
Logic Programs with Uncertainty: Neural
Computation and Automated Reasoning

Ekaterina Komendantskaya1 and Anthony Seda2

1 Department of Mathematics, University College Cork, Cork, Ireland
e.komendantskaya@mars.ucc.ie

2 Department of Mathematics, University College Cork, Cork, Ireland
a.seda@ucc.ie ? ??

Abstract. Bilattice-based annotated logic programs (BAPs) form a very
general class of programs which can handle uncertainty and conflicting
information. We use BAPs to integrate two alternative paradigms of com-
putation: specifically, we build learning artificial neural networks which
can model iterations of the semantic operator associated with each BAP
and introduce sound and complete SLD-resolution for this class of pro-
grams.
Key words: Logic programs, artificial neural networks, SLD-resolution

1 Introduction

The problem of reasoning with uncertainty and conflicting sources of information
has been a subject of research for quite a long time, see [1, 5, 6, 9], for example. In
[7], we defined very general annotated (first-order) logic programs (BAPs) based
on infinite bilattices. These logic programs can process information about facts
whilst incorporating conflicting or incomplete information about them. The se-
mantic operator TP defined in [7] for BAPs reflects some remarkable properties
of the least Herbrand model for BAPs. In this paper, we show that the computa-
tion of TP by connectionist neural networks requires the introduction of learning
functions into the structure of the networks. In this sense, we believe that BAPs
provide a suitable formalism for integrating the pure logical deduction of con-
nectionism and the properties of spontaneous learning manifested by artificial
neural networks (ANNs) thought of as nature-inspired models of computation.
We propose an SLD-resolution for BAPs which is the first sound and complete
proof procedure we know of for logic programs based on infinite (bi)lattices.

The structure of the paper is as follows. In §2, we summarise all the results
obtained in [7] in relation to the computation of the least Herbrand model for
BAPs. In §3, we build learning ANNs which are able to compute the least Her-
brand model for BAPs and prove this fact. In particular, we describe in §3 how
? The authors thank the Boole Centre for Research in Informatics (BCRI) at Univer-

sity College Cork for substantial support in the preparation of this paper.
?? The authors are grateful to three anonymous referees for their useful suggestions

concerning a preliminary version of the paper. We also thank D. Woods for providing
us with interesting examples of reasoning with uncertainty in complexity theory.

first-order fragments of BAPs can be approximated by ANNs. In §4, we intro-
duce sound and complete SLD-resolution for BAPs. In §5, we conclude by giving
a summary of our results.

2 Bilattice-Based Logic Programming

In this section, we survey some basic definitions and results obtained in [7]. We
use the well-known definition of bilattices due to Ginsberg, see [1].

Definition 1. A bilattice B is a sextuple (B,∨,∧,⊕,⊗,¬) such that (B,∨,∧)
and (B,⊕,⊗) are both complete lattices, and ¬ : B → B is a mapping satisfying
the following three properties: ¬2 = IdB, ¬ is a dual lattice homomorphism from
(B,∨,∧) to (B,∧,∨), and ¬ is the identity mapping on (B,⊕,⊗).

We use here the fact that each distributive bilattice can be regarded as a product
of two lattices, see [1]. Therefore, we consider only logic programs over distribu-
tive bilattices and regard the underlying bilattice of any program as a product
of two lattices. Moreover, we always treat each bilattice we work with as iso-
morphic to some subset of B = L1 × L2 = ([0, 1],≤) × ([0, 1],≤), where [0, 1]
is the unit interval of reals with the linear ordering defined on it.3 Throughout
this paper, we use B to denote the underlying bilattice of a given language.

In fact, we can use bilattice structures to formalize hypothetical and uncer-
tain reasoning of the sort humans beings are capable of carrying out.

Example 1. Hypothetical reasoning is natural when, for example, scientists face
an unsolvable problem which is, however, very important for their subject. Con-
sider, for example the “P 6= NP?” problem. Imagine two bright scientists Dr.
N and Dr. M employed by a university to solve it. The scientists consider some
related problems which may lead to the final proof of “P 6= NP”; for example,
“NP 6= coNP?” and “NC 6= NP?”. After a while, both scientists give proofs (both
are very long and need to be checked by someone): Dr. M has proven that “NP6=
coNP”, and Dr. N has proven that “NP=coNP”. If a two-valued logic program
receives the data, it will report a contradiction. Humans might, for example,
make the following conclusions. If “NP 6= coNP” and then “NP=coNP” were
proven, than no conclusions yet can be made about the “P 6= NP” problem. If
next Dr. M reports that “P 6= NP” and Dr. N reports that “P=NP”, it will be
possible to derive the evidence foe and against the statement “It is proven that
”NC6= NP”.

