctor H on Poset, if C(H) is the cofree comonad
on H, then there is a canonical isomorphism

Lax(Lop
Σ
,H)-coalgoplax ' Lax(Lop

Σ
,C(H))-Coalgoplax

Putting H = PcPf , Corollary 33 gives us the abstract result we need. The lax natural
transformation p : At −→ PcPf At generated by a logic program P, evaluated at a natural
number n, sends an atomic formula A(x1, . . . ,xn) to the set of sets of antecedents in substi-
tution instances of clauses in P for which the head of the substituted instance agrees with
A(x1, . . . ,xn). That in turn yields a lax natural transformation p̄ : At −→C(PcPf)At, which,
evaluated at n, is the function from the set At(n) to the set &∨c-TreeAt(n) determined by the
construction of Theorem 23 if one treats the variables x1, . . . ,xn as constants. See also [7]
for a Laxness-free semantics for CoALP.

Example 34 Consider ListNat as in Example 6. Suppose we start with A(x,y) ∈ At(2)
given by the atomic formula list(cons(x,cons(y,x))). Then p̄(A(x,y)) is the
element of C(PcPf)At(2) = &∨c-TreeAt(2) expressible by the tree on the left hand side
of Figure 4. This tree agrees with the start of the and-or parallel derivation tree for
list(cons(x,cons(y,x))). It has leaves nat(x), nat(y) and list(x), whereas
the and-or parallel derivation tree follows those nodes, using substitutions determined by
mgu’s that might not be consistent with each other, e.g., there is no consistent substitution
for x.

Lax naturality means a substitution potentially yields two different trees: one given by
substitution into the tree, then pruning to remove redundant branches, the other given by
substitution into the root, then applying p̄.

For example, we can substitute s(z) for both x and y in list(cons(x,cons(y,x))). This
substitution is given by applying At to the map (s,s) : 1−→ 2 in LΣ. So At((s,s))(A(x,y))
is an element of At(1). Its image under p̄(1) : At(1) −→ C(PcPf)At(1) is the element of
C(PcPf)At(1) = &∨c-TreeAt(1) given by the tree in the middle of Figure 4. The laxness of
the naturality of p̄ is indicated by the increased length, in two places, of this tree. Before
those two places, the two trees have the same structure.

Now suppose we make the further substitution of 0 for z. This substitution is given by
applying At to the map 0 : 0→ 1 in LΣ. In Figure 4, we depict p̄(0)At(0)At((s,s))(A(x,y))∈
&∨c-TreeAt(1) on the right. Two of the leaves of the latter tree are labelled by 2, but one
leaf, namely list(s(0)) is not, so the tree does not yield a proof. Again, observe the
laxness.

This requires care. Consider the following example, studied in [46].

15

list(c(x,c(y,x)))

nat(x) list(c(y,x))

nat(y) list(x)

→
list(c(s(z),c(s(z),s(z))))

nat(s(z))

nat(z)

list(c(s(z),s(z)))

nat(s(z))

nat(z)

list(s(z))

→
list(c(s(0),c(s(0),s(0))))

nat(s(0))

nat(0)

2

list(c(s(0),s(0)))

nat(s(0))

nat(0)

2

list(s(0))

Figure 4: The left hand tree depicts p̄(list(cons(x,cons(y,x)))), the middle tree depicts
p̄At(s,s)(list(cons(x,cons(y,x)))), i.e., p̄(list(cons(s(z),cons(s(z),s(z))))), and the right tree de-
picts p̄At(0)At(s,s)(list(cons(x,cons(y,x)))); cons is abbreviated by c.

Example 35 (GC) Let GC (for graph connectivity) denote the logic program

connected(x,x) ←
connected(x,y) ← edge(x,z),connected(z,y)

There may be additional function symbols, such as a unary s, and additional clauses to
give a database, such as edge(0,s(0))← and edge(s(0),s(s(0)))← . Note the
presence of a variable z in the body but not the head of the clause

connected(x,y) ← edge(x,z),connected(z,y)

That allows derivations involving infinitely many variables, thus not directly yielding a
subtree of p̄(connected(x,y)) ∈&∨c-TreeAt(n) for any n.

The subtle relationship between the finite and the infinite illustrated by Example 35 is
fundamental to the idea of coalgebraic logic programming, which we develop in the latter
sections of the paper. See also Figure 6.

Definition 36 Let P be a logic program, G be an atomic goal, and T be the &∨c-tree
determined by P and G ∈ At(n). A subtree T ′ of T is called a derivation subtree of T if it
satisfies the following conditions:

• the root of T ′ is the root of T (up to variable renaming);

• if an and-node belongs to T ′, then at most one of its children belongs to T ′.

• if an or-node belongs to T ′, then all its children belong to T ′.

A finite derivation tree is successful if its leaves are all or-nodes (equivalently, they are
followed only by 2 in the usual pictures).

By Example 35, derivations need not directly yield derivation subtrees. Nevertheless,
all subderivations of finite length of a derivation do form derivation subtrees.

Theorem 37 (Soundness and Completeness of SLD-refutations) Let P be a logic pro-
gram, and G be an atomic goal.

16

1. Soundness. If there is an SLD-refutation for G in P with computed answer θ, then
for some n with Gθ ∈ At(n), the &∨c-tree for Gθ contains a successful derivation
subtree.

2. Completeness. If the &∨c-tree for Gθ ∈ At(n) contains a successful derivation sub-
tree, then there exists an SLD-refutation for G in P, with computed answer λ for which
λσ = θ for some σ.

Proof The finiteness of refutations makes this a routine adaptation of the soundness and
completeness of the collectivity of SLD-trees for SLD-refutation.

3.4 Coalgebraic Semantics and the Theory of Observables
Our coalgebraic analysis relates closely to the Theory of Observables for logic program-
ming developed in [9]. In that theory, the traditional characterisation of logic programs
in terms of input/output behaviour and successful derivations is not sufficient for the pur-
poses of program analysis and optimisation. One requires more complete information about
SLD-derivations, specifically the sequences of goals and most general unifiers used. Infinite
derivations can be meaningful. The following observables are critical to the theory [9, 14].

Definition 38

1. A call pattern is a sequence of atoms selected in an SLD-derivation; a correct call
pattern is a sequence of atoms selected in an SLD-refutation.

2. A partial answer is a substitution associated with a resolvent in an SLD-derivation;
a correct partial answer is a substitution associated with a resolvent in an SLD-
refutation.

As explained in [9, 14], semantics of logic programs aims to identify observationally
equivalent logic programs and to distinguish logic programs that are not observationally
equivalent. So the definitions of observation and semantics are interdependent. Observa-
tional equivalence was defined in [14] as follows.

Definition 39 Let P1 and P2 be logic programs with the same alphabet. Then P1 is ob-
servationally equivalent to P2, written P1 ≈ P2, if for any goal G, the following conditions
hold:

1. G has an SLD-refutation in P1 if and only if G has an SLD-refutation in P2.

2. G has the same set of computed answers in P1 as in P2.

3. G has the same set of (correct) call patterns in P1 as in P2.

4. G has the same set of (correct) partial answers in P1 as in P2.

Theorem 40 (Correctness) For logic programs P1 and P2, if the Lax(Lop
Σ
,C(PcPf))-coalgebra

structure p̄1 generated by P1 is isomorphic to the Lax(Lop
Σ
,C(PcPf))-coalgebra structure

p̄2 generated by P2 (denoted p̄1 ∼= p̄2), then P1 ≈ P2.

The converse of Theorem 40, full abstraction, does not hold, i.e., with the above defini-
tion of observational equivalence, there are observationally equivalent programs that have
different &∨c-Trees.

17

Example 41 Consider logic programs P1 and P2 with the same clauses except for one:
P1 contains A← B1,false,B2; and P2 contains the clause A← B1,false instead. The
atoms in the clauses are such that B1 has a refutation in P1 and P2, and false is an atom
that has no refutation in the programs. In this case, assuming a left-to-right sequential
evaluation strategy, all derivations that involve the two clauses in P1 and P2 will always fail
on false, and P1 will be observationally equivalent to P2, but they generate different trees
because of B2.

We can recover full abstraction if we adapt Definitions 38 and 39 so that they do not
rely upon an algorithm to choose a selected atom but rather allow arbitrary choices. This
is typical of coalgebra, yielding essentially an instance of bisimulation [22]. In order to do
that, we need to modify Definitions 8 and 9 to eliminate the algorithm used in the definitions
leading to SLD-derivations.

Definition 42 Let a goal G be← A1, . . . ,Ak and a clause C be A← B1, . . . ,Bq. Then G′ is
non-deterministically derived from G and C using mgu θ if the following conditions hold:

• θ is an mgu of some atom Am in the body of G and A;

• G′ is the goal← (A1, . . . ,Am−1,B1, . . . ,Bq,Am+1, . . . ,Ak)θ.

