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Syntax of Horn-clause Logic

First-order signature Σ
constants;

function symbols;

predicates;

variables;

connectives ∧,∨,¬;

quantifiers ∀, ∃

Standard definition of first-order term and formula. Atom is a formula
containing no connectives or quantifiers; literal is an atom or a negation of
an atom.

A clause is a formula ∀x1, . . . xn(L1 ∨ . . . ∨ Lm),

where each L is a literal; and x1, . . . xn – are all variables occurring in
L1, . . . Lm.
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Syntax of Horn-clause Logic

Notation for clauses

∀x1, . . . xn(A1 ∨ . . . ∨ Am ∨ ¬B1 ∨ . . . ∨ ¬Bk)
is denoted by
A1, . . . ,Am ← B1, . . . ,Bk

Horn Clauses

a definite clause A← B1, . . . ,Bk or

a goal ← B1, . . . ,Bk

A (definite) logic program is a finite set of definite clauses

... Gives us a Turing-complete programming language.
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Example: lists of natural numbers

Example

nat(0) ←
nat(s(x)) ← nat(x)

list(nil) ←
list(cons(x,y)) ← nat(x), list(y)
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The Semantics game:

Programming language

Declarative
(denotational)

semantics

Operational
semantics
::

//oo

ee
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Herbrand models for Logic Programs

[70s-80s: Apt, van Emden, Kowalski]

Herbrand Universe and Herbrand Base for a program P

UP – the set of all ground terms formed from Σ

BP – the set of all ground atoms formed from Σ

Herbrand interpretation for P

Domain of interpretation is UP

Constants in P are assigned themselves in UP

If f n ∈ P, it is assigned the mapping (UP)n → UP defined by
(t1, . . . , tn)→ f (t1, . . . , tn).

If Qn ∈ P, it is assigned a mapping (UP)n → {true, false}.

Herbrand interpretation is often identified with a subset of the Herbrand
base – the set of all ground atoms that are true under the interpretation.
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Herbrand Models

Herbrand model for P is an Herbrand interpretation for atoms over ΣP

which is a model for P.

The model intersection property

given a set of non-empty Herbrand models {Mi} for P,
⋂

i Mi is a model
for P, also known as the least Herbrand model of P, denoted by MP .

The set of all Herbrand interpretations for a program P forms a complete
lattice under the partial order of set inclusion; the top element of this
lattice is BP and the bottom element is ∅.
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Fixed point semantics

If HI is a Herbrand interpretation for P, define
TP(HI ) = {t ∈ BP |
t ← t1, . . . , tn is a ground instance of a clause in P and
t1, . . . , tn ⊆ HI}.

Some properties; making use of Knaster-Tarski and Kleene theorems

TP is monotonic and continuous
MP = lfp(TP) = TP ↑ ω

gfp(TP) = TP ↓ α, α may be greater than ω

With standard definitions:

TP ↑ 0 = ⊥ T ↓ 0 = >
TP ↑ α = TP(TP ↑ (α− 1)) Tp ↓ α = TP(TP ↓ (α− 1)) α is a succes-

sor ordinal
TP ↑ α = lub{TP ↑ β|β < α} TP ↓ α = glb{TP ↓ β|β < α} α is a limit or-

dinal
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Example:

For NatList:
TP ↑ ω =
{nat(0), nat(s(0)), nat(s(s(0))), . . .)
list(cons(0, nil)), list(cons(s(0), nil)), list(cons(s(s(0)), nil)), . . .
list(cons(0, cons(0, nil))), list(cons(s(0), cons(0, nil))),
list(cons(s(s(0)), cons(0, nil))), . . .
...
}
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“Operational Semantics” (?)

SLD resolution + Unification
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SLD-resolution + unification in LP derivations.

Program NatList:

Example

nat(0) ←
nat(s(x)) ← nat(x)

list(nil) ←
list(cons(x,y)) ← nat(x),

list(y)

← list(cons(x, y))
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SLD-resolution (+ unification) in LP derivations.

Example

nat(0) ←
nat(s(x)) ← nat(x)

list(nil) ←
list(cons(x,y)) ← nat(x),

list(y)

← list(cons(x, y))

← nat(x), list(y)

← list(y)
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SLD-resolution (+ unification) in LP derivations.