We need to introduce some formalism to reason in situations of the sort
described in Example 1. We define an annotated bilattice-based language L
3 Elements of such a bilattice are pairs: the first element of each pair denotes evidence

for a fact, and the second element denotes evidence against it. Thus, 〈1, 0〉 is the
analogue of “truth” and is maximal with respect to the truth ordering, while 〈1, 1〉
may be seen as “contradiction” (or “both”) and is maximal with respect to the
knowledge ordering.

to consist of individual variables, constants, functions and predicate symbols
together with annotation terms which can consist of variables, constants and/or
functions over a bilattice. We allow six connectives and two quantifiers, as follows:
⊕,⊗,∨,∧,¬,∼, Σ, Π.

An annotated formula is defined inductively as follows: if R is an n-ary
predicate symbol, t1, . . . , tn are terms, and (µ, ν) is an annotation term, then
R(t1, . . . , tn) : (µ, ν) is an annotated formula (called an annotated atom). Anno-
tated atoms can be combined to form complex formulae using the connectives
and quantifiers.

A bilattice-based annotated logic program (BAP) P consists of a finite set of
(annotated) program clauses of the form

A : (µ, ν) ← L1 : (µ1, ν1), . . . , Ln : (µn, νn),

where A : (µ, ν) denotes an annotated atom called the head of the clause, and
L1 : (µ1, ν1), . . . , Ln : (µn, νn) denotes L1 : (µ1, ν1) ⊗ . . . ⊗ Ln : (µn, νn) and is
called the body of the clause; each Li : (µi, νi) is an annotated literal called an
annotated body literal of the clause. Individual and annotation variables in the
body are thought of as being existentially quantified using Σ.

In [7], we showed how the remaining connectives ⊕,∨,∧ can be introduced
into BAPs. The definitions of the terms unit clause, program goal and pre-
interpretation are standard, see [8].

Let D, v, and J denote respectively a domain of (pre-)interpretation, a vari-
able assignment and a pre-interpretation for a given language, see [8]. An inter-
pretation I for L consists of J together with the following mappings. The first
mapping I assigns |R|I,v : Dn −→ B to each n-ary predicate symbol R in L.
Further, for each element 〈α, β〉 of B, we define a mapping χ〈α,β〉 : B −→ B,
where χ〈α,β〉(〈α′, β′〉) = 〈1, 0〉 if 〈α, β〉 ≤k 〈α′, β′〉 and χ〈α,β〉(〈α′, β′〉) = 〈0, 1〉
otherwise. The mapping χ is used to evaluate annotated formulae. Thus, if F
is an annotated atom R(t1, . . . , tn) : (µ, ν), then the value of F is given by
I(F) = χ〈µ,ν〉(|R|I,v(|t1|v, . . . , |tn|v)). Furthermore, using χ we can proceed to
give interpretation to complex annotated formulae in the standard way, see [7]
(or [6] for lattice-based interpretations of annotated logic programs). All the
connectives of the language are put into correspondence with bilattice opera-
tions, and in particular quantifiers correspond to infinite bilattice operations.
We call the composition of the two mappings I and χ an interpretation for the
bilattice-based annotated language L and for simplicity of notation denote it
by I. Indeed, the interpretations of BAPs possess some remarkable properties
which make the study of BAPs worthwhile, as follows.

Proposition 1. [7]

1. Let F be a formula, and fix the value I(F). If I(F : (α, β)) = 〈1, 0〉, then
I(F : (α′, β′)) = 〈1, 0〉 for all 〈α′, β′〉 ≤k 〈α, β〉.

2. I(F1 : (µ1, ν1)⊗ . . .⊗ Fk : (µk, νk)) = 〈1, 0〉 ⇐⇒ I(F1 : (µ1, ν1)⊕ . . .⊕ Fk :
(µk, νk)) = 〈1, 0〉 ⇐⇒ I(F1 : (µ1, ν1) ∧ . . . ∧ Fk : (µk, νk)) = 〈1, 0〉 ⇐⇒
each I(Fi : (µi, νi)) = 〈1, 0〉, where i ∈ {1, . . . , k}.

3. If I(F1 : (µ1, ν1) ¯ . . . ¯ Fk : (µk, νk)) = 〈1, 0〉, then I((F1 ¯ . . . ¯ Fk) :
((µ1, ν1) ¯ . . . ¯ (µk, νk))) = 〈1, 0〉, where ¯ is any one of the connectives
⊗,⊕,∧.

4. For every formula F , I(F : (0, 0)) = 〈1, 0〉.
These properties influence models for BAPs. In particular, we introduced in

[7] a semantic operator which shows how all the logical consequences of each
program can be computed.

Let I be an interpretation for L and let F be a closed annotated formula of
L. Then I is a model for F if I(F) = 〈1, 0〉. We say that I is a model for a set
S of annotated formulae if I is a model for each annotated formula of S. We
say that F is a logical consequence of S if, for every interpretation I of L, I is
a model for S implies I is a model for F .

