
A many-sorted semantics for many-valued

annotated logic programs

Ekaterina Komendantskaya∗

Department of Mathematics, UCC, Cork, Ireland

e.komendantskaya@mars.ucc.ie

Abstract

We show how many-valued annotated logic programs can be semanti-
cally and sintactically translated into many-sorted.
Keywords: Logic programs, bilattices, many-valued annotated logics,
many-sorted logics.

1 Introduction

We construct a uniform algorithm which translates bilattice-based annotated
logic programs (BAPs) into conventional many-sorted logic programs in the
spirit of Manzano, see [4]. In fact, this algorithm can be uniformly extended to
other well-known many-valued logic programs, for example logic progarms which
are due to Fitting, Van Emden, Kifer and Lozinskii, Kifer and Subrahmanian,
Lu, Murray and Rosental, and many others. The translation of many-valued
logic programs into many-sorted sheds a light into semantical and sintactical
properties of many-valued programs and allows to apply conventional SLD-
resolution to them.

2 Bilattice-based annotated logic programs

We refer to [2] for a detailed description of BAPs. Here we give just a brief
description. We pick the structure of bilattices as an interpretation for a first-
order language. And define annotation terms of a form (µ, ν) (and possibly
ϑn((µ1, ν1), . . . , (µn, νn))) to run over bilattices. Then an annotated formula is
defined inductively as follows: if R is an n-ary predicate symbol, t1, . . . , tn are
terms, and (µ, ν) is an annotation term, then R(t1, . . . , tn) : (µ, ν) is an anno-
tated formula (called an annotated atom). Annotated atoms can be combined to
form complex formulae using connectives and quantifiers defined on bilattices.

A bilattice-based annotated logic program (BAP) P consists of a finite set of
(annotated) program clauses of the form

A : (µ, ν)← L1 : (µ1, ν1)⊗ . . .⊗ Ln : (µn, νn),

∗Research was partially funded by BCRI (UCC, Cork).

1

where A : (µ, ν) denotes an annotated atom called the head of the clause, and
each Li : (µi, νi) is an annotated literal called an annotated body literal of the
clause. Individual and annotation variables in the body are thought of as being
existentially quantified using Σ.

3 Sorted logic programs MSLP∗

We refer to the paper of Manzano [4] for a detailed exposition of many-sorted
logics. The abbreviation MSL was introduced in [4] to denote a many-sorted
language of a signature Σ.

We use a fragment of original MSL, and will denote it as MSL∗ assuming a
new signature Σ∗ as follows.

Definition 1. We define a signature Σ∗ = 〈SORT,RANK〉, where SORT(Σ∗) =

SORT = {0, 1, < 0,

n︷ ︸︸ ︷
1, . . . , 1 >, 3} (for some n ∈ N)(representing boolean, indi-

vidual universes, a universe of n-ary relations on individuals and a universe of
bilattice symbols).

We define Sω(SORT) to be the set of all finite sequences of elements of SORT.
RANK is a function whose values are in [Sω(SORT)]. We denote Dom(RANK)
as OPER.SYM(Σ∗) = OPER.SYM and call its elements operation symbols.
In particular, ¬,∨,∧,⊃,=,≤k

1 are in OPER.SYM and RANK(¬) = 〈0, 0〉,
RANK(∨) = RANK(∧) = RANK(⊃) = 〈0, 0, 0〉; RANK(.=) = RANK(≤k) =
〈0, 3, 3〉. We define

RANK(fn(x1, . . . , xn)) = 〈1,

n︷ ︸︸ ︷
1, . . . , 1〉, where fn is n-ary function over individ-

ual terms;

RANK(ϑn((µ1, ν1), . . . , (µn, νn)) = 〈3,

n︷ ︸︸ ︷
3, . . . , 3〉, where ϑn is n-ary function over

annotation terms;

RANK(Rn(x1, . . . , xn)) = 〈0,

n︷ ︸︸ ︷
1, . . . , 1〉, where Rn is n-ary relation over individ-

ual terms. Additionally, RANK(In(x1, . . . , xn)) = 〈3,

n︷ ︸︸ ︷
1, . . . , 1〉, where In is a

function which assigns a bilattice value to n-tuple of individual terms. And,
finally, for membership relations εn,

RANK(εn) = 〈0,

n︷ ︸︸ ︷
1, . . . , 1, < 0,

n︷ ︸︸ ︷
1, . . . , 1 >〉.