Example

nat(0) ←
nat(s(x)) ← nat(x)

list(nil) ←
list(cons x y) ← nat(x),

list(y)

← list(cons(x, y))

← nat(x), list(y)

← list(y)

← �
The answer is x/O, y/nil , but we can get more substitutions by
backtracking. We can backtrack infinitely many times, but each time
computation will terminate.
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Soundness and Completeness

[70s-80s: Apt, van Emden, Kowalski]

Theorem (Soundness and Completeness of Derivations)

Soundness. Given a logic program P, and an atom A, if there is a
refutation for P and ← A, then there is a grounding substitution θ, such
that θ(A) ∈ MP .
Completeness. Given a logic program P, and an atom A ∈ MP , there is a
refutation for A.
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Corecursion in LP?

Program Stream:

Example

bit(0) ←
bit(1) ←
stream(scons(x,y)) ←

bit(x), stream(y)

No answer, as derivation never
terminates.
Semantics may go wrong as well:
gfp(TP) will contain an infinite
term corresponding to stream: so
completeness fails.

← stream(scons(x, y))

← bit(x), stream(y)

← stream(y)

← bit(x1), stream(y1)

← stream(y1)

← bit(x2), stream(y2)

← stream(y2)

...
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A quick look at Greatest Fixed point semantics

[80s: Abdallah, van Emden, Lloyd]

Extend U ′P to contain infinite terms;

Extend B ′P to contain infinite atoms;

Amend T ′P and M ′P accordingly.

M ′P = lfp(T ′P) = T ′P ↑ ω
gfp(T ′P) = T ′P ↓ ω

Instead of SLD-resolution: – “computation of an infinite atom at infinity”.
Soundness, but not completeness...
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Computation at infinity...

Program BitList:

Example

bit(0) ←
bit(1) ←
bitlist(scons(x, y)) ←

bitlist(x), bitlist(y)

list(nil) ←

← bitlist(scons(x, y))

← bit(x), bitlist(y)

← bitlist(y)

← bit(x1), bitlist(y1)

← bitlist(y1)

← bit(x2), bitlist(y2)

← bitlist(y2)

...
At infinity, converges to bitlist(scons(0,scons(0,scons(0, . . . )
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Problems...

This “operational semantics” does not give us any formal support to
analyse termination

What does it mean if your program does not terminate?

May be it is a corecursive program, like Stream...

May be it is a recursive program, but badly ordered, like BitList...

Or may be it is a recursive program with coinductive interpretation?
(again, BitList)

Or may be it is just some bad loop without particular computational
meaning:

badstream(scons(x , y))← badstream(scons(x , y))

What kind of semantic support for (co)recursion is possible?
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Looking for Inspiration

Lets take a (hopefully useful) detour into typeful functional languages
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Inductive Types and Recursive Functions

Inductive list (A : Type) : Type :=

| nil : list A

| cons : A -> list A -> list A.

Recursive functions have arguments of inductive types.

Fixpoint length (A:Type) (l: list A) : nat :=

match l with

| nil => O

| cons l’ => S (length l’)

end.
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Termination

Universal Termination

A recursive function is terminating, if it terminates for all possible (legal)
inputs.

“Easy” to reason about, as legal input is defined by constructors;
checking for structural recursion is one elegant way to decide termination.

Fixpoint length (A:Type) (l: list A) : nat :=

match l with

| nil => O

| cons l’ => S (length l’)

end.
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Coinductive Types and Corecursive Functions

CoInductive stream (A:Set) : Set :=

SCons: A -> stream A -> stream A.

Corecursive functions have outputs of coinductive types. (Type of input
arguments is not important.)

CoFixpoint map (s:Stream A) : Stream B :=

SCons (f (hd s)) (map (tl s)).
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Productivity
Values in co-inductive types are productive when all observations of
fragments made using recursive functions are guaranteed to be computable
in finite time.

The element of the stream at position n can be found by:

Definition {
nth 0 (SCons a tl) = a

nth (S n) (SCons a tl) = nth n tl

A given stream s is productive if we can be sure that the computation of
nth n s is guaranteed to terminate, whatever the value of n is.

We call a function productive, if, for any given input, it outputs a
productive value.

CoFixpoint map (s:Stream A) : Stream B :=

SCons (f (hd s)) (map (tl s)).
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To notice:

Recursive function

Terminating Non-terminating

Syntactic decision: e.g. structural recursion

Corecursive function

Productive Non-productive

Syntactic decision: e.g. guardedness

>>gg cc 99

The role of inductive and coinductive types in definition of recursive
and corecursive functions

The role of constructors and (co)-pattern matching
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Termination in LP

no types to make distinction between types and functions, recursion
and corecursion, “constructors” and “just function symbols”;

Searching strategies/clause order impact termination;

No general agreement in the literature on what “termination” is;

Termination is often an existential property

Example

The query bitstream(scons(0,1))? will terminate, whereas
bitstream(scons(0,y))? – would not.