Let BP and UP denote an annotation Herbrand base respectively Herbrand
universe for a program P , see [7] for further explanations. An annotation Her-
brand interpretation HI for P consists of the Herbrand pre-interpretation HJ
(see [8]) with domain HD of L together with the following: for each n-ary pred-
icate symbol in L, the assignment of a mapping from Un

L into B. In common
with conventional logic programming, each Herbrand interpretation HI for P
can be identified with the subset {R(t1, . . . , tk) : (α, β) ∈ BP |R(t1, . . . , tk) :
(α, β) receives the value 〈1, 0〉 with respect to HI} of BP it determines, where
R(t1, . . . , tk) : (α, β) denotes a typical element of BP . This set constitutes an
annotation Herbrand model for P . Finally, we let HIP,B denote the set of all
annotation Herbrand interpretations for P .

In [7], we introduced a semantic operator TP for BAPs, proved its continuity
and showed that it computes the least Herbrand model for a given BAP. Indeed,
we define TP next.

Definition 2. We define the mapping TP : HIP,B → HIP,B as follows: TP (HI)
denotes the set of all A : (µ, ν) ∈ BP such that either

1. There is a strictly ground instance of a clause A : (µ, ν) ← L1 : (µ1, ν1), . . . ,
Ln : (µn, νn) in P such that there exist annotations (µ′1, ν

′
1), . . . , (µ

′
n, ν′n)

satisfying {L1 : (µ′1, ν
′
1), . . . , Ln : (µ′n, ν′n)} ⊆ HI, and one of the following

conditions holds for each (µ′i, ν
′
i):

(a) (µ′i, ν
′
i) ≥k (µi, νi),

(b) (µ′i, ν
′
i) ≥k ⊕j∈Ji(µj , νj), where Ji is the finite set of those indices such

that Lj = Li

or
2. there are annotated strictly ground atoms A : (µ∗1, ν

∗
1), . . . , A : (µ∗k, ν∗k) ∈ HI

such that 〈µ, ν〉 ≤k 〈µ∗1, ν∗1 〉 ⊕ . . .⊕ 〈µ∗k, ν∗k〉.4
Semantic operators defined for many logic programs as in the papers of Fitting
and Van Emden (and other authors) use only some form of item 1.a from Defini-
tion 2. However, this condition is not sufficient for computation of the Herbrand
models for (bi)lattice-based logic programs.
4 Note that whenever F : (µ, ν) ∈ HI and (µ′, ν′) ≤k (µ, ν), then F : (µ′, ν′) ∈ HI.

Also, for each formula F , F : (0, 0) ∈ HI.

Example 2. Consider the logic program: B : (0, 1) ←, B : (1, 0) ←, A : (0, 0) ←
B : (1, 1), C : (1, 1) ← A : (1, 0), A : (0, 1). We can regard this program as for-
malizing Example 1. Let B stand for “NP 6= coNP”, A stand for “P 6= NP” and
C stand for “It is proven that “NC 6= NP”, annotations (0, 0), (0, 1), (1, 0), (1, 1)
express respectively “no proof/refutation is given”, “proven”, “proven the oppo-
site” and “contradictory, or proven both the statement and the opposite”. The
least fixed point of TP is TP ↑ 3 = {B : (0, 1), B : (1, 0), B : (1, 1), A : (0, 0), C :
(1, 1)}, precisely the conclusions we mentioned in Example 1. However, the item
1.a (corresponding to the classical semantic operator) would allow us to com-
pute only TP ↑ 1 = {B : (0, 1), B : (1, 0)}, that is, only explicit consequences of
a program, which then leads to a contradiction in the two-valued case. In the
same way, the properties stated in Proposition 1 suggest that there can be some
implicit logical consequences which can be derived if we take into consideration
the underlying (bi)lattice structure of the program.

3 Neural Networks for Reasoning with Uncertainty

3.1 Connectionist Networks: Some Basic Definitions

In this subsection, we follow closely [3] and [4]. A connectionist network is a
directed graph. A unit k in this graph is characterized, at time t, by its input
vector (ik1(t), . . . iknk

(t)), its potential pk(t) ∈ IR, its threshold Θk ∈ IR, and its
value vk(t). Units are connected via a set of directed and weighted connections.
If there is a connection from unit j to unit k, then wkj ∈ IR denotes the weight
associated with this connection, and ikj(t) = wkjvj(t) is the input received by
k from j at time t. The units are updated synchronously. In each update, the
potential and value of a unit are computed with respect to an activation and
an output function respectively. All units considered in this paper compute their
potential as the weighted sum of their inputs minus their threshold:

pk(t) =

nk∑

j=1

wkjvj(t)

−Θk.

