
Coalgebraic Logic Programming

Katya Komendantskaya, joint work with J. Power, M. Schmidt,
J. Heras, V. Komendantsky

School of Computing, University of Dundee, UK

3 July 2014

Katya (Dundee) CoALP for Type Inference Lyon’14 1 / 56

Outline

1 Recursion and Corecursion
Inductive and Coinductive Types in Coq
Terminative and Productive Functions
Recursion and Corecursion without types

2 Coalgebraic Logic Programming

3 Parallelism

4 Future directions: Applications to type inference

5 Appendix: LP in Type inference

Katya (Dundee) CoALP for Type Inference Lyon’14 2 / 56

Outline

1 Recursion and Corecursion
Inductive and Coinductive Types in Coq
Terminative and Productive Functions
Recursion and Corecursion without types

2 Coalgebraic Logic Programming

3 Parallelism

4 Future directions: Applications to type inference

5 Appendix: LP in Type inference

Katya (Dundee) CoALP for Type Inference Lyon’14 2 / 56

Outline

1 Recursion and Corecursion
Inductive and Coinductive Types in Coq
Terminative and Productive Functions
Recursion and Corecursion without types

2 Coalgebraic Logic Programming

3 Parallelism

4 Future directions: Applications to type inference

5 Appendix: LP in Type inference

Katya (Dundee) CoALP for Type Inference Lyon’14 2 / 56

Outline

1 Recursion and Corecursion
Inductive and Coinductive Types in Coq
Terminative and Productive Functions
Recursion and Corecursion without types

2 Coalgebraic Logic Programming

3 Parallelism

4 Future directions: Applications to type inference

5 Appendix: LP in Type inference

Katya (Dundee) CoALP for Type Inference Lyon’14 2 / 56

Outline

1 Recursion and Corecursion
Inductive and Coinductive Types in Coq
Terminative and Productive Functions
Recursion and Corecursion without types

2 Coalgebraic Logic Programming

3 Parallelism

4 Future directions: Applications to type inference

5 Appendix: LP in Type inference

Katya (Dundee) CoALP for Type Inference Lyon’14 2 / 56

Today’s talk...

...continuation of Thanos’es talk of yesterday:

about logic programming (LP);

about first order (= in Thanos’es terms infinite) language for LP;

about how much we can merge methods of FP and LP...

may be you will see some references to a possible game semantics.

Katya (Dundee) CoALP for Type Inference Lyon’14 3 / 56

Inductive Types and Recursive Functions

Inductive list (A : Type) : Type :=

| nil : list A

| cons : A -> list A -> list A.

Recursive functions have arguments of inductive types.

Fixpoint length (A:Type) (l: list A) : nat :=

match l with

| nil => O

| :: l’ => S (length l’)

end.

Katya (Dundee) CoALP for Type Inference Lyon’14 4 / 56

Coinductive Types and Corecursive Functions

CoInductive stream (A:Set) : Set :=

SCons: A -> stream A -> stream A.

Corecursive functions have outputs of coinductive types. (Type of input
arguments is not important.)

CoFixpoint map (s:Stream A) : Stream B :=

SCons (f (hd s)) (map (tl s)).

Katya (Dundee) CoALP for Type Inference Lyon’14 5 / 56

Termination

We require all computations to terminate, because of:

Curry-Howard Isomorphism (propositions →← types; proofs →←
programs): non-terminating proofs can lead to inconsistency.

To decide type-checking of dependent types, we need to reduce
expressions to normal form.

Katya (Dundee) CoALP for Type Inference Lyon’14 6 / 56

Termination

We require all computations to terminate, because of:

Curry-Howard Isomorphism (propositions →← types; proofs →←
programs): non-terminating proofs can lead to inconsistency.

To decide type-checking of dependent types, we need to reduce
expressions to normal form.