Definition 2. We define a many-sorted structure

S = 〈A1, A2, A3, f
A1 , fA2 , fA3〉,

where A1, A2 and A3 are universes for variables of sorts < 1 >, < 0,

n︷ ︸︸ ︷
1, . . . , 1 >

and < 3 >, fA1 ⊆ An
1 , fA2 ⊆ An

2 and fA3 ⊆ An
3 .

1In our setting,
.
= denotes equality, that is, (x

.
= y) = T ⇐⇒ x = y. The symbol ≤k

denotes the relation ≤ with respect to k-ordering in a given bilattice.

2

We define a many-sorted formal language L to consist of symbols from
OPER.SYM, quantifier ∃ and the set of variables V = Vi : i ∈ SORT− {0}.

Note that in our setting εx1, . . . , xnXn replaces the usual Xn(x1, . . . , xn),
and expressions of the former type are formulae, but expressions of the latter
type are not.2

We define many-sorted annotated logic programs MSLP∗ to consist of Horn
clauses formed out of formulae of MSL∗ and written in a style of Lloyd [3].

3.1 Syntactical translation

We define a translation from BAPs into MSLP∗ in two stages: first we show the
translation for single formulae and then for the whole clauses.

Definition 3. For atomic annotated formulae we define
TRANSLBAP 7→MSL∗(R(x1, . . . , xn) : (µ, ν)) =
∀I∀x1, . . . , xn∀(µ′, ν′)((εx1, . . . , xnRn ⊃ (In(x1, . . . xn) .= (µ′, ν′)) ⊃ ((µ, ν) ≤k

(µ′, ν′))).

We will abbreviate TRANSLLAL7→MSL∗ as TRANSL∗.
Further, complex annotated formulae receive the following translation:

TRANSL∗(F1 ⊗ F2) = TRANSL∗(F1) ∧ TRANSL∗(F2).

TRANSL∗(ΣxF) = ∃xTRANSL∗(F).

Then the following holds:

Lemma 1. Let F be an annotated formula of bilattice-based annotated lan-
guage (BAL). Let Σ∗ and A be a signature respectively a structure of MSL∗,
and ||I be an interpretation for the BAL, then the following holds:

|F |I = 〈1, 0〉 in BAL ⇐⇒ A(TRANSL∗(F)) = T in MSL∗ .

The following translation can be given for bilattice-based annotated clauses.
For each clause of the form Rn(x1, . . . , xn) : (µ, ν) ← L1 : (µ1, ν1) ⊗ . . . ⊗ Ln :
(µn, νn) we obtain the following set of many-sorted clauses: (µ, ν) ≤k (µ′, ν′)←
εx1, . . . , xnRn ∧ I(x1, . . . , xn) .= (µ′, ν′) ∧ TRANSL∗∗(L1 : (µ1, ν1) ⊗ . . . ⊗ Ln :
(µn, νn));
I(x1, . . . , xn) .= (µ′, ν′)← εx1, . . . , xnRn ∧TRANSL∗∗(L1 : (µ1, ν1)⊗ . . .⊗Ln :
(µn, νn));
εx1, . . . , xnRn ← TRANSL∗∗(L1 : (µ1, ν1) ⊗ . . . ⊗ Ln : (µn, νn)). Further,
TRANSL∗∗ acts on the connective ⊗ precisely as TRANSL∗ does. For each
annotated literal Li : (µi, νi) = Rm

i (y1, . . . , ym) : (µi, νi) the translation function
TRANSL∗∗ gives the following result: TRANSL∗∗(Rm

i (y1, . . . , ym) : (µi, νi)) =
εy1, . . . , ymRm

i ∧ (Ii(y1, . . . , ym) .= (µ′i, ν
′
i)) ∧ ((µi, νi) ≤ (µ′i, ν

′
i)).