“Input”/“output” of “functions” are not defined in advance: “lack of
directionality” impacts termination

Example

add(0,y,y)←
add(s(x),y,s(z)) ← add(x,y,z)
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Recursion and Corecursion in Logic Programming

1 in the 70s-80s: Apt, van Emden, Kowalski: study of recursion and
least Herbrand model semantics of LP.

2 in the 80s: Abdallah, van Emden, Lloyd: “perpetual” computations in
LP and the greatest fixed point semantics of LP: incomplete, no finite
procedure for computations given.

3 Many papers on problem-specific/existential termination analysis . . .

No general coherent notion of termination/productivity matching that of
FP!

May be we need a new operational semantics?

4 Our work, from 2010-14, – coalgebraic semantics for LP – a solution?
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Coalgebraic Logic programming...

An independent discovery

Finite
SLD-derivations

Least fixed
point of TP

Algebraic
fibrational
semantics

Finite and Infinite
SLD-derivations

Greatest fixed
point of T ′P

Coalgebraic
fibrational
semanticsCC

��

[[

��

[[ CC

��
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Fibrational Coalgebraic Semantics of CoALP in 3 ideas

Idea 1: Logic programs as coalgebras

Definition

For a functor F , a coalgebra is a pair (U, c) consisting of a set U and a
function c : U → F (U).

1 Let At be the set of all atoms appearing in a program P. Then P can
be identified with a Pf Pf -coalgebra (At, p), where
p : At −→ Pf (Pf (At)) sends an atom A to the set of bodies of those
clauses in P with head A.

Example

T ← Q,R
T ← S
p(T ) = {{Q,R}, {S}}
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Fibrational Coalgebraic Semantics of CoALP in 3 ideas

Idea 2: Derivations as Comonads

In general, if U : H-coalg −→ C has a right adjoint G , the composite
functor UG : C −→ C possesses the canonical structure of a comonad
C (H), called the cofree comonad on H. One can form a coalgebra for a
comonad C (H).

Taking p : At −→ Pf Pf (At), the corresponding C (Pf Pf )-coalgebra
where C (Pf Pf ) is the cofree comonad on Pf Pf is given as follows:
C (Pf Pf )(At) is given by a limit of the form

. . . −→ At × Pf Pf (At × Pf Pf (At)) −→ At × Pf Pf (At) −→ At.

This gives a “tree-like” structure: we call them &V -trees.
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Example

Example

T ← Q,R
T ← S
Q ←
S ← R

T

Q R S

R
This models and-or parallel trees known in LP [AMAST 2010]
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Fibrational Coalgebraic Semantics of CoALP in 3 ideas

Idea 3: Add Lawvere Theories to model first-order signature

Definition

A Lawvere theory consists of a small category L with strictly associative
finite products, and a strict finite-product preserving identity-on-objects
functor I : Nop → L.

Take Lawvere Theory LΣ to model the terms over Σ
I ob(LΣ) is N.
I For each n ∈ Nat, let x1, . . . , xn be a specified list of distinct variables.
I ob(LΣ)(n,m) is the set of m-tuples (t1, . . . , tm) of terms generated by

the function symbols in Σ and variables x1, . . . , xn.
I composition in LΣ is first-order substitution.

take the functor At : LopΣ → Set that sends a natural number n to the
set of all atomic formulae generated by Σ and n variables.

model a program P by the [LopΣ ,Pf Pf ]-coalgebra p : At −→ Pf Pf At
on the category [LopΣ , Set].
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Examples

Program Stream: “fibers” given by term arities. Take the fiber of 1.
&V -trees:

stream(x) stream(scons(x, x))

bit(x) stream(x)

stream(scons(0, scons(x, x)))

bit(0) stream(scons(x, x))

bit(x) stream(x)
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Coalgebraic Logic programming...

[CSL 2011, JLC 2014]

There is more structure in this fibrational coalgebraic semantics than in
SLD-resolution!!!

Finite
SLD-derivations

Least fixed
point of TP

Algebraic
fibrational
semantics

Finite and Infinite
SLD-derivations

Greatest fixed
point of T ′P

Coalgebraic
fibrational
semanticsCC

��

[[

��

[[ CC

��
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Computationally essential:

1 for coinductive Stream, the &V -trees are finite!!! – both in depth
and in breadth;

2 each tree gives only a partial computation – it is not like eager
SLD-trees we have seen earlier;

3 the effect of fibers is best modelled by restricting unification to
term-matching (note resemblance to the pattern-matching in
Functional setting).