Katya (Dundee) CoALP for Type Inference Lyon’14 6 / 56

Productive Values

Values in co-inductive types are productive when all observations of
fragments made using recursive functions are guaranteed to be computable
in finite time.

The element of the stream at position n can be found by:

Definition {
nth 0 (SCons a tl) = a

nth (S n) (SCons a tl) = nth n tl

A given stream s is productive if we can be sure that the computation of
the list nth n s is guaranteed to terminate, whatever the value of n is.

We call a function productive at the input value i , if it outputs a
productive value at i .

Katya (Dundee) CoALP for Type Inference Lyon’14 7 / 56

Productive Values

Values in co-inductive types are productive when all observations of
fragments made using recursive functions are guaranteed to be computable
in finite time.
The element of the stream at position n can be found by:

Definition {
nth 0 (SCons a tl) = a

nth (S n) (SCons a tl) = nth n tl

A given stream s is productive if we can be sure that the computation of
the list nth n s is guaranteed to terminate, whatever the value of n is.

We call a function productive at the input value i , if it outputs a
productive value at i .

Katya (Dundee) CoALP for Type Inference Lyon’14 7 / 56

Deciding Termination: Structural Recursion

A structurally recursive definition is such that every recursive call is
performed on a structurally smaller argument.

In this way we can be sure that the recursion terminates.

Example

Fixpoint length (A:Type) (l: list A) : nat :=

match l with

| nil => O

| :: l’ => S (length l’)

end.

Katya (Dundee) CoALP for Type Inference Lyon’14 8 / 56

Deciding Termination: Structural Recursion

A structurally recursive definition is such that every recursive call is
performed on a structurally smaller argument.

In this way we can be sure that the recursion terminates.

Example

Fixpoint length (A:Type) (l: list A) : nat :=

match l with

| nil => O

| :: l’ => S (length l’)

end.

Katya (Dundee) CoALP for Type Inference Lyon’14 8 / 56

Deciding Productivity: Guardedness

The guardedness condition insures that

* each corecursive call is made under at least one constructor;

** if the recursive call is under a constructor, it does not appear as an
argument of any function.

Violation of any of these two conditions makes a function rejected by the
guardedness test in Coq.

Example

CoFixpoint map (s:Stream A) : Stream B :=

SCons (f (hd s)) (map (tl s)).

Katya (Dundee) CoALP for Type Inference Lyon’14 9 / 56

Deciding Productivity: Guardedness

The guardedness condition insures that

* each corecursive call is made under at least one constructor;

** if the recursive call is under a constructor, it does not appear as an
argument of any function.

Violation of any of these two conditions makes a function rejected by the
guardedness test in Coq.

Example

CoFixpoint map (s:Stream A) : Stream B :=

SCons (f (hd s)) (map (tl s)).

Katya (Dundee) CoALP for Type Inference Lyon’14 9 / 56

To notice:

Recursion

Terminating Non-terminating

Corecursion

Productive Non-productive>>gg cc 99

The role of types in definition of (co)recursive functions;

The role of constructors and (co)-pattern matching;

Katya (Dundee) CoALP for Type Inference Lyon’14 10 / 56

Recursion and Corecursion in Logic Programming

Example

nat(0) ←
nat(s(x)) ← nat(x)

list(nil) ←
list(cons x y) ← nat(x), list(y)

Example

bit(0) ←
bit(1) ←

stream(cons (x,y)) ← bit(x), stream(y)

Katya (Dundee) CoALP for Type Inference Lyon’14 11 / 56

SLD-resolution (+ unification and backtracking) behind
LP derivations.

Example

nat(0) ←
nat(s(x)) ← nat(x)

list(nil) ←
list(cons x y) ← nat(x),

list(y)

← list(cons(x, y))

← nat(x), list(y)

Katya (Dundee) CoALP for Type Inference Lyon’14 12 / 56

SLD-resolution (+ unification) is behind LP derivations.

