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Abstract
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1 Introduction

Since their introduction by Ginsberg [9], bilattices have become a well-known al-
gebraic structure for reasoning about the sort of inconsistencies which arise when
one formalises the process of accumulating information from different sources. In
particular, Fitting [6,7,8] introduced quite general consequence operators for logic
programs whose semantics are based on four-valued bilattices, and derived their
basic properties.

Annotated (sometimes called signed) languages are an alternative formal tool
for handling, for example, the semantics of logic programs over many-valued logics
and probabilistic programs, see [4,11,15,23,26,31]. Their use, however, gives rise to
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the obvious question of how annotated logic programming compares with logic pro-
gramming based on (bi)lattices, see [14,15,21,24,25,28]. In this paper, we contribute
to this discussion by combining the two approaches in that we make use of bilattice
structures within the framework of annotated logic programs. Specifically, we in-
troduce bilattice-based annotated logic programs (BAPs) and establish declarative
and operational semantics for them. BAPs, being many-valued and quantitative
in nature, enable us to work with statistical knowledge, and with databases which
can be incomplete or inconsistent, and thereby introduce monotonic extensions of
two-valued negation. But what is particularly important is that they possess all
the desirable properties of classical logic programming. Thus, we define monotonic
and continuous semantic operators for BAPs and develop sound and complete proof
procedures for them based on classical binary resolution.

The results which we obtain here can be seen as a further development of lattice-
based logic programming for handling inconsistencies, see [4,8,14,15,26,28], for ex-
ample. However, there are several original results obtained in the paper, as follows.

First of all, we show that logic programs based on bilattices (and on lattices
whose elements are not linearly ordered) may have logical consequences which can-
not be computed by the semantic operators defined in the papers just cited. In fact,
most authors who have considered lattice- and bilattice-based logic programs follow
the tradition of classical logic programming and require their semantic operators to
work by propagating interpretation from the body of each clause to its head. How-
ever, the authors of [14] extended and enriched resolution for lattice-based logics
by adding new rules reflecting the non-linear ordering of their lattices. This work
distinguished proof procedures for lattice-based logics from those for many-valued
logics interpreted by linearly-ordered structures, for example, fuzzy logics. The
work of [14] inspired us to extend these ideas to logic programs and their semantic
operators, and to SLD-resolution. As a result, we define a new semantic operator
which guarantees computation of all the logical consequences of a bilattice-based
annotated logic program. Unlike the case of [14], we allow infinite (but countable)
interpretations for logic programs.

Throughout, we work with first-order bilattice-based logic programs inter-
preted by arbitrary (possibly infinite) distributive bilattices with finite joins, and
this framework considerably enriches that of propositional-based logic programs
[4,21,26,28] based on finite sets or finite lattices [2,10,14,23,24,25,31]. Moreover, we
allow annotations to be variables or to contain function symbols unlike, for example,
the case of [2,10,14,23,24,25,31].

We use the fact proven in [20] that the semantic operator we introduce is con-
tinuous. As usual, continuity of the semantic operator ensures that it reaches its
least fixed point in at most ω iterations. This property is crucial for the whole
theory. It makes possible computer implementations of the operator and it also
makes it possible to introduce sound and complete proof procedure for BAPs. Note
that the semantic operators introduced earlier for annotated logic programs of this
generality do not possess this important property, see [4,15].

Finally, we establish sound and complete SLD-resolution for BAPs. As far as
we know, this is the first sound and complete proof procedure for first-order in-
finitely interpreted (bi)lattice-based annotated logic programs. Compare, for exam-
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ple, our results with those obtained for constrained resolution for GAPs, which was
shown to be incomplete, see [15], or with sound and complete (SLD)- resolutions for
finitely-interpreted annotated logic programs (these logic programs do not contain
annotation variables and annotation functions) [2,10,14,23,24,25,31]. 4

Thus, in summary, we fully describe a broad class of first-order, infinitely-valued,
bilattice-based annotated logic programs and propose suitable proof procedures and
implementations for them.

The structure of the paper is as follows. In §2, we describe bilattices, closely
following Ginsberg [9] in our presentation. In §3, we give full details of the syntax
and semantics of bilattice-based languages, and of BAPs in particular. We also
develop a declarative semantics for BAPs in §3. In §4, we define SLD-resolution for
BAPs and prove its soundness and completeness. Finally, in §5, we summarise our
results and discuss further work yet to be done.

2 Bilattices

In this section, we briefly describe bilattices, following closely Ginsberg [9] and
Fitting [6,7,8].

Definition 2.1 A bilattice B is a sextuple (B,∨,∧,⊕,⊗,¬) such that (B,∨,∧)
and (B,⊕,⊗) are both complete lattices, and ¬ : B → B is a mapping satisfying
the following three properties:

• ¬2 = IdB,
• ¬ is a dual lattice homomorphism from (B,∨,∧) to (B,∧,∨), and
• ¬ is a lattice homomorphism from (B,⊕,⊗) to itself.

Certain kinds of bilattices can be obtained by taking a product of two lattices,
and this property makes it easy to describe and investigate these structures.

Let L1 = (L1,≤1) and L2 = (L2,≤2) be two lattices, let x1, x2 denote arbitrary
elements of the lattice L1, and let y1, y2 denote arbitrary elements of the lattice L2.
Let ∩1,∪1 denote the meet respectively join defined in the lattice L1, and let ∩2,∪2

denote the meet respectively join defined in the lattice L2.
Two familiar bilattice orderings can be defined on L1 ×L2. We define the truth

ordering ≤t and the knowledge ordering ≤k as follows.
(1) 〈x1, y1〉 ≤t 〈x2, y2〉 if and only if x1 ≤1 x2 and y2 ≤2 y1.
(2) 〈x1, y1〉 ≤k 〈x2, y2〉 if and only if x1 ≤1 x2 and y1 ≤2 y2.

We denote the resulting structure by L1�L2 = (L1×L2,≤t,≤k) = (B,≤t,≤k),
where B denotes L1 × L2.