Definition 42 differs from Definition 8 in precisely one point: the former refers to “some
atom” where the latter refers to “the selected atom”, with the selection being determined
by an algorithm. The distinction means that Definition 42 has nondeterminism built into
the choice of atom, which in turn implies the possibility of parallelism in implementation.
We will exploit that later. It further implies that a verbatim restatement of Definition 39 but
with “SLD-derivation” replaced by “coinductive derivation” also implies the possibility of
implementation based on parallelism.

Definition 43 A non-deterministic derivation of P∪{G} consists of a sequence of goals
G = G0,G1, . . . called non-deterministic resolvents, a sequence C1,C2, . . . of variants of
program clauses of P, and a sequence θ1,θ2, . . . of mgu’s such that each Gi+1 is derived
from Gi using θi+1. A non-deterministic refutation of P∪{G} is a finite non-deterministic
derivation of P∪{G} such that its last goal is empty, denoted by 2. If Gn =2, we say that
the refutation has length n. The composite θ1θ2 . . . is called a computed answer.

Figure 5 exhibits a non-deterministic derivation for the goal G = stream(x) and the
program Stream from Example 5.

Given logic programs P1 and P2 over the same alphabet, we write P1 ≈n P2 if, con-
sistently replacing SLD-derivation and SLD-refutation by non-deterministic derivation and
nondeterministic refutation in Definitions 38 and 39, P1 and P2 are observationally equiva-
lent.

Theorem 44 (Full abstraction) For any logic programs P1 and P2 with the same alphabet,
P1 ≈n P2 if and only if p̄1 ∼= p̄2.

Proof This is routine: as we have allowed any choice of atom rather than depending upon
an algorithm to choose a selected atom, observational equivalence accounts for all branches.

2

The way in which coalgebra models nondeterministic derivations is necessarily com-
plex for a few reasons:

18

stream(x)

θ1 = {x/cons(y,z)}

bit(y),stream(z)

θ2 = {y/0}

stream(z)

θ3 = {z/cons(y1,z1)}

...

→ ?←
stream(x)

θ1 = {x/cons(y,z)}

bit(y),stream(z)

θ′2 = {y/1}

stream(z)

θ′3 = {z/cons(y1,z1)}

...

stream(x)

θ1

bit(y),stream(z)

stream(z)θ2

θ3

...

stream(z)θ′2

θ′3

...

Figure 5: Left: Two possible choices for non-deterministic derivation for the goal G = stream(x) and the
program Stream, with θ1 = {x/scons(y,z)}, θ2 = {y/0}, θ′2 = {y/1} and θ3 = θ′3 = {y/scons(y1,z1)}. Right: the
two non-deterministic derivations shown in the form of an SLD-tree.

1. a non-deterministic derivation might involve infinitely many variables, but each At(n)
only allows for a finite number of variables.

2. a non-deterministic derivation could involve an infinite chain of substitutions, but an
element of At(n) does not allow for that. Consider e.g. Example 11.

So, within coalgebra, one can only give a chain of finite approximants to a nondetermin-
istic derivation. Theorem 37 extends routinely from SLD-refutations to non-deterministic
refutations. We can further extend it to non-deterministic derivations too, with due care for
the possibility of derivations involving infinitely many variables as induced by Example 35.

Theorem 45 (Soundness and Completeness of non-deterministic derivations) Let P be
a logic program, with p its induced Lax(Lop

Σ
,PcPf)-coalgebra, and let G be an atomic goal.

1. Soundness. Given any finite subderivation of a non-deterministic derivation of P∪
{G} with partial answer θ, the subderivation generates a derivation subtree of p̄(Gθ)
for some n with Gθ ∈ At(n).

2. Completeness. Given a list θ0,θ1, . . . of substitutions, and a list T0,T1, . . . of finite
derivation subtrees of p̄(Gθ0), p̄(Gθ0θ1), etcetera, with Tnθn a subtree of Tn+1 for
each n, there is a non-deterministic derivation of P∪{G} that generates the Tn’s.

Proof The soundness claim follows from induction on the length of a finite subderivation.
For length 0, the statement is trivial. Assume it is true for length n, with derivation subtree
Tn of p̄(Gθ). Suppose Gn+1 is derived from Gn using θn+1 and clause Cn+1, with respect
to the atom Am in Gn. Apply θn+1 to the whole of Tn, yielding a derivation subtree of
p̄(Gθθn+1), and extend the tree at the leaf Amθn+1 by applying θn+1 to each atom in the
body of the Cn+1 to provide the requisite and-nodes.

Completeness also holds by induction. For n = 0, given a finite derivation subtree T0
of p̄(Gθ0), if follows from the finiteness of T0 and the fact that it is a subtree of p̄(Gθ0)

19

that it can be built from a finite sequence of derivation steps starting from G, followed by a
substitution.

Now assume that is the case for Tn, and we are given Tn+1 subject to the conditions
stated in the theorem. By our inductive hypothesis, we have a finite derivation from G,
followed by a substitution, that yields the tree Tn. That is therefore also true for Tnθn+1. As
Tn+1 is a finite extension of Tn and is a subtree of p̄(Gθ0 . . .θn+1), one can make a finite
extension of the finite derivation from G that, followed by a substitution, yields Tn+1. 2

4 Corecursion in Logic Programming
We now move from abstract theory towards the development of coalgebraic logic program-
ming. Central to this is the relationship between the finite and the infinite. We introduce a
new kind of tree in order to make the subtle relationship precise and underpin our formula-
tion of CoALP, a variant of logic programming based on our coalgebraic semantics.

4.1 Coinductive Derivations
We first return to our running example of program Stream. In Section 2 and Figure 5,
we have seen that this program gives rise to non-terminating SLD-derivations and infinite
SLD-trees; moreover, the conventional greatest fixed point semantics is unsound for such
cases. Coalgebraic semantics of Section 3 suggests the following tree-based semantics
of derivations in Stream, see Figure 6. Comparing Figure 5 and Figure 6, we see that
computations described by &∨c-Trees suggest parallel branching, much like and-or parallel
trees [19], and also – finite height trees in the case of Stream. These two features will
guide us in this Section, when we develop the computational algorithms for CoALP, and
then follow them with implementation in Section 6.

We suggest the following definition of coinductive tree as a close computational coun-
terpart of the &∨c-Trees of the previous section.

Definition 46 Let P be a logic program and G = A be an atomic goal. The coinductive
tree for A is a possibly infinite tree T satisfying the following properties.

• A is the root of T .

• Each node in T is either an and-node or an or-node.

• Each or-node is given by •.
• Each and-node is an atom.

• For every and-node A′ occurring in T , if there exist exactly m > 0 distinct clauses
C1, . . . ,Cm in P (a clause Ci has the form Bi ← Bi

1, . . . ,B
i
ni

, for some ni), such that
A′ = B1θ1 = ... = Bmθm, for mgu’s θ1, . . . ,θm, then A′ has exactly m children given
by or-nodes, such that, for every i ∈ m, the ith or-node has ni children given by and-
nodes Bi

1θi, . . . ,Bi
ni

θi.

Three coinductive trees for program Stream are shown in Figure 6. In contrast to SLD-
trees, coinductive trees restrict unification to term matching, i.e., we have A′ = Bθ, rather
than A′θ = Bθ. Unification in general is inherently sequential [11], but term matching is
parallelisable. At the same time, this restriction provides a powerful tool for implicit re-
source control as it allows one to unfold coinductive trees lazily, keeping each individual

20

stream(x)

θ1→
stream(scons(z,y))

bit(z) stream(y)

θ2→ . . .
θ3→

stream(scons(0,scons(y1,z1)))

bit(0)

2

stream(scons(y1,z1))

bit(y1) stream(z1)

Figure 6: According to the coalgebraic semantics of the previous section, the left hand tree
depicts p̄(stream(x)), the middle tree depicts p̄ At(scons)(stream(x)), and the right tree depicts
p̄ At(scons)At(0)At(scons)(stream(x)). The same three trees represent a coinductive derivation for the goal
G = stream(x) and the program Stream, with θ1 = x/scons(z,y), θ2 = z/0 andθ3 = y/scons(y1,z1).

tree at a finite size, provided the program is well-founded; as we discuss in detail in Sec-
tion 4.2. In our implementation, we assume that every branch of the coinductive tree can
by constructed in parallel to other branches, that is, no extra algorithm coordinating the
variable substitutions is needed. See also Sections 5 and 6.

As can be seen from Figures 4 and 6, one coinductive tree T may not produce the answer
corresponding to a refutation by the SLD-resolution. Instead, a sequence of coinductive
trees may be needed to advance the derivation. We introduce a new derivation algorithm
that allows proof search using coinductive trees. We modify the definition of a goal by
taking it to be a pair < A,T >, where A is an atom, and T is the coinductive tree determined
by A.