Example

nat(0) ←
nat(s(x)) ← nat(x)

list(nil) ←
list(cons x y) ← nat(x),

list(y)

← list(cons(x, y))

← nat(x), list(y)

← list(y)

Katya (Dundee) CoALP for Type Inference Lyon’14 13 / 56

SLD-resolution (+ unification) is behind LP derivations.

Example

nat(0) ←
nat(s(x)) ← nat(x)

list(nil) ←
list(cons x y) ← nat(x),

list(y)

← list(cons(x, y))

← nat(x), list(y)

← list(y)

← �
The answer is x/O, y/nil , but we can get more substitutions by
backtracking. We can backtrack infinitely many times, but each time
computation will terminate.

Nice, clean semantics: least Herbrand model exists, sound&complete, etc.:
see Thanos’es Viva of yesterday.

Katya (Dundee) CoALP for Type Inference Lyon’14 14 / 56

SLD-resolution (+ unification) is behind LP derivations.

Example

nat(0) ←
nat(s(x)) ← nat(x)

list(nil) ←
list(cons x y) ← nat(x),

list(y)

← list(cons(x, y))

← nat(x), list(y)

← list(y)

← �
The answer is x/O, y/nil , but we can get more substitutions by
backtracking. We can backtrack infinitely many times, but each time
computation will terminate.
Nice, clean semantics: least Herbrand model exists, sound&complete, etc.:
see Thanos’es Viva of yesterday.

Katya (Dundee) CoALP for Type Inference Lyon’14 14 / 56

Corecursion in LP?

Example

bit(0) ←
bit(1) ←
stream(scons(x, y)) ←

bit(x), stream(y)

No answer, as derivation never
terminates.
Semantics may go wrong as well:
least Herbrand models will contain
an infinite term corresponding to
stream: so completeness fails.

← stream(scons(x, y))

← bit(x), stream(y)

← stream(y)

← bit(x1), stream(y1)

← stream(y1)

← bit(x2), stream(y2)

← stream(y2)

...

Katya (Dundee) CoALP for Type Inference Lyon’14 15 / 56

Corecursion in LP?

Example

bit(0) ←
bit(1) ←
stream(scons(x, y)) ←

bit(x), stream(y)

No answer, as derivation never
terminates.

Semantics may go wrong as well:
least Herbrand models will contain
an infinite term corresponding to
stream: so completeness fails.

← stream(scons(x, y))

← bit(x), stream(y)

← stream(y)

← bit(x1), stream(y1)

← stream(y1)

← bit(x2), stream(y2)

← stream(y2)

...

Katya (Dundee) CoALP for Type Inference Lyon’14 15 / 56

Corecursion in LP?

Example

bit(0) ←
bit(1) ←
stream(scons(x, y)) ←

bit(x), stream(y)

No answer, as derivation never
terminates.
Semantics may go wrong as well:
least Herbrand models will contain
an infinite term corresponding to
stream: so completeness fails.

← stream(scons(x, y))

← bit(x), stream(y)

← stream(y)

← bit(x1), stream(y1)

← stream(y1)

← bit(x2), stream(y2)

← stream(y2)

...

Katya (Dundee) CoALP for Type Inference Lyon’14 15 / 56

It can be worse....

Example

bit(0) ←
bit(1) ←
list(cons(x, y)) ←

bit(x), list(y)

list(nil) ←

No answer, as derivation never
terminates.
Semantics goes wrong: this time,
soundness!

← list(cons(x, y))

← bit(x), list(y)

← list(y)

← bit(x1), list(y1)

← list(y1)

← bit(x2), list(y2)

← list(y2)

...

Katya (Dundee) CoALP for Type Inference Lyon’14 16 / 56

It can be worse....

Example

bit(0) ←
bit(1) ←
list(cons(x, y)) ←

bit(x), list(y)

list(nil) ←

No answer, as derivation never
terminates.

Semantics goes wrong: this time,
soundness!