Having defined L1�L2, we define bilattice operations on it as follows. The four
bilattice operations associated with ≤t and ≤k are:

4 Note also that [28] introduced computer programs which compute consequence operators for (proposi-
tional) bilattice-based logic programs. However, this work cannot be seen as a proof procedure for the
simple reason that the semantic operator of [28] is capable only of producing sets of logical consequences of
a program. But we look for a proof procedure that can respond to certain goals and give correct answers
together with proper substitutions for individual and/or annotation variables.
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〈x1, y1〉 ∧ 〈x2, y2〉= 〈x1 ∩1 x2, y1 ∪2 y2〉,
〈x1, y1〉 ∨ 〈x2, y2〉= 〈x1 ∪1 x2, y1 ∩2 y2〉
〈x1, y1〉 ⊗ 〈x2, y2〉= 〈x1 ∩1 x2, y1 ∩2 y2〉
〈x1, y1〉 ⊕ 〈x2, y2〉= 〈x1 ∪1 x2, y1 ∪2 y2〉.

Negation is defined as follows: ¬〈x1, y1〉 = 〈y1, x1〉; this latter definition assumes
that L1 = L2.

Similarly, we can define infinite meet and join with respect to the t- and k-
orderings, and we denote them respectively by

∧
,
∨

,
∏

, and
∑

.

Proposition 2.2 [6,9] Suppose B is a distributive bilattice. Then there are dis-
tributive lattices L1 and L2 such that B is isomorphic to L1 � L2.

Thus, every distributive bilattice can be represented as a product of two lattices.
In the present article, we consider only logic programs over distributive bilattices
and therefore the underlying bilattice of any program we consider will always be
formed as a product of two lattices.

Example 2.3 Consider the bilattice B25 = L1 � L2, where L1 = L2 =
({0, 1

4 ,
1
2 ,

3
4 , 1},≤), with 0 ≤ 1

4 ≤
1
2 ≤

3
4 ≤ 1. The set B25 = L1 × L2 contains

the following elements: 〈0, 0〉, 〈0, 1
4〉, 〈0,

1
2〉, 〈0,

3
4〉, 〈0, 1〉, 〈

1
4 , 0〉, 〈

1
4 ,

1
4〉, 〈

1
4 ,

1
2〉, 〈

1
4 ,

3
4〉,

〈14 , 1〉, 〈
1
2 , 0〉, 〈

1
2 ,

1
4〉, 〈

1
2 ,

1
2〉, 〈

1
2 ,

3
4〉, 〈

1
2 , 1〉, 〈

3
4 , 0〉, 〈

3
4 ,

1
4〉, 〈

3
4 ,

1
2〉, 〈

3
4 ,

3
4〉, 〈

3
4 , 1〉, 〈1, 0〉, 〈1,

1
4〉,

〈1, 1
2〉, 〈1,

3
4〉, 〈1, 1〉. The two orderings ≤k and ≤t are determined according to the

definition of L1 � L2, see Figure 1.

Informally speaking, these pairs of numbers will allow us to formalise, in the
next section, the degrees of belief and doubt we assign to statements. The first
element of a pair will reflect the degree of belief, and the second element will reflect
the degree of doubt.

3 Annotated Logic Programs Based on Bilattice Struc-
tures

In this section, we define annotated bilattice-based logic programs. Our definition
extends previous definitions on this topic in various ways and, in particular, it ex-
tends annotated (or signed) languages (see [2,4,15,23,24,25,31] and others) to the
case of distributive bilattices. The languages we introduce allow variables and func-
tions in annotations, unlike [14,23,24,25] and others, for example; they generalize
some of the propositional lattice-based languages [4,28] to the first-order case, and
allow negations unlike, for example, [4,23] and others.

Let B = L1�L2 denote a bilattice given as the product of two complete lattices
L1, L2 each of which is a sublattice of the lattice ([0, 1],≤), where [0, 1] is the unit
interval of real numbers and ≤ is the usual linear ordering on it. For the rest of the
paper, we restrict our attention to bilattices with finite joins.

We define an annotated bilattice-based language L over B to consist of indi-
vidual variables denoted x1, x2, . . ., constants a1, a2, . . ., functions f1, f2, . . . and
predicate symbols R1, R2, . . . together with annotation terms which can consist of
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Fig. 1. Bilattice B25

variables (µ1, ν1), (µ2, ν2), . . ., constants (α1, β1), (α2, β2), . . ., and functions over an-
notation variables and constants. We allow six connectives and four quantifiers, as
follows: ⊕,⊗,∨,∧,¬,∼, Σ,Π,∃,∀. The full fragment of bilattice-based annotated
logic (BAL) is considered in [18]. Here, we restrict our attention only to Horn-clause
fragments of it.

An annotated formula is defined inductively as follows: if R is an n-ary predicate
symbol, t1, . . . , tn are terms, and (τ) is an annotation term, then R(t1, . . . , tn) : (τ)
is an annotated formula (called an annotated atom). Annotated atoms can be
combined to form complex formulae using the connectives and quantifiers.

Example 3.1 Consider a binary predicate connected, which describes the fact of
existence of an edge in a probabilistic graph. These graphs can be used to describe
the behaviour of Internet connections, for example. Then connected(a, b) : (1

3 ,
2
3)

will describe the fact that the probability of establishing a connection between nodes
a and b is equal to 1

3 , while the probability of losing this connection is 2
3 .

A bilattice-based annotated logic program (BAP) P consists of a finite set of
(annotated) program clauses of the form

A : (τ)← L1 : (τ1), . . . , Ln : (τn),

where A : (τ) denotes an annotated atom called the head of the clause, and L1 :
(τ1), . . . , Ln : (τn) denotes L1 : (τ1) ⊗ . . . ⊗ Ln : (τn) and is called the body of the
clause; each Li : (τi) is an annotated literal called an annotated body literal of the
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clause.
By allowing each Li : (τi) to be a literal, we assume that the connective ¬ can be

applied to the atoms appearing in the bodies. However, due to the definition of ¬,
each negated atom ¬F : (α, β) transforms easily into the positive atom F : (β, α).
This is why, for the rest of the paper, we develop BAPs assuming that all the literals
in the clauses are brought into positive form. A detailed analysis of properties of
negation in BAPs can be found in [17,18].

Note that we use ⊗ to connect literals in the bodies of annotated clauses, and
thus give priority to the lattice based on ≤k. This permits us to use monotonicity
of this lattice relative to the negation of the language. Individual and annotation
variables in the body are thought of as being existentially quantified using Σ. We
showed in [20] how the remaining bilattice connectives can be introduced into an-
notated clauses, but we will not address this issue in this paper.