1. ⇒ gives hope for a formalism to describe termination and productivity
2. ⇒ hints there may be different tiers of computation...
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Lazy Corecursion in CoALP: Coinductive trees

stream(x)

θ1→

stream(scons(z, y))

bit(z) stream(y)

θ2→ . . .
θ3→
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Lazy Corecursion in CoALP

stream(x)

θ1→
stream(scons(z, y))

bit(z) stream(y)

θ2→ . . .
θ3→

stream(scons(0, scons(y1, z1)))

bit(0) stream(scons(y1, z1))

bit(y1) stream(z1)

The above would correspond to one-branch of SLD-derivations we have
seen! The main driving force: separation of layers of computations into
different Tiers.
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CoALP: the three-tier calculus of trees

Inspired by Fibrational Coalgebraic Semantics, a new three-tier Calculus of
Horn-Clause Logic

1 Tier 1: term-trees;

2 Tier 2: coinductive trees;

3 Tier 3: derivation trees.
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Tier-1: Term-trees

Take a “tree-language” N∗ – a set of all finite words of N.
Given an L ∈ N∗, a term tree is a map L→ Σ, satisfying term arity
restrictions.
Example:

ε

0

0 0 0 1

bitstream

scons

x y

Operation: – first-order substitution
Calculus: – first-order unification.

Notation:
Term(Σ) finite term trees over Σ

Term∞(Σ) infinite term trees over Σ
Termω(Σ) finite and infinite term trees over Σ
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Tier-2: Coinductive trees

Given an L ∈ N∗, a coinductive tree is a map L→ Term(ΣP), with
&∨-tree structure.
Example:

ε

0

0 0 0 1

bitstream(scons(x, y))

bit(x) bitstream(y)

Operation: – coinductive tree substitution
Calculus: – coinductive derivations.

Notation:
CTree(Term(ΣP)) all finite coinductive trees over Term(ΣP)
CTree∞(Term(ΣP)) all infinite coinductive trees over Term(ΣP)
CTreeω(Term(ΣP)) all finite and infinite coinductive trees over

Term(ΣP)
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Tier-3: Derivation trees

Given an L ∈ N∗, a coinductive derivation is a map
L→ CTree(Term(ΣP)).
σε→

ε bitstream(x)

σ0→
0 bitstream([x1|y])

bit(x1) bitstream(y)

σ01

↓ σ00→
00 bitstream([0|y])

bit(0) bitstream(y)

01 bitstream([x1|[x2|y1]])

bit(x1) bitstream([x2|y1])

bit(x2) bitstream(y1)
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Tier-3 notation

CDer(CTree(Term(ΣP))) all finite coinductive derivations over
(CTree(Term(ΣP)))

CDer∞(CTree(Term(ΣP))) all infinite coinductive trees over
(CTree(Term(ΣP)))

CDerω(CTree(Term(ΣP))) all finite and infinite coinductive trees over
(CTree(Term(ΣP)))
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Theory of Productivity for LP

A first-order logic program P is productive if

for any term t ∈ Term(ΣP), the coinductive tree with the root t belongs
to CTree(Term(ΣP)).

In the class of Productive LPs, we can further distinguish finite LP
that give rise to derivations in CDer(CTree(Term(ΣP),P)),
E.g. bit.

inductive LPs all derivations for which are in
CDerω(CTree(Term(ΣP)));
E.g. NatList.

coinductive LPs all derivations for which are in
CDer∞(CTree(Term(ΣP))))
E.g. Stream.
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Theory of Productivity in LP

CoALP Derivations

Non-productive Productive

Coinductive

Inductive

Finite

aa 44

99

11

))

Compare with Typed FP:

Recursive function

Terminating Non-terminating

Corecursive function

Productive Non-productive>>gg cc 99
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Conclusions

1 We have seen (a history of development of) declarative and
operational semantics of LP;

2 Understanding of recursion/corecursion, termination/productivity is
the key issue for operational semantics;

3 Fibrational algebraic/coalgebraic semantics is a convenient way to
give an operational semantics to LP;

4 It gave rise to a new, better structured, 3-Tier Calculus for Horn
Clause Logic (= CoALP);

5 It allowed to formulate a coherent theory of terminaion and
productivity for LP;

6 ...made possible more precision in soundness and completeness results.
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Current and future work

1 Verify Guardedness conditions

2 Soundness and completeness of the 3-Tier calculus of CoALP relative
to the gfp(T ′P).

3 Extensions, implementation, applications: CoALP for type inference
in functional languages

4 Relation to Type Theory; e.g. Session Types.

... join us, there is a lot more to it!
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Thank you!