← list(cons(x, y))

← bit(x), list(y)

← list(y)

← bit(x1), list(y1)

← list(y1)

← bit(x2), list(y2)

← list(y2)

...

Katya (Dundee) CoALP for Type Inference Lyon’14 16 / 56

It can be worse....

Example

bit(0) ←
bit(1) ←
list(cons(x, y)) ←

bit(x), list(y)

list(nil) ←

No answer, as derivation never
terminates.
Semantics goes wrong: this time,
soundness!

← list(cons(x, y))

← bit(x), list(y)

← list(y)

← bit(x1), list(y1)

← list(y1)

← bit(x2), list(y2)

← list(y2)

...

Katya (Dundee) CoALP for Type Inference Lyon’14 16 / 56

To notice:

Distinction between (co)inductive type, (co)recursive function over
(co)inductive type and a proof by (co)induction is erased.

Without types guarding (co)recursion, things get messy:
I ...not ”just” termination, but also semantics

We do not have a formalism to speak about termination and
productivity, or generally, recursion/corecursion.

Note aside: LP has instances of dependent types, mixed
induction/coinduction, recursion/corecursion....

Katya (Dundee) CoALP for Type Inference Lyon’14 17 / 56

Outline

1 Recursion and Corecursion
Inductive and Coinductive Types in Coq
Terminative and Productive Functions
Recursion and Corecursion without types

2 Coalgebraic Logic Programming

3 Parallelism

4 Future directions: Applications to type inference

5 Appendix: LP in Type inference

Katya (Dundee) CoALP for Type Inference Lyon’14 18 / 56

CoALP: what is it about?

syntactically – first-order logic programming;

operationally – lazy (co)recursion;

inspired by coalgebraic fibrational semantics;

explores the tree-structure of partial proofs – ”coinductive trees”;

uses lazy guarded corecursion using measures of corecursive steps
given by coinductive trees (cf. ”clocked corecursion”);

parallel...

Katya (Dundee) CoALP for Type Inference Lyon’14 19 / 56

Fibrational Coalgebraic Semantics of CoALP in 3 ideas

Operational View of Logic Programming

1 Let At be the set of all atoms appearing in a program P. Then P can
be identified with a Pf Pf -coalgebra (At, p), where
p : At −→ Pf (Pf (At)) sends an atom A to the set of bodies of those
clauses in P with head A.

2 Taking p : At −→ Pf Pf (At), the corresponding C (Pf Pf)-coalgebra
where C (Pf Pf) is the cofree comonad on Pf Pf is given as follows:
C (Pf Pf)(At) is given by a limit of the form

. . . −→ At × Pf Pf (At × Pf Pf (At)) −→ At × Pf Pf (At) −→ At.

This gives a “tree-like” structure: we call them &V -trees.

3 For first order extension: Take Lawvere Theory LΣ to model the
signature Σ (objects are natural numbers, arrows – term arities,
composition = substitution), and take
LΣ → Set – to model (predicates in) At.

Katya (Dundee) CoALP for Type Inference Lyon’14 20 / 56

Fibrational Coalgebraic Semantics of CoALP in 3 ideas

Operational View of Logic Programming

1 Let At be the set of all atoms appearing in a program P. Then P can
be identified with a Pf Pf -coalgebra (At, p), where
p : At −→ Pf (Pf (At)) sends an atom A to the set of bodies of those
clauses in P with head A.

2 Taking p : At −→ Pf Pf (At), the corresponding C (Pf Pf)-coalgebra
where C (Pf Pf) is the cofree comonad on Pf Pf is given as follows:
C (Pf Pf)(At) is given by a limit of the form

. . . −→ At × Pf Pf (At × Pf Pf (At)) −→ At × Pf Pf (At) −→ At.

This gives a “tree-like” structure: we call them &V -trees.