We mention here that any logic program contains only a finite set of annotation
constants. This is why there are classes of programs which can be interpreted
by finite bilattices, for example, logic programs which do not contain annotation
variables and/or annotation functions, and logic programs containing only functions
which do not generate new annotation constants through the process of computing.

Example 3.2 Consider the following infinitely-interpreted logic program:

R1(a1) : (1, 0.5)←

R2(f(x)) : (
µ

2
,
ν

3
)←R1(x) : (µ, ν)

R1(f(x)) : (
µ

3
,
ν

3
)←R2(x) : (µ, ν)

This program receives its interpretations from the countable bilattice whose under-
lying set of elements contains 0, 1, 0.5 and all the numbers which can be generated
from 0, 1, 0.5 by iterating the functions µ

2 , µ
3 , ν

3 .

Example 3.3 Suppose we want to implement a program P which is able to make
decisions about delaying and cancelling airport flights without human supervision.
Let this program work with databases which are obtained through accumulating
information from weather forecasts taken from different sources. These sources
may give inconsistent or incomplete information which is collected in the database
of P . The first and the second elements of each annotation denote evidence for,
respectively against, a given fact. Let B25 from Example 2.3 be the chosen bi-
lattice. Let individual variables x, y receive, respectively, values from the set
{Monday,Tuesday} and the set with the numbers of flights {1, 2}. A suitable pro-
gram for processing the database may contain the following fragment:

Storm(Monday) : (
3
4
,
1
2
)←

Storm(x) : (
1
2
,
3
4
)←

Delay(y, x) : ((
3
4
,
1
2
) ∨ (

1
2
,
1
2
))← Storm(x) : (

3
4
,
3
4
),Storm(Tuesday) : (

1
2
,
1
2
)

Cancel(y, x) : (1, 0)←Delay(y, x) : (
3
4
,
1
2
)

Note that this program is able to make quantitative (fuzzy) conclusions, as in the

6



Komendanskaya and Seda

third clause, as well as qualitative (two-valued) conclusions, as in the last clause.
It can work with conflicting sources of information, see, for example, the two unit
clauses.

In this section, we have defined Bilattice-Based Annotated Logic Programs
(BAPs), and considered some examples. We proceed by giving a semantic char-
acterization of BAPs.

4 Declarative Semantics and the TP -Operator

In this section, we define interpretations and Herbrand interpretations for BAPs,
and investigate their properties. We define the semantic operator TP and show that
it is continuous. We establish that TP computes the minimal Herbrand models for
BAPs.

Let D and v denote respectively a domain of interpretation and a variable as-
signment for a given language L, see [22]. An interpretation I for L consists of
the following mappings. The first mapping I assigns |R|v : Dn −→ B to each
n-ary predicate symbol R in L. Further, for each element 〈α, β〉 of B, we define a
mapping χ〈α,β〉 : B −→ B, where χ〈α,β〉(〈α′, β′〉) = 〈1, 0〉 if 〈α, β〉 ≤k 〈α′, β′〉 and
χ〈α,β〉(〈α′, β′〉) = 〈0, 1〉 otherwise. The mapping χ is used to evaluate annotated
formulae.

We will use the two functions I and χ to define interpretation I for annotated
atoms. If F is an annotated atom R(t1, . . . , tn) : (τ), then the value of F is given by
I(F ) = χ〈τ〉(|R|v(|t1|v, . . . , |tn|v)), as follows. Given an annotated atom F : (α′, β′)
with constant annotation (α′, β′), an interpretation I for a first-order formula F ,
and a value 〈α, β〉 from B assigned to F , we use χ as follows: if the value 〈α, β〉 ≥k

〈α′, β′〉, then I(F : (α′, β′)) = 〈1, 0〉, and I(F : (α′, β′)) = 〈0, 1〉 otherwise. If the
annotated term τ attached to an annotated atom F : τ contains variables µ, ν, we
use the existential quantifier Σ when applying χ as follows: χτ (〈α, β〉) = 〈1, 0〉 if
Σ(µ, ν)(τ ≥ 〈α, β〉).

Furthermore, we can proceed and give interpretation to complex annotated for-
mulae in the standard way [15,20,17], using the operations defined on B to evaluate
connectives and quantifiers. All the connectives of the language are put into cor-
respondence with bilattice operations, and in particular quantifiers correspond to
infinite bilattice operations. We call the composition of the two mappings I and
χ an interpretation for the bilattice-based annotated language L and for simplic-
ity of notation denote it by I. Indeed, the interpretations of BAPs possess some
remarkable properties which make the study of BAPs worthwhile, as follows.

Proposition 4.1 [20]

(i) Let F be a formula, and fix the value I(F ). If I(F : (α, β)) = 〈1, 0〉, then
I(F : (α′, β′)) = 〈1, 0〉 for all 〈α′, β′〉 ≤k 〈α, β〉.

(ii) I(F1 : (τ1) ⊗ . . . ⊗ Fk : (τk)) = 〈1, 0〉 ⇐⇒ I(F1 : (τ1) ⊕ . . . ⊕ Fk : (τk)) =
〈1, 0〉 ⇐⇒ I(F1 : (τ1) ∧ . . . ∧ Fk : (τk)) = 〈1, 0〉 ⇐⇒ I(Fi : (τi)) = 〈1, 0〉 for
each i ∈ {1, . . . , k}.

(iii) If I(F1 : (τ1) � . . . � Fk : (τk)) = 〈1, 0〉, then I((F1 � . . . � Fk) : ((τ1) � . . . �
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(τk))) = 〈1, 0〉, where � is any one of the connectives ⊗,⊕,∧.
(iv) For every formula F , I(F : (0, 0)) = 〈1, 0〉.

These properties generalise easily to infinite bilattice operations Σ,Π,∃,∀; and
they influence the models for BAPs.

Let I be an interpretation for L and let F be a closed annotated formula of L.
Then I is a model for F if I(F ) = 〈1, 0〉. We say that I is a model for a set S of
annotated formulae if I is a model for each annotated formula of S. We say that F
is a logical consequence of S if, for every interpretation I of L, I is a model for S
implies I is a model for F .