The units are updated synchronously, time becomes t+∆t, and the output value
for k, vk(t+∆t) is calculated from pk(t) by means of a given output function ψ,
that is, vk(t+∆t) = ψ(pk(t)). The output function ψ we use in this paper is the
binary threshold function H, that is, vk(t+∆t) = H(pk(t)), where H(pk(t)) = 1
if pk(t) > 0 and 0 otherwise. Units of this type are called binary threshold units.

In this paper, we will only consider connectionist networks where the units
can be organized in layers. A layer is a vector of units. An n-layer feedforward
network F consists of the input layer, n− 2 hidden layers, and the output layer,
where n ≥ 2. Each unit occurring in the i-th layer is connected to each unit
occurring in the (i + 1)-st layer, 1 ≤ i < n. Let r and s be the number of units
occurring in the input and output layers, respectively. A connectionist network F
is called a multilayer feedforward network if it is an n-layer feedforward network

for some n. A miltilayer feedforward network F computes a function fF : IRr →
IRs as follows. The input vector (the argument of fF) is presented to the input
layer at time t0 and propagated through the hidden layer to the output layer. At
each time point, all units update their potential and value. At time t0+(n−1)∆t,
the output vector (the image under fF of the input layer) is read off the output
layer.

3.2 Neural Networks and Propositional BAPs.

Hölldobler et al. defined in [4] ANNs which are capable of computing the immedi-
ate consequence operator TP for classical propositional logic programs. However,
these ANNs cannot “learn” new information, that is, they cannot change their
weights either with supervision or without it.

We extend this approach to learning ANNs which can compute logical con-
sequences of BAPs. This will allow us to introduce hypothetical and uncertain
reasoning into the framework of neural-symbolic computation. Bilattice-based
logic programs can work with conflicting sources of information and inconsis-
tent databases. Therefore, ANNs corresponding to these logic programs should
reflect this facility as well, and this is why we introduce some forms of learn-
ing into ANNs. These forms of leaning can be seen as corresponding to a sort
of unsupervised Hebbian learning, which is commonly used in the context of
ANNs. The general idea behind Hebbian learning is that positively correlated
activities of two neurons strengthen the weight of the connection between them
and that uncorrelated or negatively correlated activities weaken the weight of
the connection (the latter form is known as Anti-Hebbian learning).

The general conventional definition of Hebbian learning is given as follows,
see [2] for example. Let k and j denote two neurons and wkj denote a weight of
the connection from j to k. We denote the value of j at time t as vj(t) and the
potential of k at time t as pk(t). Then the rate of change in the weight between
j and k is expressed in the form

∆wkj(t) = F (vj(t), pk(t)),

where F is some function. As a special case of this formula, it is common to
write

∆wkj(t) = η(vj(t))(pk(t)),

where η is a constant that determines the rate of learning and is positive in case of
Hebbian learning and negative in case of Anti-Hebbian learning. In this section,
we will compare the two learning functions we introduce with this conventional
definition of Hebbian learning.

First, we prove a theorem establishing a relationship between learning ANNs
and bilattice-based annotated logic programs with no function symbols occur-
ring either in the predicate symbols or in the annotations. (Since the Herbrand
base for these programs is finite, they can equivalently be seen as propositional
bilattice-based logic programs with no functions allowed in the annotations.) In
the next subsection, we will extend the result to first-order BAPs with functions
in individual and annotation terms.

Theorem 1. For each function-free BAP P , there exists a 3-layer feedforward
learning ANN which computes TP .

Proof. Let m and n be the number of strictly ground annotated atoms from
the annotation Herbrand base BP and the number of clauses occurring in P
respectively. Without loss of generality, we may assume that the annotated atoms
are ordered. The network associated with P can now be constructed by the
following translation algorithm.

1. The input and output layers are vectors of binary threshold units of length k,
where the i-th unit in the input and output layers represents the i-th strictly
ground annotated atom, 1 ≤ k ≤ m. The threshold of each unit occurring in
the input or output layer is set to 0.5.

2. For each clause of the form A : (α, β) ← B1 : (α1, β1), . . . , Bm : (αm, βm),
m ≥ 0, in P do the following.
2.1 Add a binary threshold unit c to the hidden layer.
2.2 Connect c to the unit representing A : (α, β) in the output layer with

weight 1. We will call connections of this type 1-connections.
2.3 For each atom Bj : (αj , βj) in the input layer, connect the unit repre-

senting Bj : (αj , βj) to c and set the weight to 1. (We will call these
connections 1-connections also.)