3 For first order extension: Take Lawvere Theory LΣ to model the
signature Σ (objects are natural numbers, arrows – term arities,
composition = substitution), and take
LΣ → Set – to model (predicates in) At.

Katya (Dundee) CoALP for Type Inference Lyon’14 20 / 56

Fibrational Coalgebraic Semantics of CoALP in 3 ideas

Operational View of Logic Programming

1 Let At be the set of all atoms appearing in a program P. Then P can
be identified with a Pf Pf -coalgebra (At, p), where
p : At −→ Pf (Pf (At)) sends an atom A to the set of bodies of those
clauses in P with head A.

2 Taking p : At −→ Pf Pf (At), the corresponding C (Pf Pf)-coalgebra
where C (Pf Pf) is the cofree comonad on Pf Pf is given as follows:
C (Pf Pf)(At) is given by a limit of the form

. . . −→ At × Pf Pf (At × Pf Pf (At)) −→ At × Pf Pf (At) −→ At.

This gives a “tree-like” structure: we call them &V -trees.

3 For first order extension: Take Lawvere Theory LΣ to model the
signature Σ (objects are natural numbers, arrows – term arities,
composition = substitution), and take
LΣ → Set – to model (predicates in) At.

Katya (Dundee) CoALP for Type Inference Lyon’14 20 / 56

Examples

Program Stream: fibers are term arities. Take the fiber of 1. &V -trees:

stream(x) stream(scons(x, x))

bit(x) stream(x)

stream(scons(0, scons(x, x)))

bit(0) stream(scons(x, x))

bit(x) stream(x)

Katya (Dundee) CoALP for Type Inference Lyon’14 21 / 56

Examples

Program Stream: fibers are term arities. Take the fiber of 1. &V -trees:

stream(x)

stream(scons(x, x))

bit(x) stream(x)

stream(scons(0, scons(x, x)))

bit(0) stream(scons(x, x))

bit(x) stream(x)

Katya (Dundee) CoALP for Type Inference Lyon’14 21 / 56

Examples

Program Stream: fibers are term arities. Take the fiber of 1. &V -trees:

stream(x) stream(scons(x, x))

bit(x) stream(x)

stream(scons(0, scons(x, x)))

bit(0) stream(scons(x, x))

bit(x) stream(x)

Katya (Dundee) CoALP for Type Inference Lyon’14 21 / 56

Examples

Program Stream: fibers are term arities. Take the fiber of 1. &V -trees:

stream(x) stream(scons(x, x))

bit(x) stream(x)

stream(scons(0, scons(x, x)))

bit(0) stream(scons(x, x))

bit(x) stream(x)

Katya (Dundee) CoALP for Type Inference Lyon’14 21 / 56

Computationally essential:

1 for coinductive Stream program, the &V -trees are finite!!! – both in
depth and in breadth;

2 each tree gives only a partial computation – it is not like eager
SLD-trees we have seen earlier;

3 the effect of fibers is best modelled by restricting unification to
term-matching (note resemblance to the pattern-matching in
Functional setting).

1. ⇒ gives hope for a formalism to describe termination and productivity
2. ⇒ hints there may be laziness involved...

Katya (Dundee) CoALP for Type Inference Lyon’14 22 / 56

Computationally essential:

1 for coinductive Stream program, the &V -trees are finite!!! – both in
depth and in breadth;

2 each tree gives only a partial computation – it is not like eager
SLD-trees we have seen earlier;

3 the effect of fibers is best modelled by restricting unification to
term-matching (note resemblance to the pattern-matching in
Functional setting).

1. ⇒ gives hope for a formalism to describe termination and productivity
2. ⇒ hints there may be laziness involved...

Katya (Dundee) CoALP for Type Inference Lyon’14 22 / 56

Lazy Corecursion in CoALP: Coinductive trees

stream(x)

θ1→

stream(scons(z, y))

bit(z) stream(y)

θ2→ . . .
θ3→

Note that transitions θ may be determined in a number of ways:

using mgus;

non-deterministically;

in a distributed/parallel manner.