Let BP denote the annotation Herbrand base for a program P , namely, the
set of all ground annotated atoms which can be formed out of the symbols of P .
An annotation Herbrand interpretation HI for P is the assignment of a mapping I
from BP into B. Following the convention of logic programming, each Herbrand
interpretation HI for P can be identified with the subset {R(t1, . . . , tk) : (α, β) ∈
BP |R(t1, . . . , tk) : (α, β) receives the value 〈1, 0〉 with respect to I} of BP , where
R(t1, . . . , tk) : (α, β) denotes a typical element of BP . This set constitutes an anno-
tation Herbrand model for P . Finally, we let HIP,B denote the set of all annotation
Herbrand interpretations for P .

In [20], we introduced a semantic operator TP for BAPs, proved its continuity
and showed that it computes the least Herbrand model MP for a given BAP P .
Detailed analysis of some of the properties of TP can be found in [17]. We define
TP next.

Definition 4.2 We define the mapping TP : HIP,B → HIP,B as follows: TP (HI) =
= {A : (τ) ∈ BP such that either

(i) A : (τ)← L1 : (τ1), . . . , Ln : (τn) is a strictly ground instance of a clause in P

and {L1 : (τ ′1), . . . , Ln : (τ ′n)} ⊆ HI, and for each (τ ′i),

(τi) ≤k (τ ′i),

or

(ii) there are annotated strictly ground atoms A : (τ∗1 ), . . . , A : (τ∗k ) ∈ HI such that
(τ) ≤k (τ∗1 )⊕ . . .⊕ (τ∗k )}.

Item (i) above reflects the property stated in item (i) of Proposition 4.1. Item
(ii) above reflects the properties captured in items (ii) and (iii) of Proposition 4.1.
Note that according to item (i) of Proposition 4.1, whenever F : (τ) ∈ HI and
(τ ′) ≤k (τ), then F : (τ ′) ∈ HI. Also, item (iv) of Proposition 4.1 ensures that for
each formula F , F : (0, 0) ∈ HI, and we assume this property of HI throughout
the paper. Thus, we always assume that each HI contains all ground formulae of
the type F : (0, 0) prior to any implementations of the semantic operator.

Semantic operators defined for many logic programs in the style of [4,6,7,15,31]
use only some form of item (i) from Definition 4.2. However, this condition is not
sufficient for the computation of the (least) Herbrand models for (bi)lattice-based
logic programs, as we see next.

Let T̂P denote a form of semantic operator TP with no item (ii) from Defini-

8



Komendanskaya and Seda

tion 4.2. The next example displays the difference between T̂P and TP . Symbols [i]
and [ii] refer to items of Definition 4.2.

Example 4.3 Consider the logic program from Example 3.3, and the least fixed
points of TP and T̂P 5 .

Iteration TP T̂P

1 Storm(Monday) : (3
4 ,

1
2)[i],

Storm(Monday) : (1
2 ,

3
4)[i],

Storm(Tuesday) : (1
2 ,

3
4)[i]

Storm(Monday) : (3
4 ,

1
2),

Storm(Monday) : (1
2 ,

3
4),

Storm(Tuesday) : (1
2 ,

3
4)

2 Storm(Monday) : (3
4 ,

3
4)[ii] —

3 Delay(1,Monday) : ((3
4 ,

1
2) ∨

(1
2 ,

1
2))[i], Delay(2,Monday) :

((3
4 ,

1
2) ∨ (1

2 ,
1
2))[i]

—

4 Cancel(1,Monday) : (1, 0)[i],
Cancel(2,Monday) : (1, 0)[i]

—

Thus, in this example we can see that the program will definitely cancel both
flights 1 and 2 on Monday.

The following example shows the fixed point of the semantic operators reached
in ω steps.

Example 4.4 Consider the logic program given in Example 3.2. The least fixed
point of this program (for T̂P and for TP ) is
{R1(a1) : (1, 0.5), R2(f(a1)) : (ϑ1(1), ϑ2(0.5)), R1(f(f(a1))) :
(ϑ3(ϑ1(1)), ϑ4(ϑ2(0.5))), . . ., R1(fn−1(a1)) : (ϑn

3 (ϑn−1
1 . . . (. . . ((1)) . . .)),

ϑn
4 (ϑn−1

2 . . . (. . . ((0.5)) . . .))), R2(fn(a1)) : (µ′, ν ′), . . .}, where n ∈ ω. Here, µ′ de-
notes ϑn

1 (ϑn−1
3 (ϑn−2

1 . . . (. . . ((1)) . . .))), ν ′ denotes
ϑn

2 (ϑn−1
4 (ϑn−2

2 . . . (. . . ((0.5)) . . .))), and ϑ1, ϑ2, ϑ3, ϑ4 stand for the functions µ
2 , ν

3 ,
µ
3 , ν

3 respectively.

The following theorem is important and plays a fundamental role in considering
the computation of the least fixed points of TP .

Theorem 4.5 The mapping TP is continuous.

The proof of this theorem can be found in [17,20]. Note that TP works with sets
of strictly ground formulae, and not with interpretations themselves and this, in
conjunction with the requirement that B has only finite joins, guarantees that TP is
continuous. Note that analogous semantic operators defined in [4,15] and elsewhere
do not possess this property.

Now, using Kleene’s theorem and Theorem 4.5, we may assert that lfp(TP ) =
TP ↑ ω. Indeed, we have the following generalization of a well-known theorem due
to van Emden and Kowalski [30].

Theorem 4.6 [20] For a BAP P , we have MP = lfp(TP ) = TP ↑ ω.

5 Note that we use the fact that (( 3
4
, 1
2
) ∨ ( 1

2
, 1
2
)) = ( 3

4
, 1
2
) and (( 3

4
, 1
2
) ⊕ ( 1

2
, 3
4
)) = ( 3

4
, 3
4
).
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To summarize this section, we have defined interpretations and Herbrand inter-
pretations for BAPs, and showed how to characterize the minimal models of BAPs
using the semantic operator TP .

We finish the section by giving a useful definition that will provide a link between
the declarative semantics of this section and the operational semantics we are going
to consider in the next section.

Definition 4.7 Let P be a BAP and let G be a goal← A1 : (τ1), . . . , Ak : (τk). An
answer for P ∪ {G} is a substitution θλ for individual and annotation variables of
G. We say that θλ is a correct answer for P ∪{G} if Π((A1 : (τ1), . . . , Ak : (τk))θλ)
is a logical consequence of P .