Download your copy of CoALP today:

CoALP webpage: http://staff.computing.dundee.ac.uk/katya/CoALP/

CoALP authors and contributors:

John Power

Martin Schmidt

Jonathan Heras

Vladimir Komendantskiy

Patty Johann

Andrew Pond
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Deciding Productivity: Guardedness

Tier 1. Measures of reduction on term trees:
stream(y) is a reduction of stream(scons(x,y))

Tier 2. Reduction on coinductive tree loops:
stream(scons(z, y))

bit(z) stream(y)

Tier 3. Discovery of derivation loops.
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Logic Programming dialects, compared

Prolog Parallel Prolog Co-LP CoALP

Execution Eager Eager Eager
Lazy

Corecursion

No No by Regular Loop
detection

Productivity &
Guardedness

Mode of execu-
tion

Sequential Parallel Sequential Parallel

Declarative se-
mantics

lfp lfp gfp (restricted) lfp & gfp

Operational se-
mantics

transitions;
states: lists of
formulae

transitions;
states: lists of
formulae

transitions;
states: lists of
formulae

Coalgebraic
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Solution - 1 [Gupta, Simon et al., 2007 - 2008]

If a formula repeatedly appears as a resolvent (modulo α-conversion),
then conclude the proof.

Example

bit(0) ←
bit(1) ←
stream(scons (X, Y)) ←

bit(X), stream(Y)

The answer is: X/cons(0,X ).
Requires programs to be regular,
in order to be sound and complete

← stream(X)

← bit(X1), stream(X)

← stream(X)

�c
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Deciding Termination: Structural Recursion

A structurally recursive definition is such that every recursive call is
performed on a structurally smaller argument.

In this way we can be sure that the recursion terminates.

Example

Fixpoint length (A:Type) (l: list A) : nat :=

match l with

| nil => O

| cons l’ => S (length l’)

end.

Katya (Dundee) CoALP Leeds 55 / 66



Deciding Termination: Structural Recursion

A structurally recursive definition is such that every recursive call is
performed on a structurally smaller argument.

In this way we can be sure that the recursion terminates.

Example

Fixpoint length (A:Type) (l: list A) : nat :=

match l with

| nil => O

| cons l’ => S (length l’)

end.

Katya (Dundee) CoALP Leeds 55 / 66



Deciding Productivity: Guardedness

The guardedness condition insures that

* each corecursive call is made under at least one constructor;

** if the recursive call is under a constructor, it does not appear as an
argument of any function.

Violation of any of these two conditions makes a function rejected by the
guardedness test in Coq.

Example

CoFixpoint map (s:Stream A) : Stream B :=

SCons (f (hd s)) (map (tl s)).
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Stream of Fibonacci numbers:

Falls into infinite loops in Prolog and CoLP.

1. add(0,Y,Y).

2. add(s(X),Y,s(Z)) :- add(X,Y,Z).

3. fibs(X,Y,cons(X,S)) :- add(X,Y,Z), fibs(Y,Z,S).

4. nth(0,cons(X,S),X).

5. nth(s(N),cons(X,S),Y) :- nth(N,S,Y).

6. fib(N,X) :- fibs(0,s(0),S), nth(N,S,X).

7. fib2(X) :- fib(s(s(0)),X).
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Examples of derivations with Fib: lazy step 1

fib2(X)

fib(s2(0)),X)

fibs(0,s(0),S) nth(s2(0),S,X)

5,S/c(X1,S1)−−−−−−−−→

→

1. add(0,Y,Y).

2. add(s(X),Y,s(Z)) :-

add(X,Y,Z).

3. fibs(X,Y,cons(X,S)) :-

add(X,Y,Z), fibs(Y,Z,S).

4. nth(0,cons(X,S),X).

5. nth(s(N),cons(X,S),Y) :-

nth(N,S,Y).

6. fib(N,X) :- fibs(0,s(0),S),

nth(N,S,X).