Definition 47 Let G be a goal given by an atom← A and the coinductive tree T induced
by A, and let C be a clause H ← B1, . . . ,Bn. Then goal G′ is coinductively derived from G
and C using mgu θ if the following conditions hold:

• A′ is an atom in T .

• θ is an mgu of A′ and H.

• G′ is given by the atom← Aθ and the coinductive tree T θ.

Coinductive derivations resemble tree rewriting. They produce the “lazy” corecursive
effect: derivations are given by potentially infinite number of steps, where each individual
step is executed in finite time.

Example 48 Figure 5 shows how Stream gives rise to infinite SLD-trees. But it only gives
rise to finite coinductive trees because of the term matching condition in the definition of
coinductive tree. Moreover, there is only one coinductive tree for any goal. An infinite
derivation can be modelled by an infinite coinductive derivation, as illustrated in Figure 6.

Example 49 ListNat, i.e., Example 6, also gives rise to infinite SLD-trees, see Figure 2,
but it also only gives rise to finite coinductive trees as, again, all clauses in ListNat are
guarded by constructors 0, s, nil, cons. A coinductive derivation for ListNat
and the goal list(cons(x,cons(y,x))) is illustrated in Figure 4. Again, an infinite
derivation can be modelled by an infinite chain of finite coinductive trees.

21

Note that the definition of coinductive derivation allows for non-deterministic choice
of the leaf atoms; compare e.g. with previously seen non-deterministic derivations from
Definition 42. Transitions between coinductive trees can be done in a sequential or par-
allel manner. That is, if there are several non-empty leaves in a tree, any such leaf can
be unified with some clause in P. Such leaves can provide substitutions for sequential or
parallel tree transitions. In Figure 6, the substitution θ′ = θ2θ3 is derived by consider-
ing mgu’s for two leaves in G1 =< stream(scons(z,y)),T1 >; but, although two sep-
arate and-leaves were used to compute θ′, θ′ was computed by composing the two sub-
stitutions sequentially, and only one tree, T3, was produced. However, we could concur-
rently derive two trees from T2 instead, G′2 =< stream(scons(0,y)),T2 > and G′′2 =<
stream(scons(z,scons(y1,z1))),T ′2 >. We exploit parallelism of such transitions in
Sections 5 and 6.

Definition 50 Let P be a logic program, G be an atomic goal, and T be a coinductive tree
determined by P and G. A subtree T ′ of T is called a coinductive subtree of T if it satisfies
the following conditions:

• the root of T ′ is the root of T (up to variable renaming);

• if an and-node belongs to T ′, then one of its children belongs to T ′.

• if an or-node belongs to T ′, then all its children belong to T ′.

A finite coinductive (sub)tree is called a success (sub)tree if its leaves are empty goals
(equivalently, they are followed only by 2 in the usual pictures).

Note that coinductive subtrees are not themselves coinductive trees: coinductive trees
give account to all possible and-or-parallel proof choices given the terms determined by the
goal, whereas a coinductive subtree corresponds to one possible sequential SLD-derivation
for the given goal, where unification in the SLD-derivation is restricted to term-matching,
cf. Definition 46.

In what follows, we will assume that the goal in Definition 47 is given by an atom← A,
and T is implicitly assumed. This convention agrees with the standard logic programming
practice, where goals are given by first-order atoms. For example, we say that the goal
stream(x) generates the coinductive derivation of Figure 6. The next definition formalises
this convention.

Definition 51 A coinductive derivation of P∪ {G} consists of a sequence of goals G =
G0,G1, . . . called coinductive resolvents and a sequence θ1,θ2, . . . of mgu’s such that each
Gi+1 is derived from Gi using θi+1. A coinductive refutation of P∪{G} is a finite coinduc-
tive derivation of P∪{G} such that its last tree contains a success subtree. If Gn contains
a success subtree, we say that the refutation has length n.

We now modify Definitions 38 and 39 of observational equivalence. Suppose the def-
initions of a (correct) call pattern and a (correct) partial answer from Definition 38 are
re-formulated with respect to coinductive derivations, rather than SLD-derivations. Unlike
SLD-derivations, coinductive derivations perform computations in “two dimensions” – at
the level of coinductive trees and at the level of transitions between coinductive trees. Both
dimensions of computations can be observed. The next definition formalises this.

Definition 52 Let P1 and P2 be logic programs with the same alphabet. Then P1 is coin-
ductively observationally equivalent to P2, written P1 ≈c P2, if for any goal G, the following
conditions hold:

22

1.-4. Conditions of Definition 39, but with coinductive derivations replacing SLD-derivations.

5. The coinductive tree T1 for G and P1 contains a coinductive subtree C iff the coinduc-
tive tree T2 for G and P2 contains C, modulo variable renaming.

For ground programs, all coinductive derivations will have length 0, and the coinduc-
tive tree generated for a given goal will account for all alternative derivations by SLD-
resolution. Therefore, conditions [1.-4.] of coinductive observational equivalence will be
trivially satisfied for all ground logic programs. However, condition [5.] will be able to
distinguish different logic programs in such cases.

Theorem 53 (Full abstraction) For any logic programs P1 and P2 with the same alphabet,
P1 ≈c P2 if and only if p̄1 ∼= p̄2.

Proof
Similarly to Theorem 44, we allowed any choice of resolvents, and observational equiv-

alence accounts for all branches. This accounts for conditions [1.-4.] in Definition 52.
For condition [5.] of coinductive observational equivalence, consider coinductive trees:

their structure and labels account for all possible clauses that can be matched with the
current goal and subgoals via mgu’s. If, for any goal G with n distinct variables, P1 and P2
produce equivalent coinductive trees, then the image of G under p̄1 will be isomorphic to
the image of G under p̄2.

The other direction is straightforward. 2
In general, the definition of the coinductive tree permits generation of coinductive trees

containing infinitely many variables. So a coinductive tree for a goal A need not be a
subtree of p̄(A) ∈&∨c-TreeAt(n) for any n. But every finite one must be, and establishment
or otherwise of finiteness of coinductive trees is critical for us.

Example 54 GC, i.e., Example 35, has a clause

connected(x,y) ← edge(x,z),connected(z,y)

in which there is a variable in the body but not the head. If one includes a unary function
symbol s in GC, the clause induces infinite coinductive trees, all subtrees of
p̄(connected(x,y)) ∈ &∨c-TreeAt(2), as there are infinitely many possible substitu-
tions for z. The clause also induces infinitely many coinductive trees that do not lie in
p̄(connected(x,y)) ∈&∨c-TreeAt(n) for any n.

Note that, in Section 3, we established two different kinds of soundness and complete-
ness results: one related the coalgebraic semantics to finite SLD-refutations (cf Theorem
37), another – to potentially infinite non-deterministic derivations (cf Theorem 45). The
second theorem generalised the first. As we explain in the next section, one of the main
advantages of CoALP is graceful handling of corecursive programs and coinductive def-
initions. This is why we consider derivations of arbitrary size in our next statement of
soundness and completeness for CoALP, as follows.

Theorem 55 (Soundness and Completeness of coinductive derivations) Let P be a logic
program, with p̄ its induced Lax(Lop

Σ
,PcPf)-coalgebra, and let G be an atomic goal.

1. Soundness. Given a coinductive tree T resulting from a coinductive derivation of
P∪{G} with partial answer θ, there is a coinductive subtree C of T , such that C is a
derivation subtree of p̄(Gθ) for some n for which Gθ ∈ At(n).

23

2. Completeness. Given a list θ0,θ1, . . . of substitutions, and a list T0,T1, . . . of finite
derivation subtrees of p̄(Gθ0), p̄(Gθ0θ1), etcetera, with Tnθn a subtree of Tn+1 for
each n, there is a coinductive derivation of P∪ {G}, involving computed substitu-
tions θ0,θ1, . . . and coinductive trees T0,T1, . . . such that, for each n, Tn contains a
coinductive subtree Cn, such that Cn contains Tn, modulo variable renaming.

Proof Soundness. Consider a coinductive derivation of P ∪ {G} with partial answer
θ = θ0,θ1, . . . ,θk: it contains a sequence of coinductive trees T0,T1, . . . ,(Tk = T) for
Gθ0,Gθ1, . . . ,Gθk. Each Ti is uniquely determined by Gθi, although Ti may have infinite
branches (cf. Example 11). In general case, T may contain several coinductive subtrees,
each giving an account to one possible combination of clauses determining or-nodes. Con-
sider one such coinductive subtree C, and suppose it contains n distinct variables. Then, by
construction of &∨c-TreeAt(n) and Definition 36, there will be a derivation subtree in p̄(Gθ)
corresponding to C.