We will give a proof theoretic counterpart for the notion of the correct answer
next.

5 SLD-Resolution

The resolution method was first introduced by Robinson, and was implemented (as
SLD-resolution) in two-valued logic programming by Colmerauer et al. A detailed
exposition of this can be found in [22], and for many-valued resolution procedures
see [12,14,15,23,27,29], for example. Kifer and Lozinskii show in [14] that unlike
classical refutation procedures, where only the resolution rule is applied, lattice-
based theories need to have four procedures: resolution, factorisation, reduction
and elimination in order to be sound and complete. This enriches resolution for
many-valued logics which have linearly ordered sets of values, as it was defined,
for example, in [12,31]. Some very interesting ideas about the relationship between
resolutions for languages with ordered and non-ordered annotations can be found
in [24,25]. Comparing with these papers, we allow variables and functions in anno-
tations and adopt the additional refutation rules (which correspond to some rules
of [14]) in order to obtain soundness and completeness of SLD-resolution for BAPs.
Note that in [14,24,25] only constant annotations are allowed in the language and
therefore each logic program becomes finitely interpreted in these settings. We ex-
tend all our results to infinitely interpreted programs with functions and variables
in annotations. 6 Finally, we establish an operational semantics for BAPs and prove
its soundness and completeness.

Throughout this section, we denote a BAP by P , and a BAP goal by G. We refer
to [22] for a description of the unification process (originally defined by Herbrand
and later refined by Clark [3]) for classical logic programming. Here, we follow this
development, but involve annotation variables in the process of unification, see also
[17]. The unification process for the individual variables remains unchanged, and,
as in two-sorted languages, unification for the first-order and annotation parts of an
annotated formula are handled independently. Following conventional notation, we
denote the disagreement set by S, and substitutions by θλ, possibly with subscripts,
where θ denotes a first-order substitution, and λ denotes a substitution involving

6 An SLD-resolution for lattice-based logic programs with annotation functions and annotation variables
was first introduced in [15] and was shown to be incomplete.
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annotations. We will use the abbreviation mgu when talking about most general
unifiers defined in [22] or [17], for example.

Definition 5.1 [SLD-derivation] Let Gi be the annotated goal ← B1 :
(τ1), . . . , Bk : (τk), and let C1, . . . , Cl be the annotated clauses A1 : (τ∗1 ) ←
body1, . . . , Al : (τ∗l ) ← bodyl, where each bodyi from body1, . . . ,bodyl denotes
the body of the clause Ci. Then the goal Gi+1 is derived from Gi and C1, . . . , Cl

using mgu θλ if the following conditions hold:

(i) Bm : (τm) is an annotated atom, called the selected atom, in Gi and
(a) θ is an mgu of Bm and A1, and one of the following conditions holds: either

λ is an mgu of (τm) and (τ∗1 ); or (τm)λ and (τ∗1 )λ receive constant values
such that (τm)λ ≤k (τ∗1 )λ;

or
(b) θ is an mgu of Bm and A1, . . . , Al, and either λ is an mgu of (τm) and

(τ∗1 ), . . . , (τ∗l ) or (τm)λ and (τ∗)λ, . . . , (τ∗l )λ receive constant values such
that (τm)λ ≤k ((τ∗1 )λ⊕ . . .⊕ (τ∗l )λ).

(ii) in case (a), Gi+1 is the goal (← B1 : (τ1), . . . , Bm−1 : (τm−1),body1, Bm+1 :
(τm+1), . . . , Bk : (τk))θλ. In this case, Gi+1 is said to be derived from Gi and
C1 using θλ.

(iii) in case (b), Gi+1 is the goal (← B1 : (τ1), . . . , Bm−1 :
(τm−1),body1, . . . ,bodyl, Bm+1 : (τm+1), . . . , Bk : (τk))θλ. In this case,
Gi+1 is said to be derived from Gi, C1, . . . , Cl using θλ.

(iv) Whenever a goal Gi contains a formula of the form F : (0, 0), then remove
F : (0, 0) from the goal and form the next goal Gi+1 that is Gi except that it
does not contain F : (0, 0).

Note that certain items in the definition of derivation correspond to certain items
in Definition 4.2 of TP . For example, item (a) corresponds to item (i) in Definition
4.2, and item (ii) corresponds to item (ii) in Definition 4.2. And, as we have noted
before in relation to the definition of TP , all these items serve to reflect the model
properties of BAPs captured in Proposition 4.1.

Definition 5.2 Suppose that P is a BAP and G0 is a goal. An SLD-derivation of
P ∪ {G0} consists of a sequence G0, G1, G2 . . . of BAP goals, a sequence of finite
sets S1, S2, . . . of BAP clauses and a sequence θ1λ1, θ2λ2, . . . of mgus such that each
Gi+1 is derived from Gi and Ci+1 using θi+1λi+1.

Note that S1, S2, . . . is defined to be a sequence of finite sets of clauses, and not
just a sequence of clauses as in the case of classical SLD-resolution. This happens
because item (b) admits the use of a finite set of clauses at each step of the derivation.
This item was not included in the classical definition of SLD-resolution.

In [16], we gave a many-sorted representation of BAPs. This translation allowed
us to apply the classical definition of SLD-resolution to the many-sorted transla-
tion of BAPs. This result showed that in principle, one can use just sequences of
clauses, and not sequences of finite sets of clauses when defining many-sorted SLD-
derivation for BAPs; but this would require many-sorted non-annotated translation.

Definition 5.3 An SLD-refutation of P ∪G0 is a finite SLD-derivation of P ∪G0
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which has the empty clause 2 as the last goal of the derivation. If Gn = 2, we say
that the refutation has length n.

Definition 5.4 The success set of P is the set of all A : (µ, ν) ∈ BP such that
P ∪ {← A : (µ, ν)} has an SLD-refutation.

Definition 5.5 A computed answer θλ for P ∪ {G0} is the substitution obtained
by restricting the composition of θ1, . . . , θn, λ1, . . . , λk to the variables of G0, where
θ1, . . . , θn, λ1, . . . , λk is the sequence of mgus used in the SLD-refutation of P∪{G0}.

Example 5.6 Let P be the program from Example 3.3 and let G0 be the goal
← Cancel(1,Monday) : (µ, ν), that is, we want to know the probability of cancelling
flight number 1 on Monday.