Thus, each BAP P can be translated into a many-sorted logic program
TRANSL∗∗(P). This program, in its turn, should be enriched with certain
axioms reflecting properties of .= and ≤k

3 and we will denote this enriched
program as P∗∗.

2Keeping this convention in mind, we will abuse the notation when using predicates
.
= and

≤k in order to make syntactical translation clearer.
3The axioms are ∀(x .

= x ←); ∀(f(x1, . . . , xy)
.
= f(y1, . . . , yn) ← (x1

.
= y1) ∧ . . . ∧ (x1

.
=

y1)); ∀(x ≤k x) ←; ∀(x � y) ← (y ≤k x) ∧ (x 6= y), ∀((x ≤k z) ← (x ≤k y) ∧ (y ≤k z));
∀((x�y) ≤k (x′�y′)← (x ≤k x′)∧ (y ≤k y′)), where � stands for any of bilattice operations
⊕,⊗; ∀(x ≤k (y ⊕ z)← (x ≤k y)); ∀((x⊗ y) ≤k z ← (x ≤k z)); ∀(〈0, 0〉 ≤k x←).

3

Using Lemma 1 we can prove the following:

Theorem 2. For any bilattice-based annotated logic program P and any an-
notated formula F , (P |= F)⇒ (P∗∗ |=S TRANSL∗∗(F)).

The Theorem 2 shows that BAPs (both languages and structures) can be
fully translated into conventional many-sorted logic programs. It is remark-
able that BAPs are translated into a fragment of many-sorted logic programs
which include conventional second-order logic programs, see [4]. In particular,
functions In are variables and this fact makes possible unifications of these func-
tions when applying method of resolution. And we briefly discuss it in the next
section.

4 Two SLD-resolutions

In [1] we introduced a sound and complete SLD-resolution for BAPs. This reso-
lution is essentially conventional SLD-resolution but reformulated and enriched
with several additional rules in order to reflect some properties of bilattices.
These extra rules make the resolution sound and complete, but at the same
time they make it rather bulky. On the contrary, many-sorted translation P∗∗
for each BAP P allows us to apply conventional SLD-resolution and this may
make computations clearer. Bilattice properties are reflected in additional ax-
ioms built into each P∗∗, and although the axioms can be used in process of
refutation, they do not change the very mechanisms of unification and refuta-
tion. The only complication in refutations for P∗∗ comparing with conventional
SLD-resolution given in [3] is that function and predicate symbols get involved
in the process of unification, and this happens because they all thought of as
being quantified.

Theorem 3. For any bilattice-based annotated logic program P and goal
G the following property holds: if P ∪ {← G} has a refutation, than P∗∗ ∪
TRANSL∗∗(← G) has a refutation.

References

[1] E. Komendantskaya and A. K. Seda. Sound and complete sld-resolution
for bilattice-based annotated logic programs. In Proceedings of the Interna-
tional Conference INFORMATION-MFCSIT’06, Cork, Ireland, August 1 –
5, 2006.

[2] E. Komendantskaya, A. K. Seda, and V. Komendantsky. On approxima-
tion of the semantic operators determined by bilattice-based logic programs.
In Proceedings of the Seventh International Workshop on First-Order Theo-
rem Proving (FTP’05), pages 112–130, Koblenz, Germany, September 15–17
2005.

[3] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 2nd
edition, 1987.

[4] M. Manzano. Introduction to many-sorted logic. In K. Meinke and J. V.
Tucker, editors, Many-Sorted logic and its Applications. John Wiley and
Sons, UK, 1993.

4