2.4 Set the threshold θc of c to l − 0.5, where l is the number of atoms in
B1 : (α1, β1), . . . , Bm : (αm, βm).

2.5 If an input unit representing B : (α, β) is connected to a hidden unit
c, connect each of the input units representing annotated atoms Bi :
(αi, βi), . . . , Bj : (αj , βj), where (Bi = B), . . . , (Bj = B), to c. These
connections will be called ⊗-connections. The weights of these connec-
tions will depend on a learning function. If the function is inactive, set
the weight of each ⊗-connection to 0.

3. If there are units representing atoms of the form Bi : (αi, βi), . . . , Bj :
(αj , βj), where Bi = . . . = Bj in input and output layers, correlate them as
follows. For each Bi : (αi, βi), connect the unit representing Bi : (αi, βi) in
the input layer to each of the units representing Bi : (αi, βi), . . . , Bj : (αj , βj)
in the output layer. These connections will be called the ⊕-connections. If
an ⊕-connection is set between two atoms with different annotations, we
consider them as being connected via hidden units with thresholds 0. If an
⊕-connection is set between input and output units representing the same
annotated atom B : (α, β), we set the threshold of the hidden unit connect-
ing them to −0.5, and we will call them ⊕-hidden units, so as to distinguish
the hidden units of this type. The weights of all these ⊕-connections will
depend on a learning function. If the function is inactive, set the weight of
each ⊕-connection to 0.

4. Set all the weights which are not covered by these rules to 0.

Allow two learning functions to be embedded into the ⊗ -connections and the
⊕ -connections. We let vi denote the value of the neuron representing Bi : (αi, βi)
and pc denote the potential of the unit c.

Let a unit representing Bi : (αi, βi) in the input layer be denoted by i. If i
is connected to a hidden unit c via an ⊗ -connection, then a learning function
φ1 is associated to this connection. We let φ1 = ∆wci(t) = (vi(t))(−pc(t) + 0.5)
become active and change the weight of the ⊗-connection from i to c at time t
if units representing atoms Bj : (αj , βj), . . . , Bk : (αk, βk) (Bi = Bj = . . . = Bk)
became activated at time t−∆t, they are connected to c via 1-connections and
〈αi, βi〉 ≥k (〈αj , βj〉 ⊗ . . .⊗ 〈αk, βk〉).

Function φ2 is embedded only into connections of type ⊕, namely, into ⊕-
connections between hidden and output layers. Let o be an output unit represent-
ing an annotated atom Bi : (αi, βi). Activate φ2 = ∆woc(t) = (vc(t))(po(t)+1.5)
at time t if it is embedded into an ⊕-connection from the ⊕- hidden unit c to o
and there are output units representing annotated atoms Bj : (αj , βj), . . . , Bk :
(αk, βk), where (Bi = Bj), . . . , (Bi = Bk), which are connected to the unit o
via ⊕-connections, these output units became activated at time t − 2∆t and
〈αi, βi〉 ≤k (〈αj , βj〉 ⊕ . . .⊕ 〈αk, βk〉).

Each interpretation I for P can be represented by a binary vector (v1, . . . , vm).
Such an interpretation is given as an input to the network by externally activat-
ing corresponding units of the input layer at time t0. It remains to show that
A : (α, β) ∈ TP ↑ n for some n if and only if the unit representing A : (α, β)
becomes active at time t0 +2∆t, for some ∆t. The proof that this is so proceeds
by routine induction.

Example 3. The following diagram displays the neural network which computes
TP ↑ 3 from Example 2. Without functions φ1, φ2 the ANN will compute only
TP ↑ 1 = {B : (0, 1), B : (1, 0)}, explicit logical consequences of the program.
Note that arrows // , //___ , // denote respectively 1-connections,
⊗-connections and ⊕-connections, and we have marked by φ1, φ2 the connections
which are activated by the learning functions.5

A:(1,1) A:(1,0) A:(0,1) A:(0,0) B:(1,1) B:(1,0) B:(0,1) B:(0,0) C:(1,1) C:(1,0) C:(0,1) C:(0,0)

?>=<89:;0.5 ?>=<89:;0.5 ?>=<89:;0.5 ?>=<89:;0.5 ?>=<89:;0.5 ?>=<89:;0.5 ?>=<89:;0.5 ?>=<89:;0.5 ?>=<89:;0.5 ?>=<89:;0.5 ?>=<89:;0.5 ?>=<89:;0.5