7. fib2(X) :- fib(s(s(0)),X).
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Examples of derivations with Fib: lazy step 2

fib2(X)

fib(s2(0)),X)

fibs(0,s(0),c(X1,S1)) nth(s2(0),c(X1,S1),X)

nth(s(0),S1,X)

5,S1/c(X2,S2)−−−−−−−−−→

→

1. add(0,Y,Y).

2. add(s(X),Y,s(Z)) :-

add(X,Y,Z).

3. fibs(X,Y,cons(X,S)) :-

add(X,Y,Z), fibs(Y,Z,S).

4. nth(0,cons(X,S),X).

5. nth(s(N),cons(X,S),Y) :-

nth(N,S,Y).

6. fib(N,X) :- fibs(0,s(0),S),

nth(N,S,X).

7. fib2(X) :- fib(s(s(0)),X).
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Examples of derivations with Fib: lazy step 3

fib2(X)

fib(s2(0)),X)

fibs(0,s(0),c(X1,c(X2,S2))) nth(s2(0),c(X1,c(X2,S2)),X)

nth(s(0),c(X2,S2),X)

nth(0,S2,X)

S2/c(X,S3)−−−−−−−→

→
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Examples of derivations with Fib: lazy step 4

fib2(X)

fib(s2(0)),X)

fibs(0,s(0),c(X1,c(X2,c(X,S3)))) nth(s2(0),c(X1,c(X2,c(X,S3))),X)

nth(s(0),c(X2,c(X,S3)),X)

nth(0,c(X,S3),X)

nth(0,c(X,S3),X)

X1/0−−−→

→
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Examples of derivations with Fib: lazy step 5

fib2(X)

fib(s2(0)),X)

fibs(0,s(0),c(0,c(X2,c(X,S3))))

a(0,s(0),Z) fibs(s(0),Z,c(X2,c(X,S3)))

nth(s2(0),c(0,c(X2,c(X,S3))),X)

nth(s(0),c(X2,c(X,S3)),X)

nth(0,c(X,S3),X)

nth(0,c(X,S3),X)

Z/0−−→

→
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Examples of derivations with Fib: lazy step 6

fib2(X)

fib(s2(0)),X)

fibs(0,s(0),c(0,c(X2,c(X,S3))))

a(0,s(0),s(0)) fibs(s(0),s(0),c(X2,c(X,S3)))

nth(s2(0),c(0,c(X2,c(X,S3))),X)

nth(s(0),c(X2,c(X,S3)),X)

nth(0,c(X,S3),X)

nth(0,c(X,S3),X)

X2/s(0)−−−−−→

→
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Examples of derivations with Fib: lazy step 7

fib2(X)

fib(s2(0)),X)

fibs(0,s(0),c(0,c(s(0),c(X,S3))))

a(0,s(0),s(0)) fibs(s(0),s(0),c(s(0),c(X,S3)))

a(s(0),s(0),Z) fibs(s(0),Z,c(X,S3))

nth(s2(0),c(0,c(s(0),c(X,S3))),X)

nth(s(0),c(s(0),c(X,S3)),X)

nth(0,c(X,S3),X)

nth(0,c(X,S3),X)

Z/s(s(0))−−−−−−→

→
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Examples of derivations with Fib: lazy step 8
fib2(X)

fib(s2(0)),X)

fibs(0,s(0),c(0,c(s(0),c(X,S3))))

a(0,s(0),s(0)) fibs(s(0),s(0),c(s(0),c(X,S3)))

a(s(0),s(0),s(s(0)))

a(0,s(0),s(0))

fibs(s(0),s(s(0)),c(X,S3))

nth(s2(0),c(0,c(s(0),c(X,S3))),X)

nth(s(0),c(s(0),c(X,S3)),X)

nth(0,c(X,S3),X)

nth(0,c(X,S3),X)

X/s(0)−−−−→

→
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Examples of derivations with Fib: lazy step 9

fib2(s(0))

fib(s2(0)),s(0))

fibs(0,s(0),c(0,c(s(0),c(s(0),S3))))

a(0,s(0),s(0)) fibs(s(0),s(0),c(s(0),c(s(0),S3)))

a(s(0),s(0),s(s(0)))

a(0,s(0),s(0))

fibs(s(0),s(s(0)),c(s(0),S3))

a(s(0),s(s(0)),Z) fibs(s(s(0)),Z,S3)

nth(s2(0),c(0,c(s(0),c(s(0),S3))),s(0))

nth(s(0),c(s(0),c(s(0),S3)),s(0))

nth(0,c(s(0),S3),s(0))

nth(0,c(s(0),S3),s(0))
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