Katya (Dundee) CoALP for Type Inference Lyon’14 23 / 56

Lazy Corecursion in CoALP: Coinductive trees

stream(x)

θ1→
stream(scons(z, y))

bit(z) stream(y)

θ2→ . . .
θ3→

Note that transitions θ may be determined in a number of ways:

using mgus;

non-deterministically;

in a distributed/parallel manner.

Katya (Dundee) CoALP for Type Inference Lyon’14 23 / 56

Lazy Corecursion in CoALP: Coinductive trees

stream(x)

θ1→
stream(scons(z, y))

bit(z) stream(y)

θ2→ . . .
θ3→

Note that transitions θ may be determined in a number of ways:

using mgus;

non-deterministically;

in a distributed/parallel manner.

Katya (Dundee) CoALP for Type Inference Lyon’14 23 / 56

Lazy Corecursion in CoALP

stream(x)

θ1→
stream(scons(z, y))

bit(z) stream(y)

θ2→ . . .
θ3→

stream(scons(0, scons(y1, z1)))

bit(0) stream(scons(y1, z1))

bit(y1) stream(z1)

The above would correspond to one-branch of SLD-derivations we have
seen! The main driving force: separation of layers of computations into
different dimensions.

Katya (Dundee) CoALP for Type Inference Lyon’14 24 / 56

Properties:

Komendantskaya, Power, Schmidt: Coalgebraic Logic Programming: from
Semantics to Implementation, Journal of Logic and Computation, 2014.

Sound and complete with respect to the coalgebraic semantcs;

Finite computations are sound and complete with respect to the least
Herbrand model semantics (so, we can do as much as standard
Prolog for sure).

Adequacy result for observational semantics.

What does it tell us beyond LP?

Katya (Dundee) CoALP for Type Inference Lyon’14 25 / 56

Properties:

Komendantskaya, Power, Schmidt: Coalgebraic Logic Programming: from
Semantics to Implementation, Journal of Logic and Computation, 2014.

Sound and complete with respect to the coalgebraic semantcs;

Finite computations are sound and complete with respect to the least
Herbrand model semantics (so, we can do as much as standard
Prolog for sure).

Adequacy result for observational semantics.

What does it tell us beyond LP?

Katya (Dundee) CoALP for Type Inference Lyon’14 25 / 56

CoALP: the three-dimensional calculus of trees

1 Dimension 1: term-trees;

2 Dimension 2: coinductive trees;

3 Dimension 3: derivation trees.

Katya (Dundee) CoALP for Type Inference Lyon’14 26 / 56

Dimension-1: Term-trees

Take a tree-language N∗.
Given an L ∈ N∗, a term tree is a map L→ Σ, satisfying term arity
restrictions.
Example:
0.

ε

0

0 0 0 1

1.
bitstream

scons

X Y

Notation:
Term(Σ) finite term trees over Σ

Term∞(Σ) infinite term trees over Σ
Termω(Σ) finite and infinite term trees over Σ

Katya (Dundee) CoALP for Type Inference Lyon’14 27 / 56

Dimension-2: Coinductive trees

Given an L ∈ N∗, a coinductive tree is a map L→ Term(ΣP), satisfying
coinductive tree construction for P.
Example:
0.

ε

0

0 0 0 1

2.
bitstream(scons(X, Y))

bit(X) bitstream(Y)

Notation:
CTree(Term(ΣP),P) all finite coinductive trees over Term(ΣP)
CTree∞(Term(ΣP),P) all infinite coinductive trees over Term(ΣP)
CTreeω(Term(ΣP),P) all finite and infinite coinductive trees over

Term(ΣP)

Katya (Dundee) CoALP for Type Inference Lyon’14 28 / 56

Dimension-3: Derivation trees

Given an L ∈ N∗, a coinductive derivation is a map
L→ CTree(Term(ΣP),P), satisfying the mgu requirement.
σε→