Completeness. The proof is similar to the proof of Theorem 45, but here, we also note
that each step in a coinductive derivation is given by a coinductive tree, rather than by a re-
solvent. The role of a non-deterministic SLD-derivation is now delegated to a coinductive
subtree Cn of the coinductive tree Tn. Note that coinductive trees may be finite for guarded
clauses like Stream (cf. Example 48), and hence a sequence of coinductive trees T1,T2, . . .
will yield all Tn’s (cf. Theorem 45). However, non-guarded clauses (cf. Example 11) give
rise to infinite coinductive trees, in which case Tn will be only a fragment of a coinduc-
tive subtree Cn of the coinductive tree Tn. In that case, an infinite sequence of Tns would
approximate one Cn, similarly to Theorem 45. 2

Discussion of the constructive component of the completeness results for CoALP and
the constructive reformulation of the above completeness theorem can be found in [32].
The problem of distinguishing cases with finite and infinite coinductive trees will be the
main topic of the next section.

4.2 Guarding Corecursion
In this section, we consider various methods used in logic programming to guard (co-)
recursion, and introduce our own method for guarding corecursion in CoALP.

As Example 15 illustrates, SLD-derivations may yield looping infinite derivation chains
for programs like stream. In Coinductive Logic Programming (Co-LP) [18, 45], such were
addressed by introducing a procedure allowing one to terminate derivations with the flag
“stream(x) is proven”, whenever such a loop was detected. Extending this “rule” to in-
ductive computations leads to unsound results: in the inductive case, infinite loops normally
indicate lack of progress in a derivation rather than “success”. Thus, explicit annotation of
predicates was required. Consider the following example.

Example 56 The annotated logic program below comprises both inductive and coinductive
clauses.

biti(0) ←
biti(1) ←

streamc(scons(x,y)) ← biti(x),streamc(y)

listi(nil) ←
listi(cons(x,y)) ← biti(x),listi(y)

24

Only infinite loops produced for corecursive goals (marked by c) are gracefully terminated;
others are treated as “undecided” proof branches.

In practice, these annotations act as locks and keys in resource logics, allowing or dis-
allowing infinite data structures. There are drawbacks:

F some predicates may behave inductively or coinductively depending on the arguments
provided, and such cases need to be resolved dynamically, not statically, in which case
predicate annotation fails.

FF the coinductive algorithm [18, 45] is not in essence a lazy infinite (corecursive) com-
putation. Instead, it substitutes an infinite proof by a finite derivation, on the basis of
guarantees of the data regularity in the corecursive loops. But such guarantees cannot
always be given: consider computing the number π.

The coinductive derivations we introduced in the previous section give an alternative
solution to the problem of guarding corecursion. We have already seen that Definition 46
determined finite coinductive trees both for the coinductive program Stream and induc-
tive program ListNat; and no explicit annotation was needed to handle this. These two
programs were well-founded, however, not all programs will give rise to finite coinductive
trees. This leads us to the following definition of well-foundness of logic programs.

Definition 57 A logic program P is well-founded if, for any goal G, P∪{G} generates the
coinductive tree of finite size.

There are logic programs that allow infinite coinductive trees.

Example 58 Consider R(x)← R(f (x)). The coinductive tree arising from this program
contains a chain of alternating •’s and atoms R(x), R(f (x)), R(f (f (x))), etcetera, yielding
an infinite coinductive tree. This tree is a subtree of p̄(R(x)) ∈&∨c-TreeAt(1).

In line with the existing practice of functional languages, we want the notion of well-
foundness to be transformed into programming practices. For this, a set of syntactic guard-
edness conditions needs to be introduced, compare e.g. with [5, 10, 15]. Coinductive trees
we introduced in the previous section allow us to formulate similar guardedness condi-
tions. They correspond to the method of guarding (co)recursive function applications by
constructors in [10, 15]. In our running examples, function symbols 0, 1, s, cons, scons,
f play the role of guarding constructors.

Guardedness check 1 (Presence of Constructors): If a clause has the form P(t̄)←
[atoms],P(t̄ ′), [atoms], where P is a predicate, t̄, t̄ ′ are lists of terms, and [atoms] are finite
(possibly empty) lists of first-order atoms, then at least one term ti ∈ t̄ must contain a func-
tion symbol f .

For example, Stream is guarded. But Check-1 is not sufficient to guarantee well-
foundness of coinductive trees. Consider the following examples.

Example 59 Consider the variant of Example 58 given by R(f (x))← R(f (f (x))). It gen-
erates an infinite coinductive tree, given by a chain of alternating •’s and atoms R(f (x)),
R(f (f (x))), etcetera.

25

Example 60 (Stream2) Another non-well-founded program that satisfies Guardedness
check 1 is given below:

stream2(scons(x,y)) ← bit(x), stream2(scons(x,y))

To address such problems, a second guarding condition is needed.

Guardedness check 2 (Constructor Reduction): If a clause has the form P(t̄)←
[body], where P is an n-ary predicate, t̄ is a list of terms t1, . . . , tn, and [body] is a finite non-
empty list of first-order atoms, then, for each occurrence of P(t̄ ′) (with some t̄ ′ = t ′1, . . . , t

′
n)

in [body], the following conditions must be satisfied. There should exist a term ti ∈ t̄ such
that, there is a function f that occurs in ti m times (m ≥ 1) and occurs in t ′i k times with
k < m. Moreover, if f ∈ ti has arguments containing variables x̄i, then f ∈ t ′i must have
arguments containing variables x̄′i, with x̄′i ⊆ x̄i; if f occurs in ti but not in t ′i , then all
variables x̄′i ∈ t ′i must satisfy x̄′i ⊆ x̄i.

Example 61 Suppose we want to define a program that computes and infinite stream of
natural numbers: 0,1,2,3,4,5, ... The corresponding logic program will be given by:

nats(scons(x,scons(s(x),z))) ← nat(x),nats(scons(s(x),z))

It is a well-founded and guarded program, so will result in potentially infinite coinductive
derivations featuring coinductive trees of finite size. This program will satisfy Guardedness
checks 1 and 2: the function symbol (constructor) scons reduces in the body.

Example 62 In Example 59, function symbol f appears twice in the body, while appearing
only once in the head; this fails the guardedness check 2.

Note that Guardedness check 2 imposes strict discipline on argument positions at which
constructors reduce, and on variables appearing as arguments to the constructors. The next
example explains why these restrictions matter.

Example 63 Consider the following clause: Q(s(x),y)← Q(y,y)
The constructor s clearly reduces, and the clause could pass the guardedness check if it
was checking only the constructor reduction. However, the goal Q(s(x),s(x)) would
result in an infinite coinductive tree. The problem here is the new variable y in the body,
in the same argument position as s(x): it allows to form the goals like Q(s(x),s(x))
falling into infinite loops. To avoid such cases, Guardedness check 2 imposes the restriction
on the argument positions and variables. Therefore, the programmer would be forced to
change the clause to Q(s(x),y)← Q(x,y) to pass the guardedness checks.

Finally, the (co-)recursive nature of the predicates may show only via several clauses in
the program. Consider the following example.

Example 64 Consider programs P1 and P2 below. For both programs, Guardedness con-
ditions 1 and 2 are satisfied for every single clause, but the programs give rise to infinite
coinductive trees.

P1 : Q(cons(x,y)) ← Q2(cons(z,cons(x,y)))

Q2(cons(z,cons(x,y)) ← Q(cons(x,y))

P2 : Q(cons(x,y)) ← Q2(cons(z,cons(x,y)))

Q2(y) ← Q(y)

26

To address the problem above, a further guardedness check needs to be introduced.

Definition 65 Given a logic program P, a goal G, and the coinductive tree for P∪{G}, we
say T contains a loop if there exists a coinductive subtree C of T , such that:
there exists a predicate Q ∈ P such that Q(t̄) appears as an and-node in C, and also Q(t̄ ′)
appears as a child and-node of that node in C, for some t̄ and t̄ ′.

In this case, we say that atom Q(t̄) is a head loop factor, and Q(t̄ ′) is a tail loop factor.

Guardedness check 3 (Detection of Non-guarded Loops): If a program P satisfies
guardedness conditions 1 and 2, do the following. For every clause C ∈ P, such that C has
the shape A← B1, . . .Bn, construct the coinductive tree T for A, imposing the following
termination conditions during the tree construction:

i. If T contains a loop with the head and tail factors Q(t̄) and Q(t̄ ′), apply Guarded-
ness checks 1 and 2 to Q(t̄)← Q(t̄ ′). If the Guardedness checks 1 and 2 are vi-
olated for Q(t̄)← Q(t̄ ′), terminate the coinductive tree construction for A; report
non-guardedness.

ii. If construction of T reaches the leaf nodes and none of the guardedness conditions
(i.) and (ii.) is violated, the program P is guarded.