(i) We have a clause Cancel(y, x) : (1, 0) ← Delay(y, x) : (3
4 ,

1
2) in P . Form the

set S = {Cancel(1,Monday) : (µ, ν),Cancel(y, x) : (1, 0)}, find its disagree-
ment set, and apply item (a) from Definition 5.1 to get its mgu: θ0λ0 =
{y/1, x/Monday, µ/1, ν/0}.

(ii) Now G1 is ← Delay(y, x) : (3
4 ,

1
2)θ0λ0 = Delay(1,Monday) : (3

4 ,
1
2). We have

a clause Delay(y, x) : ((3
4 ,

1
2) ∨ (1

2 ,
1
2)) ← Storm(x) : (3

4 ,
3
4), Storm(Tuesday) :

(1
2 ,

1
2), whose head contains annotations which are unifiable with (3

4 ,
1
2). This

means that item (a) from Definition 5.1 can be applied here.

(iii) G2 = ← (Storm(Monday) : (3
4 ,

3
4),Storm(Tuesday) : (1

2 ,
1
2))θ1λ1 = ←

Storm(Monday) : (3
4 ,

1
2),Storm(Tuesday) : (1

2 ,
1
2).

Let Storm(Monday) : (3
4 ,

3
4) be the selected atom. We see that it is not unifiable

with any input clause so we apply item (b) from Definition 5.1. So, we find the
mgu θ2 for Storm(x) : (1

2 ,
3
4), Storm(Monday) : (3

4 ,
1
2) and Storm(Monday) :

(3
4 ,

3
4) such that θ2 = {x/Monday}, and (3

4 ,
3
4) ≤k (1

2 ,
3
4) ⊕ (3

4 ,
1
2). So, we can

form the next goal according to item (iii) from Definition 5.1.

(iv) The goal G3 = ← Storm(Tuesday) : (1
2 ,

1
2). Now Storm(Tuesday) : (1

2 ,
1
2) is a

selected atom and, choosing the input clause Storm(x) : (1
2 ,

3
4) ←, we apply

item (a) from Definition 5.1: the mgu for Storm(Tuesday) and Storm(x) is
θ2 = x/Tuesday, and (1

2 ,
1
2) ≤k (1

2 ,
3
4).

(v) Use item (ii) and form the last goal G4 = 2.

Thus, we conclude that we have obtained an SLD-refutation of P ∪ {G0} of length
4 with computed answer θ0λ0θ1λ1θ2λ2 (λ2 = λ1 = ε), which is restricted to the
variables of G0 (in our case, the computed answer is {µ/1, ν/0}, that is, the flight
number 1 will definitely be cancelled on Monday). Moreover, we conclude that
Cancel(1,Monday) : (1, 0) is in the success set of P . As can be seen from Example
4.3, this formula is contained in the least fixed point of the TP operator applied to
P .

The next theorem shows that the computations performed by the SLD resolution
algorithm are correct.

Theorem 5.7 (Soundness of SLD-resolution for BAPs) Let P be a BAP.
Then every computed answer for P ∪ {G} is a correct answer for P ∪ {G}.

Proof. Let G be ← B1 : (τ1), . . . , Bk : (τk) and θ1λ1, . . . , θnλn be the sequence of
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mgus used in a refutation of P ∪ {G}. We have to show that Π(B1(τ1)⊗ . . .⊗Bk :
(τk))θ1λ1 . . . θnλn is a logical consequence of P .

We prove this by induction on the length n of the refutation.
Basis step Suppose first that n = 1. This means that G is a goal of the form

← B1 : (τ1), and one of the following conditions holds:

(i) P has a unit program clause of the form A1 : (τ∗1 )← and B1θ = A1θ and
(a) either (τ1)λ = (τ∗1 )λ1,
(b) or (τ1)λ and (τ∗1 )λ receive constant values and (τ∗1 )λ ≤k (τ1)λ.

(ii) According to the definition of refutation, we have the third case in which P

has clauses A1 : (τ∗1 ) ←, . . ., Al : (τ∗l ) ← such that B1θ = A1θ = . . . = Alθ,

and
(a) either (τ1)λ = (τ∗1 )λ = . . . = (τ∗l )λ,
(b) or (τ1)λ and (τ∗1 )λ, . . . , (τ∗l )λ are constants, and (τ1)λ ≤k ((τ∗1 )λ ⊕ . . . ⊕

(τ∗l ))λ.

(iii) G = ← A1 : (0, 0).

Suppose (a) holds. Since (A1 : (τ∗1 ))θλ is an instance of a unit clause in P , we
conclude that (Π(B1 : (τ1)))θλ is a logical consequence of P ∪ {G}.

Suppose (b) holds. Since A1θ = B1θ, (τ1)λ ≤k (τ∗1 )λ, and A1 : (τ∗1 )θλ is
an instance of a unit clause in P and, using Proposition 4.1, we conclude that
(Π(B1 : (τ1)))θλ is a logical consequence of P .

Suppose (ii) holds. The case (a) can be proved analogously to the proof of (a).
Consider case (b). Since all (A1 : (τ∗1 ) ←)θλ, . . . , (Al : (τ∗l ) ←)θλ are instances of
unit clauses in P , all these formulae are logical consequences of P . But then, using
the fact that A∗

1θ = . . . = A∗
l θ and Proposition 4.1, we conclude that A((τ∗1 )⊕ . . .⊕

(τ∗l )) is a logical consequence of P . Now, using Proposition 4.1 and the fact that
B1θ = A1θ, we have that (Π(B1 : (τ1)))θλ is a logical consequence of P .

Suppose (iii) holds. According to Proposition 4.1, Π(A1 : (0, 0)) is a logical
consequence of P .