ε bitstream(X)

σ0→
0 bitstream([X1|Y])

bit(X1) bitstream(Y)

σ01

↓ σ00→
00 bitstream([0|Y])

bit(0) bitstream(Y)

01 bitstream([X1|[X2|Y1]])

bit(X1) bitstream([X2|Y1])

bit(X2) bitstream(Y1)

Katya (Dundee) CoALP for Type Inference Lyon’14 29 / 56

Dimension-3 notation

CDer(CTree(Term(ΣP),P)) all finite coinductive derivations over
(CTree(Term(ΣP),P))

CDer∞(CTree(Term(ΣP),P)) all infinite coinductive trees over
(CTree(Term(ΣP),P))

CDerω(CTree(Term(ΣP),P)) all finite and infinite coinductive trees
over (CTree(Term(ΣP),P))

Katya (Dundee) CoALP for Type Inference Lyon’14 30 / 56

Theory of Productivity for LP

A first-order logic program P is productive if

for any term t ∈ Term(ΣP), the coinductive tree CT with the root t
belongs to CTree(Term(ΣP),P).

In the class of Productive LPs, we can further distinguish finite LP
that give rise to derivations in CDer(CTree(Term(ΣP),P)),
E.g. bit.

inductive LPs all derivations for which are in
CDerω(CTree(Term(ΣP),P));
E.g. ListNat.

coinductive LPs all derivations for which are in
CDer∞(CTree(Term(ΣP),P)))
E.g. Stream.

Katya (Dundee) CoALP for Type Inference Lyon’14 31 / 56

Theory of Productivity for LP

A first-order logic program P is productive if

for any term t ∈ Term(ΣP), the coinductive tree CT with the root t
belongs to CTree(Term(ΣP),P).

In the class of Productive LPs, we can further distinguish finite LP
that give rise to derivations in CDer(CTree(Term(ΣP),P)),
E.g. bit.

inductive LPs all derivations for which are in
CDerω(CTree(Term(ΣP),P));
E.g. ListNat.

coinductive LPs all derivations for which are in
CDer∞(CTree(Term(ΣP),P)))
E.g. Stream.

Katya (Dundee) CoALP for Type Inference Lyon’14 31 / 56

Theory of Productivity for LP

A first-order logic program P is productive if

for any term t ∈ Term(ΣP), the coinductive tree CT with the root t
belongs to CTree(Term(ΣP),P).

In the class of Productive LPs, we can further distinguish finite LP
that give rise to derivations in CDer(CTree(Term(ΣP),P)),
E.g. bit.

inductive LPs all derivations for which are in
CDerω(CTree(Term(ΣP),P));
E.g. ListNat.

coinductive LPs all derivations for which are in
CDer∞(CTree(Term(ΣP),P)))
E.g. Stream.

Katya (Dundee) CoALP for Type Inference Lyon’14 31 / 56

Theory of Productivity for LP

A first-order logic program P is productive if

for any term t ∈ Term(ΣP), the coinductive tree CT with the root t
belongs to CTree(Term(ΣP),P).

In the class of Productive LPs, we can further distinguish finite LP
that give rise to derivations in CDer(CTree(Term(ΣP),P)),
E.g. bit.

inductive LPs all derivations for which are in
CDerω(CTree(Term(ΣP),P));
E.g. ListNat.

coinductive LPs all derivations for which are in
CDer∞(CTree(Term(ΣP),P)))
E.g. Stream.