φ2 φ2

GFED@ABC−0.5

OO

GFED@ABC−0.5

OO

GFED@ABC−0.5

OO

?>=<89:;0.5

OO

GFED@ABC−0.5

OO

GFED@ABC−0.5

OO

GFED@ABC−0.5

OO

GFED@ABC−0.5

OO

?>=<89:;1.5

OO

GFED@ABC−0.5

OO

GFED@ABC−0.5

OO

GFED@ABC−0.5

OO

φ1

φ1

?>=<89:;0.5

33hhhhhhhhhhhhhhhhhhhhh

OO

KK GG DD

?>=<89:;0.5

44iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

OO

SS KK HH

?>=<89:;0.5

55jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

OO

SSWW KK

?>=<89:;0.5

66mmmmmmmmmmmmmm

OO

SSVVZZ

?>=<89:;0.5

VV----------

OO

KK OO CC

?>=<89:;0.5

^^=
=

=
=

=
=

=

SS

OO

KK OO

?>=<89:;0.5

ddH
H

H
H

H
H

H
H

H

KKOO SS

OO

?>=<89:;0.5

ggN N N N N N N N N N N

OO

SSOO[[

?>=<89:;0.5

OO

KK HH DD

?>=<89:;0.5

SS

OO

KK GG

?>=<89:;0.5

VV SS

OO

KK

?>=<89:;0.5

ZZ WW SS

OO

A:(1,1) A:(1,0) A:(0,1) A:(0,0) B:(1,1) B:(1,0) B:(0,1) B:(0,0) C:(1,1) C:(1,0) C:(0,1) C:(0,0)

5 According to the conventional definition of feedforward ANNs, each output neuron
denoting some atom is in turn connected to the input neuron which denotes the same
atom via a 1-connection and thus forms a loop. We do not draw these connections
here.

We can make several conclusions from the construction of Theorem 1.

– Neurons representing annotated atoms with identical first-order (or propo-
sitional) components are joined into multineurons in which neurons are cor-
related using ⊕- and ⊗-connections.

– The learning function φ2 roughly corresponds to Hebbian learning, with the
rate of learning η2 = 1, the learning function φ1 corresponds to Anti-Hebbian
learning with the rate of learning 1, and we can regard η1 as negative because
the factor pc in the formula for φ1 is multiplied by (−1).

– The main problem Hebbian learning causes is that the weights of connections
with embedded learning functions tend to grow exponentially, which cannot
fit the model of biological neurons. This is why traditionally some functions
are introduced to bound the growth. In the ANNs we have built some of the
weights may grow with iterations, but the growth will be very slow, because
of the activation functions, namely, binary threshold functions, used in the
computation of each vi.

3.3 Neural Networks and First-Order BAPs

Since ANNs were proven to compute least fixed points of the semantic operator
defined for propositional logic programs, many attempts have been made to
extend this result to first-order logic programs. See, for example, [3], [10]. We
extend here the result obtained by Seda [10] for two-valued first-order logic
programs and their representations by ANNs to first-order BAPs.

Let l : BP → IN be a level mapping with the property that, given n ∈ IN, we
can effectively find the set of all A : (µ, ν) ∈ BP such that l(A : (µ, ν)) = n. The
following definition is due to Fitting, and for further explanation see [10] or [7].

Definition 3. Let HIP,B be the set of all interpretations BP → B. We define the
ultrametric d : HIP,B×HIP,B → IR as follows: if HI1 = HI2, we set d(HI1, HI2) =
0, and if HI1 6= HI2, we set d(HI1, HI2) = 2−N , where N is such that HI1 and
HI2 differ on some ground atom of level N and agree on all atoms of level less
then N .

Fix an interpretation HI from elements of the Herbrand base for a given
program P to the set of values {〈1, 0〉, 〈0, 1〉}. We assume further that 〈1, 0〉 is
encoded by 1 and 〈0, 1〉 is encoded by 0. Let HIP denote the set of all such inter-
pretations, and take the semantic operator TP as in Definition 2. Let F denote a
3-layer feedforward learning ANN with m units in the input and output layers.
The input-output mapping fF is a mapping fF : HIP → HIP defined as fol-
lows. Given HI ∈ HIP , we present the vector (HI(B1 : (α1, β1)), . . . ,HI(Bm :
(αm, βm))), to the input layer; after propagation through the network, we de-
termine fF (HI) by taking the value of fF (HI)(Aj : (αj , βj)) to be the value
in the jth unit in the output layer, j = 1, . . . ,m, and taking all other values of
fF (HI)(Aj : (αj , βj)) to be 0.

Suppose that M is a fixed point of TP . Following [10], we say that a family
F = {Fi : i ∈ I} of 3-layer feedforward learning network Fi computes M if

there exists HI ∈ HIP such that the following holds: given any ε > 0, there
is an index i ∈ I and a natural number mi such that for all m ≥ mi we have
d(fm

i (HI),M) < ε, where fi denotes fFi
and fm

i (HI) denotes the mth iterate
of fi applied to HI.