Proposition 66 Guardedness check 3 terminates, for any logic program.

Proof Note that a given program P has a finite and fixed number of clauses. If there are
n clauses in the given program, only n coinductive trees will be constructed. It remains to
show that each tree construction will be terminated in finite time. Given that P contains
a finite number of predicates, an infinite coinductive tree T for P would need to contain
a loop. If all loops occurring in T are guarded, they could not have constructor reduction
infinite number of times, so there should be at least one non-guarded loop. But then the
tree construction will be terminated, by item i. 2

Note that, although the procedure above requires some computations to be performed,
the guardedness checks can be done statically, prior to the program run.

Example 67 Consider the program P3:

Q(cons(x,y)) ← Q2(cons(x,y))

Q2(cons(x,y)) ← Q(y)

It satisfies guardedness checks 1, 2 and 3. In particular, coinductive trees for both of its
clauses are finite, and show constructor reduction.

The Guardedness checks 1-3 are necessary, but not sufficient conditions for guarantee-
ing well-foundness of all logic programs. This is why, we include some further checks,
involving applying checks 1-3 to program heads modulo some chosen substitutions. We
will not go into further details here, but will illustrate the issue by the following example.

Example 68 Consider the logic program P4:

Q(s(x),y) ← P(x,y)

P(t(x),y) ← Q(y,y)

Each clause passes the Guardedness checks 1-2 trivially, as they do not have immediate
loops. Coinductive trees constructed by Check 3 do not exhibit the loops, either, due to the
restrictive nature of the term matching. However, for the goal Q(s(t(x)),s(t(x))),
the program will give rise to an infinite coinductive tree.

27

Guardedness conditions of CoALP guarantee that, if a program P passed the guard-
edness checks, then any goal will give rise to only finite coinductive trees. Very of-
ten, in functional programming, the guardedness conditions reject some well-founded pro-
grams [5,10,15]. Termination of recursive programs is in general undecidable, and syntactic
guardedness conditions are used only to approximate the notion of termination.

Here, as well as in functional programming, there will be examples of well-founded but
non-guarded programs:

Example 69 The Program P5 is well-founded but not guarded:

Q(s(x),y) ← Q(y,x)

Q(x,s(y)) ← Q(y,x)

Furthermore, the guardedness checks are too restrictive to capture the notion of termi-
nation in sequential logic programs as given by e.g. SLD-resolution.

Example 70 The following program is non-well-founded and not guarded in CoALP set-
ting, but terminates if SLD-resolution is used:

Q(a) ←
Q(x) ← Q(a)

As we discuss in the next section, the program GC gives a similar effect.

Our approach allows us to guard (co-)recursion implicitly, without annotating the pred-
icates as inductive or coinductive, as it was the case in [18, 45]. The advantages of this
implicit method of handling (co-)recursive computational resources can be summarised as
follows. It solves both difficulties that explicit coinductive resource management causes:
in response to F, the method uniformly treats inductive and coinductive definitions, and
it can be used to detect non-well-founded cases in both; and in response to FF, it is a
corecursive process in spirit. Thus, instead of relying on guarantees of loop regularity, it
relies on well-foundness of every coinductive tree in the process of lazy infinite derivations.

4.3 Programming with Guarded Corecursion
We proceed with a case study of how guardedness conditions can be used in logic program-
ming practice.

First, we consider the effects of coalgebraic logic programming on corecursive resource
handling by comparing GC (cf. Example 35) with Stream. GC uses recursion to traverse
all the connected nodes in a graph. Two kinds of infinite SLD-derivations are possible:
computing finite or infinite objects.

Example 71 (GC*) Consider the program GC*. Adding the following clause to GC makes
the graph cyclic:

edge(s(s(0)),0) ←

Taking a query ← connected(0,y) as a goal may lead to an infinite SLD-derivation
corresponding to an infinite path starting from 0 in the cycle. It would also give rise
to infinite coinductive trees, see Figure 7. However, the object that is described by this
program, the cyclic graph with three nodes, is finite.

28

connected(O,z)

edge(O,y) connected(y,z)

edge(y,y1) connected(y1,z)

edge(y1,y2) connected(y2,z)

...

Figure 7: The infinite coinductive tree for the programs GC from Example 35, GC’ from Example 72 and GC*
from Example 71.

In the standard practice of logic programming, where the ordering of the clauses is
as in GC, the program behaves gracefully, giving finitely computed answers, but potentially
infinitely many times. But this balance is fragile. For example, the following program, with
different ordering of the clauses and of the atoms in the body, results in non-terminating
derivations:

Example 72 (GC’) Let GC’ denote the logic program

connected(x,y) ← connected(z,y),edge(x,z)

connected(x,x) ←

together with the database of Example 35, SLD-derivation loops as follows:

connected(0,y)→
(connected(z,y),edge(0,z))→
(connected(z1,y),edge(z,z1),edge(0,z))→ . . .

It never produces an answer as it falls into an infinite loop irrespective of the particular
graph in question.

There is a one-step non-deterministic derivation for connected(0,y) given by uni-
fying y with 0 (see Definition 43.) But there is no coinductive derivation that does that: see
Figure 7.

Spelling out nondeterministic semantics (Theorem 45),

T1 = connected(0,y);

T0 = connected(0,0)→2.

In traditional logic programming, the burden of deciding which programs might result
in loops like the one above falls completely to the programmer: semantically, GC and GC’
are equivalent. Moreover, in the Co-LP [18,45] setting, if the atoms in the programs above
are labelled as inductive, the behaviour of Co-LP is exactly as it is for SLD-resolution.
If, on the contrary, the atoms are marked as coinductive, we may find the derivation loop
terminated as “successful” when we should be warned of its being non-well-founded.

In contrast, compare the coalgebraic semantics of GC, GC’, GC* and Stream. Figures 7
and 6 show the difference between the coinductive trees for ill-founded GC, GC’ and GC*

29

conn(O,cons(y,z))

edge(O,y) conn(y,z)

→
conn(O,cons(s(O),z))

edge(0,s(0))

2

conn(s(0),z)

→
conn(0,cons(s(0),nil))

edge(0,s(0))

2

conn(s(0),nil)

2

Figure 8: A finite and well-founded coinductive derivation for a guarded variant of GCg; we use conn to abbre-
viate connected .

and well-founded programs like Stream. Notably, coinductive definition of Stream is well-
founded, while traditional inductive definition of GC* is not. GC, GC’ and GC* give rise to
infinite coinductive trees, whereas Stream gives rise only to finite coinductive trees.

In CoALP, a set of syntactic guardedness checks 1-3 is embedded, to make sure that
only programs that satisfy the semantic notion of well-foundness are allowed in CoALP.
Programs like GC, GC’ and GC* will be automatically rejected by CoALP’s guardedness
checks, see Section 6. To make the programs like GC guarded, The user will have to refor-
mulate it as follows:

Example 73 (GCg) The program GCg below addresses both non-terminating problem for
SLD-derivations for GC’, and non-well-foundness of GC and GC*.

connected(x,cons(y,z)) ← edge(x,y),connected(y,z)

connected(x,nil) ←
edge(0,0) ←

edge(x,s(x)) ←

The coinductive derivation for it is shown in Figure 8, duly featuring coinductive trees of
finite size.

5 Guarding Parallelism by Guarded Corecursion
One of the distinguishing features of logic programming languages is that they allow im-
plicit parallel execution of programs. In the last two decades, an astonishing variety of
parallel logic programming implementations have been proposed, see [19] for a detailed
survey. The three main types of parallelism used in implementations of logic programs
are and-parallelism, or-parallelism and their combination; see also Section 2.2. The coal-
gebraic models we discuss in this paper exhibit a synthetic form of parallelism: and-or
parallelism. The most common way to express and-or parallelism in logic programs is
and-or parallel derivation trees [17, 19], see Definition 16.

In the ground case, coinductive trees and and-or parallel derivation trees agree, as illus-
trated by Example 24. But as we have discussed, that does not extend. In the general case,
in the absence of synchronisation, parallel and-or-trees may lead to unsound results.

Example 74 Figure 9 depicts an and-or parallel derivation tree that finds a refutation
θ = {x/0,y/0,x/nil} for the goal list(cons(x,cons(y,x))), although this answer
is not sound.

30

list(cons(x,cons(y,x)))

nat(x)

2 nat(x1)

...

list(cons(y,x))

nat(y)

2 nat(x1)

...

list(x)

2 nat(z1)

...

list(z2)

...

Figure 9: An unsound refutation by an and-or parallel derivation tree, with θ = {x/0,y/0,x/nil} .