Inductive step. Suppose that the result holds for computed answers which
come from refutations of length n − 1. Suppose θ1λ1, . . . , θnλn is the sequence
of mgus used in a refutation of P ∪ {G} of length n. Suppose further that the
first refutation step in the refutation of length n was made in accordance with
item (a) in Definition 5.1, and let A1 : (τ∗1 ) ← body1 be the first input clause,
such that A1 : (τ∗1 )θ1 . . . θn = Bm : (τm)θ1 . . . θn for some Bm : (τm) in G. By
the induction hypothesis, Π(B1 : (τ1) ⊗ . . . ⊗ Bm−1 : (τm−1) ⊗ body1 ⊗ Bm+1 :
(τm+1)⊗ . . .⊗Bk : (τk))θ1λ1 . . . θnλn is a logical consequence of P . (This is because
only n − 1 steps are needed to obtain a refutation for the latter formula.) But
then (body1)θ1λ1 . . . θnλn is a logical consequence of P . This means that A1 :
(τ∗1 )θ1λ1 . . . θnλn is a logical consequence of P . Additionally, we use the fact that
(τm)λ1 . . . λn ≤k (τ∗1 )λ1 . . . λn and apply Proposition 4.1 to conclude that Bm :
(τm)θ1λ1 . . . θnλn is a logical consequence of P .

Suppose the first refutation step in the refutation of length n was taken
in accordance with item (b) in Definition 5.1. Consider input clauses A1 :
(τ∗1 ) ← body1, . . . , Al : (τ∗l ) ← bodyl; and selected atom Bm : (τm) of G
at this step of the refutation. By the induction hypothesis, Π(B1 : (τ1) ⊗
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. . . ⊗ Bm−1 : (τm−1) ⊗ (body1) ⊗ . . . ⊗ (bodyl) ⊗ Bm+1 : (τm+1) ⊗ . . . ⊗ Bk :
(τk))θ1λ1 . . . θnλn is a logical consequence of P . (This is because only n − 1
steps are needed to obtain a refutation for the latter formula.) Consequently,
(body1), . . . , (bodyl))θ1λ1 . . . θnλn is a logical consequence of P , which means that
(A1 : (τ∗))θ1λ1 . . . θnλn, . . . , Al : (τ∗l ))θ1λ1 . . . θnλn are logical consequences of P .
But since A1θ1 . . . θn = . . . = Alθ1 . . . θn = Bmθ1 . . . θn, using Proposition 4.1, we
see that (A1 : ((τ∗1 ) ⊕ . . . ⊕ (τ∗l )))θ1 . . . θn is a logical consequence of P . Moreover,
according to Definition 5.1, item (b) which we have taken as our assumption, we
have (τm)λ1 . . . λn ≤k (τ∗1 )λ1 . . . λn,⊕ . . . ⊕ (τ∗l )λ1 . . . λn. Now, using Proposition
4.1, we conclude that (Bm : (τm))θ1λ1 . . . θnλn is a logical consequence of P .

We can apply the same arguments for the rest of the atoms (B1 : (τ1), . . . , Bk :
(τk)) from G. Thus, Π((B1 : (τ1), . . . , Bk : (τk)))θ1λ1 . . . θnλn is a logical conse-
quence of P . 2

Corollary 5.8 The success set of P is contained in its least annotation Herbrand
model.

Proof. Let A : (τ) ∈ BP and suppose that P ∪ {← A : (τ)} has a refutation. By
Theorem 5.7, A : (τ) is a logical consequence of P . Thus A : (τ) is in the least
annotation Herbrand model for P . 2

We have proved that the algorithm of SLD resolution we defined for BAPs is
sound. We now wish to prove that it is complete.

6 Completeness of SLD-Resolution for BAPs

This section finishes the formal discussion of BAPs by showing that the SLD reso-
lution algorithm for BAPs is complete.

Some proofs in this section require the use of lemmas which are straightforward
generalizations of the so-called mgu lemma and lifting lemma [22] to the case when
unification is allowed with respect to annotation variables as well as individual
variables. The lemmas and proofs can be found in [17].

The following completeness theorem extends the corresponding theorem for two-
valued propositional logic programming due to Apt and Van Emden.

Theorem 6.1 Let P be a BAP. The success set of P is equal to its least annotation
Herbrand model.

Proof. By Corollary 5.8, it suffices to show that the least Herbrand model for P is
contained in its success set.

Suppose that A : (τ) is in the least annotation Herbrand model for P . By
Theorem 4.6, A : (τ) ∈ TP ↑ n, for some n ∈ ω. We claim that A : (τ) ∈ TP ↑ n
implies that P ∪ {← A : (τ)} has a refutation, and hence that A : (τ) is in the
success set; we prove this claim by induction on n.

Basis step. n = 1. Then A : (τ) ∈ TP ↑ 1, which means that either A : (τ) ←
is a strictly ground instance of a clause in P or (τ) = (0, 0). And in both cases
P ∪ {← A : (τ)} has a refutation (see items (a) and (iv) in Definition 5.1).

Inductive step. Suppose the claim holds for n − 1. Let A : (τ) ∈ TP ↑ n. By
the definition of TP , one of the following holds:
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(i) there exists a strictly ground instance of a clause B : (τ ′)← B1 : (τ1), . . . , Bk :
(τk) such that A = Bθ, (τ) = (τ ′)λ, and B1 : (τ ′1)θ, . . . , Bk : (τ ′k)θ ∈ TP ↑ (n−1)
with τ ′1, . . . , τ

′
k such that:

(τi)λ ≤k (τ ′i), for i ∈ {1, . . . , k}.
(ii) There are strictly ground atoms A : (τ1), . . . , A : (τk) ∈ TP ↑ (n− 1) such that

(τ) ≤k ((τ1)⊕ . . .⊕ (τk)).

Suppose (i) holds. By the induction hypothesis, each P ∪ {← Bi : (τ ′i)θ} has
a refutation, for i ∈ {1, . . . , k}. We want to show that then P ∪{← Bi : (τi)θλ} has
a refutation, for i ∈ {1, . . . , k}.

Consider the refutation of G0 = {← Bi : (τ ′i)θ}. According to Definition 5.1,
there are two ways in which {← Bi : (τ ′i)θ} can be derived.

Case 1.
There is a clause C : (τ∗)← body in P such that Biθ = Cθ, and (τ ′i) ≤k (τ∗)λ.

Taking into account that (τi)λ ≤k (τ ′i), by transitivity of ≤k, we conclude that
(τi)λ ≤k (τ∗)λ. But then, by Definition 5.1, item (a), the goal ← Bi(τi)θλ will
receive a refutation.