Theorem 2. Let P be an arbitrary annotated program, let HI denote the least
fixed point of TP and suppose that we are given ε > 0. Then there exists a
finite program P = P (ε) (a finite subset of ground(P)) such that d(HI, HI) < ε,
where HI denotes the least fixed point of TP . Therefore, the family {Fn|n ∈ IN}
computes HI, where Fn denotes the neural network obtained by applying the
algorithm of Theorem 1 to Pn, and Pn denotes P (ε) with ε taken as 2−n for
n = 1, 2, 3,

This theorem clearly contains two results corresponding to the two separate
statements made in it. The first concerns finite approximation of TP , and is a
straightforward generalization of a theorem established in [10]. The second is an
immediate consequence of the first conclusion and Theorem 1. Thus, we have
shown that the learning ANNs we have built can approximate the least fixed
point of the semantic operator defined for first-order BAPs.

4 SLD-Resolution for BAPs

We propose a sound and complete proof procedure for BAPs as an alternative
computational paradigm to ANNs. It can be particularly useful for programs
whose annotation Herbrand Base is infinite, because in this case it may be prob-
lematical to build ANNs approximating the least fixed point of TP . As far as
we know, this is the first sound and complete proof procedure for first-order
infinitely interpreted (bi)lattice-based annotated logic programs. Compare, for
example, our results with those obtained for constrained resolution for GAPs,
which was shown to be incomplete, see [6], or with sound and complete (SLD)-
resolutions for finitely-interpreted annotated logic programs (these logic pro-
grams do not contain annotation variables and annotation functions), see, for
example, [5, 9]. We proceed with the definition of our proof procedure for BAPs.

We adopt the following terminology. Let P be a BAP and let G be a goal
← A1 : (µ1, ν1), . . . , Ak : (µk, νk). An answer for P ∪ {G} is a substitution θλ
for individual and annotation variables of G. We say that θλ is a correct answer
for P ∪ {G} if Π((A1 : (µ1, ν1), . . . , Ak : (µk, νk))θλ) is a logical consequence of
P .

Definition 4 (SLD-derivation). Let Gi be the annotated goal
← A1 : (µ1, ν1), . . . , Ak : (µk, νk), and let C,C∗1 , . . . , C∗l be the annotated clauses
A : (µ, ν) ← B1 : (µ′1, ν

′
1), . . . , Bq : (µ′q, ν′q), A∗1 : (µ∗1, ν

∗
1) ← body∗1, . . . , A∗l :

(µ∗l , ν
∗
l) ← body∗l . Then the set of goals G1

i+1, . . . , G
m
i+1 is derived from Gi and

C (and C∗1 , . . . , C∗l) using mgu6 θλ if the following conditions hold.

1. Am : (µm, νm) is an annotated atom, called the selected atom, in G.
6 Throughout this section, mgu stands for “most general unifier”.

2. θ is an mgu of Am and A, and one of the following conditions holds:
(a) λ is an mgu of (µm, νm) and (µ, ν);
(b) (µm, νm)λ and (µ, ν)λ are constants and (µ, ν)λ ≥k (µm, νm)λ;
(c) there are clauses C∗1 , . . . , C∗l of the form A∗1 : (µ∗1, ν

∗
1) ← body∗1, . . . , A∗l :

(µ∗l , ν
∗
l) ← body∗l in P , such that θ is an mgu of A, Am and A∗1, . . . , A

∗
l ,

λ is an mgu of (µm, νm), (µ, ν) and (µ∗1, ν
∗
1), . . . , (µ∗l , ν

∗
l) or (µm, νm)λ,

(µ, ν)λ and (µ∗, ν∗)λ, . . . , (µ∗l , ν
∗
l)λ are constants such that (µm, νm)λ ≤k

((µ, ν)λ⊕ (µ∗1, ν
∗
1)λ⊕ . . .⊕ (µ∗l , ν

∗
l)λ).

3. in case 2(a), 2(b), Gi+1 = (← A1 : (µ1, ν1), . . . , Am−1 : (µm−1, νm−1), B1 :
(µ′1, ν

′
1), . . . , Bq : (µ′q, ν′q), Am+1 : (µm+1, νm+1), . . . , Ak : (µk, νk))θλ.

4. in case 2(c), Gi+1 = (← A1 : (µ1, ν1), . . . , Am−1 : (µm−1, νm−1), B1 :
(µ′1, ν

′
1), . . . , Bq : (µ′q, ν′q), body

∗
1, . . . , body

∗
l , Am+1 : (µm+1, νm+1), . . . , Ak :

(µk, νk))θλ.
In this case, Gi+1 is said to be derived from Gi, C and C∗1 , . . . , C∗l using θλ.