A solution proposed in [17] was given by composition (and-or parallel derivation)
trees. Construction of composition trees involves additional algorithms that synchronise
substitutions in the branches of and-or parallel derivation trees. Composition trees contain
a special kind of composition nodes, used whenever both and- and or-parallel computations
are possible for one goal. A composition node is a list of atoms in the goal. If, in a goal
G = ← B1, . . .Bn, an atom Bi is unifiable with k > 1 clauses, then the algorithm adds k
children (composition nodes) to the node G; similarly for every atom in G that is unifiable
with more than one clause. Every such composition node has the form B1, . . .Bn and has
n and-parallel edges emanating from it. Thus, all possible combinations of or-choices at
every and-parallel step are given.

Predominantly, the existing parallel implementations of logic programming follow Kowal-
ski’s principle [33]:

Programs = Logic + Control.

This principle separates the control component (backtracking, occur check, goal order-
ing/selection, parallelisation, variable synchronisation) from the logical specification of a
problem (first-order Horn logic, SLD-resolution, unification). Thus the control of program
execution becomes independent of programming semantics.

With many parallel solutions on offer [19], some form of resource handling and process
scheduling are inevitable ingredients of parallel logic programming as the algorithms of
unification and SLD-resolution are P-complete [24, 48] and cannot be parallelised in gen-
eral, see Example 74. Parallel implementations of PROLOG typically hide all additional
control-handling algorithms at the level of implementation, away from program specifica-
tion or semantics [19]. The algorithms used for variable synchronisation pose a sequential
barrier for parallelisation.

Several properties are shared by many parallel implementations of PROLOG:

? Although and-or-parallelism is called “implicit parallelism” in the literature [19], it
boils down to explicit resource handling at compiler level: this includes both annotat-
ing the syntax and maintaining special schedulers/arrays/hash tables to synchronise
variable substitutions computed by different processes; these are separated from the
language and semantics.

?? Issues of logic and control are separated to the point that parallel PROLOG systems
are usually built as speed-ups to SLD-resolution and have neither “logic” algorithms
nor semantics of their own. For composition trees, they are implemented by adding

31

list(cons(0,cons(0,nil)))

nat(0)

2

list(cons(0,nil))

nat(0)

2

list(nil)

2

Figure 10: An and-or parallel derivation for the goal list(cons(O,cons(O,nil))).

extra features to SLD-resolution. Specifically, composition nodes are handled by
binding arrays at compiler level.

In the previous sections, we have proposed coinductive trees (cf Definition 46), as an
alternative to composition trees. Coinductive trees serve as computational units in lazy
(co)recursive derivations, and therefore, these coinductive tree transitions can be paral-
lelised, as well. For guarded logic programs, coinductive derivations allow for parallel and
even non-deterministic implementations, as Sections 4.1 and 6 explain. Here, we explain
the two levels of parallelism in CoALP:

Level 1: Parallel construction of coinductive trees.
Comparing coinductive derivation trees with and-or parallel derivation trees, coinduc-

tive trees are more intrinsic: and-or parallel trees have mgu’s built into a single tree, whereas
mgu’s are restricted to term-matching within the coinductive tree. Taking issues of variable
substitution from the level of individual leaves to the level of trees affects computations at
least in two ways. Parallel proof-search in branches of a coinductive tree does not require
synchronisation of variables in different branches: they remain synchronised by construc-
tion of the coinductive tree. We illustrate with ListNat.

Example 75 The coinductive trees of Figure 11 agree with the first part of the and-or
parallel derivation tree for list(cons(x,cons(y,x))) in Figure 9. But the top left
coinductive tree has leaves nat(x), nat(y) and list(x), whereas the and-or parallel
derivation tree follows those nodes, using substitutions determined by mgu’s. Moreover,
those substitutions need not be consistent with each other: not only are there two ways to
unify each of nat(x), nat(y) and list(x), but also there is no consistent substitution
for x at all. In contrast, the coinductive trees handle such cases lazily.

Term-matching in coinductive trees permits the construction of every branch in a coin-
ductive tree independently of the other branches. Moreover, for programs that are guarded
by constructors, such as Stream and ListNat, we avoid infinite branches or an infinite
number of variables in a single tree. Since both term-matching and guardedness are com-
ponents of the “logic” algorithm of coinductive derivation, the Kowalski’s principle can be
reformulated for CoALP as follows:

CoALP = Logic is Control.

This distinguishes two approaches:

Parallel LP = and-or parallel derivation trees + explicit handling of parallel re-
sources at compiler level; and

32

list(cons(x,cons(y,x)))

nat(x) list(cons(y,x))

nat(y) list(x)

→
list(cons(O,cons(y,O)))

nat(O)

2

list(cons(y,O))

nat(y) list(O)

→
list(cons(O,cons(O,O)))

nat(O)

2

list(cons(O,O))

nat(O)

2

list(O)

Figure 11: A coinductive derivation for the goal list(cons(x,cons(y,x))).

CoALP = coinductive derivation trees + implicit handling of parallel resources “by
program construction”.

We start by illustrating ground cases of parallel derivations: these can be parallelised
straightforwardly, and coinductive trees and and-or parallel derivation trees coincide. We
consider the inductive program ListNat, although a similar case-study could be done with
a coinductive logic program such as Stream.

Example 76 Consider the and-or parallel derivation tree for ListNat with goal
list(cons(0,cons(0,nil))) in Figure 10.

No additional syntactic annotations or variable synchronisation algorithms is required
by CoALP when extending from ground cases to the full fragment of first-order Horn logic
with recursion and corecursion. Not only termination, but also soundness of parallelism
will be guarded by program construction; see also [32].

Example 77 Consider the coinductive derivation for the goal
list(cons(x,cons(y,x))) given in Figure 11. In contrast to the and-or parallel
derivation tree, and owing to the restriction of unification to term matching, every coin-
ductive tree in the derivation pursues fewer variable substitutions than the corresponding
and-or parallel derivation tree does, cf. Figure 9. This allows one to keep variables syn-
chronised while pursuing parallel proof branches in the tree. In particular, coinductive
derivation of Figure 11 will report failure, as required for this example.

Level 2: Parallel transitions between coinductive trees.
Consider the leftmost coinductive tree of Figure 11. It has three leaves with two distinct

variables. Hence, three independent mgu’s can be computed to unfold that tree; and the
three tree transitions can be done in parallel. As the lazy nature of coinductive trees and
guardedness checks of CoALP insure both soundness and termination of computations at
the level of each individual tree, this opens a possibility for parallel proof search through
the state space of such trees. We discuss this in detail in Section 6.

To conclude, CoALP gives a different view of parallel resource handling:

1. We avoid explicit resource handling either at “logic” or “control” level; instead, we
use implicit methods to control parallel resources.
In particular, we restrict unification to term matching: in contrast to the inherently
sequential unification algorithm [11], it is parallelisable. As a result, parallel proof
search in separate branches of a coinductive tree does not require explicit synchroni-
sation of variables.

33

Static guardedness checks of CoALP, introduced to guard corecursion, in fact insure
that parallel scheduling of computations within the coinductive trees will never fall
into a non-terminating thread; and parallel scheduling of coinductive tree transitions
will never produce unsound results. Again, this is achieved without introducing new
syntax, just by the guarded program construction.

2. The issues of logic and control are now bound together: coinductive trees provide
both logic specification and resource control. Moreover, CoALP comes with its
own coalgebraic semantics that accounts for observational behaviour of coinductive
derivations.

As the next section explains, this approach to parallelism can be viable and efficient.
See also [32] for a detailed study and testing of CoALP’s parallel features in ground, Data-
log, and full first-order case.

6 Implementation
In [31], we developed the first minimal prototype of CoALP in PROLOG, to show the fea-
sibility of the coalgebraic logic programming approach, see CoALP Prototype-1 in [44].
However, it did not make use of parallelisation in modern computer architectures and was
constrained by the mechanisms employed by the underlying PROLOG engine. Here, we
present a new binary standalone implementation engineered using the Go programming
language [47]; available as CoALP Prototype-2 in [44]. Its most important new feature is
the use of Go’s built in support for multithreading to achieve parallelisation by using gor-
outines which are coroutines that can be executed in distinct threads. This new implemen-
tation also features two levels of parallelism (for coinductive trees and their transitions),
static guardedness checks, and implicit handling of corecursion and parallelism. In this
section, we describe the most important features arising in the implementation of CoALP.

Construction of Coinductive trees (cf. Definition 46) lies at the heart of CoALP’s im-
plementation. They are implemented by linking structural records (structs) which represent
or-nodes and and-nodes through the use of arrays and pointers. And-nodes represent goal
terms and contain a list of pointers to clauses that have heads which are still unifiable with
the goal. An and-node with a list containing at least one such pointer is regarded as an open
node. The root of any coinductive tree is an and-node constructed by the initial goal.