Case 2.
There are clauses C1 : (τ∗1 ) ← body1, . . . , Cm : (τ∗1 ) ← bodym in P such

that Biθ = C1θ = . . . = Cmθ, and τ ′i ≤k (τ∗1λ ⊕ . . . ⊕ τ∗mλ). But then, because
(τi)λ ≤k (τ ′i), we have τiλ ≤k (τ∗1λ⊕ . . .⊕ τ∗mλ). So, by Definition 5.1, item (b) the
goal ← (Bi : τi)θλ will receive refutation as well.

Suppose (ii) holds, that is, there are strictly ground atoms A : (τ1), . . . , A :
(τk) ∈ TP ↑ (n− 1) such that (τ) ≤k ((τ1)⊕ . . .⊕ (τk)). We want to show that then
A : (τ) has a refutation.

Using the induction hypothesis, each of P ∪ {← A : (τ1)}, . . . , P ∪ {← A : (τk)}
has a refutation. This means that, according to Definition 5.1, items (a) and (b),
there are clauses A : (τ∗1 )← body∗1, . . . , A : (τ∗n)← body∗n, such that for each A : (τi)
one of the following holds:

• (τi)λ ≤k (τ∗j )λ. In this case, P ∪ {← body∗j} has a refutation.

•• (τi)λ ≤k ((τ∗j ) ⊕ . . . ⊕ (τ∗l )). Then P ∪ {← body∗j , . . . ,body∗l } has a refutation,
for some j, l ∈ {1, . . . , n}.

Combining all these refutations for i ∈ {1, . . . , n}, we obtain a refutation of P ∪{←
(body∗1, . . . ,body∗n)θλ}. But then, according to Definition 5.1, items (a) and (b),
there is a refutation for P ∪{← A : (τ ′)θλ}, where τ ′λ is some annotation such that

(τ ′)λ ≤k ((τ∗1 )λ⊕ . . .⊕ (τ∗n)λ) (∗)

for each (τ ′)λ ≤k (τ∗j )λ (in case of •) or for each (τ ′)λ ≤k ((τ∗j )⊕ . . .⊕ (τ∗l )) (in case
of ••), for j, l ∈ {1, . . . , n}. Now, having that either each (τi)λ ≤k (τ∗j )λ or each
(τi)λ ≤k ((τ∗j )⊕ . . .⊕ (τ∗l )), for i ∈ {1, . . . , k} and j, l ∈ {1, . . . , n}, we conclude, by
monotonicity of ⊕, that

((τ1)λ⊕ . . .⊕ (τk)λ) ≤k ((τ∗1 )λ⊕ . . .⊕ (τ∗n)λ).
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But then, by Definition 5.1, item (a), the condition (∗) implies that, for each an-
notation constant (τ♦) such that (τ♦) ≤k ((τ∗1 ) ⊕ . . . ⊕ (τ∗n))λ, there exists a refu-
tation for P ∪ {← A : (τ♦)θλ}. This holds in particular for all the τ♦ such that
(τ♦) ≤k ((τ1) ⊕ . . . ⊕ (τk))λ. According to item (2), among such (τ♦) will be
(τ♦) = (τ)λ. Thus, we conclude that P ∪{← A : (τ)θλ} has an unrestricted refuta-
tion. Finally, we apply the mgu lemma to obtain a refutation for P ∪{← A : (τ)}.2

Thus, the SLD resolution algorithm is complete in that, for every BAP P , the
success set of P is equal to its least annotation Herbrand model.

Next, we need to obtain the completeness with respect to correct answers. As in
classical two-valued logic programming, it is impossible to prove the exact converse
of Theorem 5.7. However, we can extend the classical result that every correct an-
swer is an instance of a computed answer to the case of BAPs. The next lemma and
associated theorem are straightforward (the proofs can be found in [17]), recall that
we allow refutation to work over individual and annotation variables independently.

Lemma 6.2 Let Π(A : (µ, ν)) be a logical consequence of P . Then there exists an
SLD-refutation of P ∪ {← A : (µ, ν)} with the identity substitution as a computed
answer.

The next completeness result is a generalization of the analogous theorem of
Clark [3], its proof can be found in [17].

Theorem 6.3 For every correct answer θλ for P ∪ {G}, there exist a computed
answer θ∗λ∗ for P ∪ {G} and substitutions ϕ, ψ such that θ = θ∗ϕ and λ = λ∗ψ.

This theorem concludes our discussion of the SLD resolution algorithm.

7 Conclusions and further work

We have carefully examined the declarative and operational semantics of bilattice-
based annotated logic programs. In particular, we have shown that unlike the
usual approach to many-valued logic programming semantics (see, for example,
[7,8,15,29] and many others), the immediate consequence operator for bilattice-
based annotated logic programs cannot be obtained as a simple extension of the
classical semantic operator. We have given some examples displaying the immediate
consequence operators as defined in [7,8,15], and shown that these operators do
not compute all the logical consequences of a program, but only certain of them.
We have proposed an original definition of the immediate consequence operator
computing all the logical consequences of a given bilattice-based annotated logic
program, and showed that it is continuous.

The declarative semantics for BAPs allows us to propose an SLD-resolution for
BAPs and prove its soundness and completeness relative to our semantics. Like
the resolution procedures given in [14] for lattice-based logics, this SLD-resolution
is enriched with additional rules reflecting the properties of the extended semantic
operator for BAPs, and is an alternative to the constrained resolution for the general
annotated logic programs of Kifer and Subrahmanian, see [15] and to resolutions
for logics which are interpreted by linearly ordered sets [12,23,31] and/or finite sets
[15,23,24,25].
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We show in a companion paper [19] that the semantic operator for the logic pro-
grams we have introduced here can be computed by learning artificial neural net-
works in the style of [13], but with learning functions embedded into connections be-
tween the layers. This shows that the automated proof procedure (SLD-resolution)
we have introduced has its counterpart in the field of neural computation.

Further work to be done includes the elimination of annotations from the lan-
guage in the same way as this was carried out in [16]. In particular, further in-
vestigation of the possible computational effects of the translation of BAPs into
non-annotated sorted programs [16] may be interesting. Another field of possible
extension of our results is to relate BAPs to probabilistic logic programs, as they
were defined and studied, for example, in [1,5] and other papers. Finally, it would
be interesting to show how we can extend BAPs to logic programs with interval-
based annotations, and thereby establish linear programming for them. Such work
would relate to [21,26] and others and would make use of many results established
by these authors.
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