5. The goals G1
i+1, . . . , G

m
i+1 can be obtained using the following rules: in case

there are atomic formulae Fi : (µi, νi), Fi+1 : (µi+1, νi+1), . . . , Fj : (µj , νj)
in Gi such that Fiθ = Fi+1θ = . . . = Fjθ, form the next goal G1

i+1 = Fiθ :
((µi, νi) ⊗ (µi+1, νi+1)), . . . , Fj : (µj , νj), then G2

i+1 = Fi : (µi, νi), Fiθ :
((µi+1, νi+1)⊗ (µi+2, νi+2)), . . . , Fj : (µj , νj) and so on for all possible com-
binations of these replacements. Form the set of goals G1

i+1, . . . , G
m
i+1, which

is always finite and can be effectively enumerated by, for example, enumerat-
ing goals according to their leftmost replacements and then according to the
number of replacements.

6. Whenever a goal Gi
j contains a formula of the form F : (0, 0), then remove

F : (0, 0) from the goal and form the next goal Gi
j+1.

Definition 5. Suppose that P is a BAP and G0 is a goal. An SLD-derivation
of P ∪ {G0} consists of a sequence G0, G

i
1, G

j
2 . . . of BAP goals, a sequence

C1, C2, . . . of BAP clauses and a sequence θ1λ1, θ2λ2, . . . of mgus such that each
Gk

i+1 is derived from Gj
i and Ci+1 using θi+1λi+1.

An SLD-refutation of P ∪ {G0} is a finite SLD-derivation of P ∪ {G} which
has the empty clause ¤ as the last goal of the derivation. If Gi

n = ¤, we say that
the refutation has length n.

The success set of P is the set of all A : (µ, ν) ∈ BP such that P ∪ {∼ A} has
an SLD-refutation.

Theorem 3 (Soundness and completeness of SLD-resolution). The suc-
cess set of P is equal to its least annotation Herbrand model. Alternatively,
soundness and completeness can be stated as follows. Every computed answer
for P ∪ {G} is a correct answer for P ∪ {G}, and for every correct answer θλ
for P ∪ {G}, there exist a computed answer θ∗λ∗ for P ∪ {G} and substitutions
ϕ, ψ such that θ = θ∗ϕ and λ = λ∗ψ.

5 Conclusions and Further Work

We have shown that the logical consequences of the BAPs introduced in [7]
can be computed by artificial neural networks with learning functions. Certain

constructions in the ANNs we have built for BAPs appear to be novel, and
the question concerning the relationship between quantitative (bi)lattice-based
logic programming and learning neural networks is itself quite novel. The BAPs
were shown to be a very general formalism for reasoning about uncertainty and
conflicting sources of information. In [7], we showed that implication-based logic
programs á la van Emden and the annotation-free bilattice-based logic programs
of [1] can be translated into the language of BAPs, and iterations of the semantic
operators usually associated with these logic programs were shown to correspond
to iterations of TP . These results extend bounds for further implementation of
the ANNs we have introduced in the paper. The sound and complete SLD-
resolution we have introduced for BAPs will serve as a complementary technique
when working with BAPs having infinite annotation Herbrand base.

References

1. M. C. Fitting. Bilattices in logic programming. In G. Epstein, editor, The twentieth
International Symposium on Multiple-Valued Logic, pages 238–246. IEEE, 1990.

2. S. Haykin. Neural Networks. A comprehensive Foundation. Macmillan College
Publishing Company, 1994.

3. P. Hitzler, S. Hölldobler, and A. K. Seda. Logic programs and connectionist net-
works. Journal of Applied Logic, 2(3):245–272, 2004.

4. S. Hölldobler, Y. Kalinke, and H. P. Storr. Approximating the semantics of logic
programs by recurrent neural networks. Applied Intelligence, 11:45–58, 1999.

5. M. Kifer and E. L. Lozinskii. Ri: A logic for reasoning with inconsistency. In
Proceedings of the 4th IEEE Symposium on Logic in Computer Science (LICS),
pages 253–262, Asilomar, 1989. IEEE Computer Press.

6. M. Kifer and V. S. Subrahmanian. Theory of generalized annotated logic program-
ming and its applications. Journal of logic programming, 12:335–367, 1991.

7. E. Komendantskaya, A. K. Seda, and V. Komendantsky. On approximation of the
semantic operators determined by bilattice-based logic programs. In Proceedings of
the Seventh International Workshop on First-Order Theorem Proving (FTP’05),
pages 112–130, Koblenz, Germany, September 15–17 2005.

8. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 2nd edition,
1987.

9. J. J. Lu, N. V. Murray, and E. Rosental. Deduction and search strategies for
regular multiple-valued logics. Journal of Multiple-valued logic and soft computing,
11:375–406, 2005.

10. A. K. Seda. On the integration of connectionist and logic-based systems. In
T. Hurley, M. Mac an Airchinnigh, M. Schellekens, A. K. Seda, and G. Strong,
editors, Proceedings of MFCSIT2004, Trinity College Dublin, July, 2004, Electronic
Notes in Theoretical Computer Science. Elsevier, 2005. To appear.