Guardedness plays an important role in CoALP implementation, as Sections 4 and 5
explain. For the proper operation of the CoALP algorithm, it needs to be ensured that a
derivation step never produces an infinite and therefore non-well-founded coinductive tree.
This would block the search process by taking up infinite time to expand the tree. We have
incorporated the Guardedness checks in CoALP (cf. Section 4.2); they are used to statically
check the input programs, prior to the program run. Note that, in line with lazy corecursion
in functional languages, while a coinductive tree may only be finite, the coinductive deriva-
tion may still be infinite (cf. Stream in Figure 6).

Coinductive derivations are transitions of coinductive trees. Whether the CoALP im-
plementation is viewed as a sequential or parallel process, it can be described as follows.
Construction of coinductive derivations for a given input program and goal is modeled as

34

a uniform cost search through the graph of coinductive trees connected by the derivation
operation. A derivation step here is constrained to first order unification of the first unifi-
able open node that has the lowest level in the tree; cf. Definition 42 and Figures 6 and 11.
Other strategies, including non-deterministic methods are possible for selecting such open
nodes; thereby determining substitutions for new coinductive tree transitions. Only a very
thin layer of sequential control in the implementation for this search is needed in the form
of a priority search queue.

Example 78 Looking at the ListNat program from Example 6, the tree with root
list(cons(x, cons(y, x))) is connected to list(cons(0, cons(y, 0)))
by unification of the open node nat(x) with nat(0). This step is also shown in Fig-
ure 4. The following derivation and the resulting coinductive tree for list(cons(0,
cons(0, 0))) contains no unifiable open nodes – note that list(0) cannot be uni-
fied with any clause head of the input program.

Using the substitution length of all the substitutions in the derivation chain as prior-
ity ranking, we gain an enumeration order even for a potentially infinite lazy derivation
processes. Therefore, while an infinite number of coinductive trees can in principle be
produced for the goal list(x), the algorithm returns list(nil), list(cons(0,nil)) and
then list(cons(s(0),nil)) in a finite number of time-steps and keeps producing finite
coinductive trees thereafter. Running CoALP [44] for list(x), we get as output the sub-
stitutions for the first three success trees:

1 {x/nil},
3 {x/cons(x1,y1),x1/0,y1/nil} and

4 {x/cons(x1,y1),x1/s(x2),x2/0,y1/nil}.

Each possible coinductive tree will be produced after finite time, but since there may
be infinitely many such trees, the coinductive derivations are implemented as lazy corecur-
sive computations. Contrast this to PROLOG which produces the solutions list(nil) ,
list(cons(0,nil)) , list(cons(0,cons(0,nil))), . . . but never list(cons(s(0),nil))
for the ListNat program and goal list(x). Thereby, it does not generate the same set of
solutions even if run indefinitely and does not discover some of the solutions that CoALP
does.

The CoALP implementation allows for various forms of output for a query. Besides
reporting solutions as for the ListNat program above it can also show just the root nodes or
full trees serialized in form of terms for generated trees that match user specified properties.

Example 79 When queried for the root nodes of trees with new substitutions to the root
node for the query stream(X) in the Stream program with a maximum number of 2
substitutions the CoALP implementation prints:

stream(scons(V1,V2...))
stream(scons(0,V3...))
stream(scons(1,V4...))
stream(scons(1,scons(V5,V6...)))
stream(scons(1,scons(0,V7...)))
stream(scons(1,scons(1,V8...)))
stream(scons(0,scons(V9,V10...)))
stream(scons(0,scons(0,V11...)))
stream(scons(0,scons(1,V12...)))

35

Variable names have been shortened for brevity. The . . . denote variables which are
involved in the expansion of the tree by coinductive predicates. When the user-supplied
limit of maximum substitutions or solutions is reached, he will be asked if the implementa-
tion should continue up to a new limit if further derivations are possible; see [44] for more
details.

A new approach to Backtracking is taken, as CoALP explores simultaneously several
and-or-choices in a coinductive tree. In contrast to PROLOG, no trail stack is maintained
and no backtracking (in the classical sense of [35]) is needed. If a coinductive tree has
no open unifiable nodes, it will simply be discarded. If alternative mgu’s existed during
the derivation steps, they open up different branches in coinductive derivations. Therefore,
CoALP implicitly represents alternative mgu’s by coinductive trees in the priority search
queue. The only time variable bindings may be undone is when checking for unifiability of
terms during the derivation step. However, this is only done on copies of the original terms
to ensure thread safety and to avoid unnecessary locks and therefore sequential barriers.
Furthermore, this is done locally and does not characterize or regulate the overall global
search flow.

Parallelisation of coinductive trees. Given that no infinite derivation tree can be gen-
erated by a guarded program, the CoALP approach provides multiple points where paral-
lelisation takes place, while still enumerating every possible coinductive success subtree.
The use of term matching to traverse and expand trees allows for parallelisation of work
without explicit variable synchronization while operating directly on a single tree.

However, if the coinductive trees are small or few open nodes exist, such as in the
running examples Stream and ListNat, the setup and initial communication overhead be-
tween parallel threads that process the tree does not usually offset speedup that can be
achieved. Therefore, it is dynamically decided during execution whether a program gen-
erates sufficiently complex coinductive trees to warrant this parallelisation strategy. Future
research will focus on efficient heuristics to decide how this trade-off should be made.

Term matching can be performed in parallel, but if the terms are small, no practical
speedup will be obtained when working with multiple threads. In such cases, it is more
efficient to perform distinct term matching operations in parallel by dispatching work on
multiple coinductive trees in parallel.

Ground logic programs do not need transitions between the coinductive trees to com-
plete the computation. Logic programs containing variables but no function symbols of
arity n > 0 can all be soundly translated into finitely-presented ground logic programs. The
most famous example of such a language is Datalog [24, 48]. The advantages of Datalog
are easier implementations and a greater capacity for parallelisation.

Figure 12 shows the speedup that can be gained by constructing and-or parallel trees
for Datalog programs in our system. The Datalog programs are randomly generated and
can be examined in [44]. As can be seen in Figure 12, the speedup is significant and scales
with the number of threads; see also [32].

Parallelisation of coinductive derivations is more efficient than parallelisation within
one coinductive tree for programs like ListNat and Stream. On the search queue level
of the algorithm, multiple trees that still have open nodes and possible derivations are dis-
patched to one or more worker threads. They perform the coinductive derivation steps in
parallel. To keep communication minimal, the coinductive trees are compacted by e.g.
pruning closed leaves and shortening chains that have no branches in the tree. Since ex-

36

1 2 3 4 5 6

1

2

3

4

threads
sp

ee
du

p

datalog 1

datalog 2

datalog 3

datalog 4

datalog 5

datalog 6

Figure 12: Speedup of Datalog programs, relative to the base case with 1 thread, with different
number of threads expanding the derivation tree.

panding and checking coinductive trees does not always take the same amount of time for
each tree, some worker threads might return results earlier than others and thereby disrupt
the enumeration order. So, we do not allow them to show results immediately and directly
to the user. CoALP guarantees that success trees which are enumerated sequentially will
also be found when working in multithreaded context albeit maybe later. Returning results
in the enumeration order of substitution lengths to the user can still be achieved by a little
more sequential overhead. For example, the user can specify the option to buffer and sort
success coinductive trees until it is guaranteed that no lower order coinductive trees are still
being processed or are in the priority search queue.

Considering the other direction of reducing sequential overhead in maintaining the
search queue, there is the possibility of using complementary enumeration schemes and
thereby partition the search queue into smaller queues that each worker thread maintains
on its own. However, this may shift the order of solutions since some worker threads may
enumerate only solutions that are computationally easier to find. Thereby a trade-off is to
be made between maintaining a perfect ordering or faster processing of coinductive trees.
At any rate, the derivations remain sound by the program guardedness and coinductive tree
construction, cf Sections 4 and 5; and this allows for a range of experiments on parallelisa-
tion for the future.

7 Conclusions and Future Work
The main feature of the coalgebraic logic programming approach is its generality: it is suit-
able for both inductive and coinductive logic programs, for programs with variable depen-
dencies or not, and for programs that are unification-parallelisable or inherently sequential.
Many distinctions that led to a variety of engineering solutions in the design of corecursive
and parallel logic programs [18, 19, 45] are erased here, with resource-handling delegated
to a logic algorithm; and issues of logic and control, semantics and execution, become
inseparable.

The original contributions of this paper relative to the earlier papers [27, 29, 30] are
the Coalgebraic calculus of infinite trees (Section 3.1), operational semantics for non-
deterministic derivations (Section 3.4), extended Guardedness conditions for CoALP (Sec-
tion 4.2), and Parallel and Corecursive Implementation of CoALP in Go (Section 6). Addi-

37

tionally, the paper develops a unifying theory and notation for parallelism and corecursion
in logic programming, putting a new perspective on earlier results [27, 29, 30]. Proofs of
Soundness and Completeness Theorems 37, 45, 55 appear here for the first time.

The current work is focused on refining CoALP’s guardedness checks and termination
conditions for derivations in inductive and coinductive cases. In future, we plan to investi-
gate the integration of coalgebraic logic programming with methods of resource handling
in state-of-the-art coinductive logic programming [18,19,45], as well as in modern parallel
logic programming systems [19]. Furthermore, we would like to investigate whether coal-
gebraic logic programming has potential to play a positive role in type inference, cf. [3].
The work is on the way to implement CoALP in Haskell, to allow easier integration into
Haskell, Agda, Hume, Idris, or Epigram type inference.

The analysis of this paper can be extended to more expressive logic programming lan-
guages, such as [16, 21, 38, 42], also to functional programming languages in the style
of [3, 40]. We deliberately chose our running examples to correspond to definitions of
inductive or coinductive types in such languages.

The key fact driving our analysis has been the observation that the implication← acts
at a meta-level, like a sequent rather than a logical connective. That observation extends to
first-order fragments of linear logic and the Logic of Bunched Implications [16,42]. So we
plan to extend the work in the paper to logic programming languages based on such logics.

The situation regarding higher-order logic programming languages such as λ-PROLOG
[38] is more subtle. Despite their higher-order nature, such logic programming languages
typically make fundamental use of sequents. So it may well be fruitful to consider mod-
elling them in terms of coalgebra too, albeit probably on a sophisticated base category such
as a category of Heyting algebras.

References
[1] K. Ali and R. Karlsson. Full prolog and scheduling or-parallelism in muse. Int.

Journal Of Parallel Programming, 19(6):445–475, 1991.

[2] G. Amato, J. Lipton, and R. McGrail. On the algebraic structure of declarative pro-
gramming languages. Theor. Comput. Sci., 410(46):4626–4671, 2009.

[3] D. Ancona, G. Lagorio, and E. Zucca. Type inference by coinductive logic program-
ming. In TYPES, volume 5497 of LNCS, pages 1–18, 2009.

[4] M. Barr and C. Wells. Category Theory for Computing Science. Prentice-Hall, 1990.

[5] Y. Bertot and E. Komendantskaya. Inductive and coinductive components of corecur-
sive functions in Coq. ENTSC, 203(5):25–47, 2008.

[6] F. Bonchi and U. Montanari. Reactive systems, (semi-)saturated semantics and coal-
gebras on presheaves. Theor. Comput. Sci., 410(41):4044–4066, 2009.

[7] F. Bonchi and F. Zanasi. Saturated semantics for coalgebraic logic programming. In
CALCO, volume 8089 of Lecture Notes in Computer Science, pages 80–94. Springer,
2013.

[8] R. Bruni, U. Montanari, and F. Rossi. An interactive semantics of logic programming.
TPLP, 1(6):647–690, 2001.

[9] M. Comini, G. Levi, and M. C. Meo. A theory of observables for logic programs. Inf.
Comput., 169(1):23–80, 2001.

38

[10] T. Coquand. Infinite objects in type theory. In Types for Proofs and Programs, Int.
Workshop TYPES’93, volume 806 of LNCS, pages 62–78. Springer-Verlag, 1994.

[11] C. Dwork, P. Kanellakis, and J. Mitchell. On the sequential nature of unification.
J. Logic Prog., 1:35–50, 1984.

[12] M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. A model-theoretic reconstruc-
tion of the operational semantics of logic programs. Inf. Comput., 103(1):86–113,
1993.

[13] M. Falaschi, G. Levi, C. Palamidessi, and M. Martelli. Declarative modeling of the
operational behavior of logic languages. TCS, 69(3):289–318, 1989.

[14] M. Gabrielli, G. Levi, and M. Meo. Observable behaviors and equivalnences of logic
programs. Information and Computation, 122(1):1–29, 1995.

[15] E. Giménez. Structural recursive definitions in type theory. In ICALP, volume 1443
of LNCS, pages 397–408. Springer, 1998.

[16] J.-Y. Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987.

[17] G. Gupta and V. Costa. Optimal implementation of and-or parallel prolog. In
PARLE’92, pages 71–92, 1994.

[18] G. Gupta and et al. Coinductive logic programming and its applications. In ICLP
2007, volume 4670 of LNCS, pages 27–44, 2007.

[19] G. Gupta, E. Pontelli, K. Ali, M. Carlsson, and M. Hermenegildo. Parallel execution
of prolog programs: a survey. ACM Trans. Computational Logic, pages 1–126, 2012.

[20] M. Hermenegildo and K. J. Greene. &-prolog and its performance: Exploiting inde-
pendent and-parallelism. In ICLP, pages 253–268, 1990.

[21] J. S. Hodas and D. Miller. Logic programming in a fragment of intuitionistic linear
logic. Inf. Comput., 110(2):327–365, 1994.

[22] B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction. Bulletin of
EATCS, 62:222–259, 1997.

[23] M. Jaume. On greatest fixpoint semantics of logic programming. J. Log. Comput.,
12(2):321–342, 2002.

[24] P. C. Kanellakis. Logic programming and parallel complexity. In Foundations of
Deductive Databases and Logic Prog., pages 547–585. Morgan Kaufmann, 1988.

[25] G. M. Kelly. Coherence theorems for lax algebras and for distributive laws. In Cate-
gory seminar, volume 420 of LNM, pages 281 – 375, 1974.

[26] Y. Kinoshita and J. Power. A fibrational semantics for logic programs. In Proc. Int.
Workshop on Extensions of Logic Programming, volume 1050 of LNAI, 1996.

[27] E. Komendantskaya, G. McCusker, and J. Power. Coalgebraic semantics for parallel
derivation strategies in logic programming. In AMAST’2010, volume 6486 of LNCS,
2010.

[28] E. Komendantskaya and J. Power. Fibrational semantics for many-valued logic pro-
grams: Grounds for non-groundness. In JELIA’08, volume 5293 of LNCS, pages
258–271, 2008.

[29] E. Komendantskaya and J. Power. Coalgebraic derivations in logic programming. In
CSL, LIPIcs, pages 352–366. Schloss Dagstuhl, 2011.

39

[30] E. Komendantskaya and J. Power. Coalgebraic semantics for derivations in logic
programming. In CALCO, LNCS, pages 268–282. Spinger, 2011.

[31] E. Komendantskaya, J. Power, and M. Schmidt. Coalgebraic logic programming:
implicit versus explicit resource handling. In Coinductive Logic Programming Work-
shop, ICLP’12, 2012.

[32] E. Komendantskaya, M. Schmidt, and J. Heras. Exploiting parallelism in coalgebraic
logic programming. In Accepted for Wessex Seminar ENTCS Post-Proceedings, 2013.

[33] R. Kowalski. Logic for problem Solving. Elsevier, Amsterdam, 1979.

[34] J. Lambek and P. Scott. Higher Order Categorical Logic. Cambridge University
Press, 1986.

[35] J. Lloyd. Foundations of Logic Programming. Springer-Verlag, 2nd edition, 1987.

[36] E. L. Lusk, D. H. D. Warren, and S. Haridi. The aurora or-parallel prolog system.
New Generation Computing, 7(2,3):243–273, 1990.

[37] Z. Majkic. Coalgebraic semantics for logic programming. In 18th Workshop on
(Constraint) Logic Programming, WLP 2004, March 04-06, 2004.

[38] D. Miller and G. Nadathur. Higher-order logic programming. In ICLP, pages 448–
462, 1986.

[39] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[40] L. C. Paulson and A. W. Smith. Logic programming, functional programming, and
inductive definitions. In ELP, pages 283–309, 1989.

[41] E. Pontelli and G. Gupta. On the duality between or-parallelism and and-parallelism
in logic programming. In Euro-Par, pages 43–54, 1995.

[42] D. Pym. The Semantics and Proof Theory of the Logic of Bunched Implications,
volume 26 of Applied Logic Series. Kluwer Academic Publishers, 2002.

[43] J. Rutten. Universal coalgebra: a theory of systems. TCS, 2000.

[44] M. Schmidt and E. Komendantskaya. Coalgebraic logic pro-
gramming (coalp): Implementation. Prototypes 1 and 2, 2012.
www.computing.dundee.ac.uk/staff/katya/CoALP/.

[45] L. Simon and et al. Co-logic programming: Extending logic programming with coin-
duction. In ICALP, volume 4596 of LNCS, pages 472–483. Springer, 2007.

[46] L. Sterling and E. Shapiro. The art of Prolog. MIT Press, 1986.

[47] M. Summerfield. Programming in Go: Creating Applications for the 21st Century.
Addison-Wesley, 2012.

[48] J. D. Ullman and A. V. Gelder. Parallel complexity of logical query programs. Algo-
rithmica, 3:5–42, 1988.

40