Katya (Dundee) CoALP for Type Inference Lyon’14 31 / 56

Theory of Productivity in LP

(Coinductive) Derivations

Non-productive Productive

Coinductive

Inductive

Finite

aa 44

99

11

))

Compare with:

Recursion

Terminating Non-terminating

Corecursion

Productive Non-productive>>gg cc 99

Katya (Dundee) CoALP for Type Inference Lyon’14 32 / 56

Theory of Productivity in LP

(Coinductive) Derivations

Non-productive Productive

Coinductive

Inductive

Finite

aa 44

99

11

))

Compare with:

Recursion

Terminating Non-terminating

Corecursion

Productive Non-productive>>gg cc 99

Katya (Dundee) CoALP for Type Inference Lyon’14 32 / 56

Deciding Productivity: Guardedness

Dimension 1. Measures of reduction on term trees:
stream(y) is a reduction of stream(scons(x,y))

Dimension 2. Reduction on coinductive tree loops:

stream(scons(z, y))

bit(z) stream(y)

Dimension 3. Discovery of derivation loops.

Katya (Dundee) CoALP for Type Inference Lyon’14 33 / 56

Example of guardedness issues

p(s(X1),X2,Y1,Y2) ← q(X2,X2,Y1,Y2)

q(X1,X2,s(Y1),Y2) ← p(X1,X2,Y2,Y2)

p(s(X1),X2,Y1,Y2)

q(X2,X2,Y1,Y2)

p(s(x1), s(x2), s(y1), s(y2))

q(s(x2), s(x2), s(y1), s(y2))

p(s(x2), s(x2), s(y2), s(y2))

q(s(x2), s(x2), s(y2), s(y2))

...

Katya (Dundee) CoALP for Type Inference Lyon’14 34 / 56

Example of guardedness issues

p(s(X1),X2,Y1,Y2) ← q(X2,X2,Y1,Y2)

q(X1,X2,s(Y1),Y2) ← p(X1,X2,Y2,Y2)

p(s(X1),X2,Y1,Y2)

q(X2,X2,Y1,Y2)

p(s(x1), s(x2), s(y1), s(y2))

q(s(x2), s(x2), s(y1), s(y2))

p(s(x2), s(x2), s(y2), s(y2))

q(s(x2), s(x2), s(y2), s(y2))

...

Katya (Dundee) CoALP for Type Inference Lyon’14 34 / 56

Example of guardedness issues

p(s(X1),X2,Y1,Y2) ← q(X2,X2,Y1,Y2)

q(X1,X2,s(Y1),Y2) ← p(X1,X2,Y2,Y2)

p(s(X1),X2,Y1,Y2)

q(X2,X2,Y1,Y2)

p(s(x1), s(x2), s(y1), s(y2))

q(s(x2), s(x2), s(y1), s(y2))

p(s(x2), s(x2), s(y2), s(y2))

q(s(x2), s(x2), s(y2), s(y2))

...

Katya (Dundee) CoALP for Type Inference Lyon’14 34 / 56

Soundness of Corecursion in LP

CoALP is sound and complete for inductive programs;

Soundness of coinductive programs is our next step.

Two directions:

Imposing guardedness conditions, to ensure every coinductive tree is
finite.
To ban programs that are not guarded by constructors:
stream(scons x,y) ← stream(scons x,y)

Unlike termination checks in Coq/Agda cannot be done fully statically
(no types to help!), and needs some proof search in Dimension 3.

Determining when it is safe to make a coinductive conclusion (and
finding a right coinductive hypothesis).
(Again, the troubles come form un-typed setting.)

Katya (Dundee) CoALP for Type Inference Lyon’14 35 / 56

Soundness of Corecursion in LP

CoALP is sound and complete for inductive programs;

Soundness of coinductive programs is our next step.

Two directions:

Imposing guardedness conditions, to ensure every coinductive tree is
finite.
To ban programs that are not guarded by constructors:
stream(scons x,y) ← stream(scons x,y)

Unlike termination checks in Coq/Agda cannot be done fully statically
(no types to help!), and needs some proof search in Dimension 3.

Determining when it is safe to make a coinductive conclusion (and
finding a right coinductive hypothesis).
(Again, the troubles come form un-typed setting.)

Katya (Dundee) CoALP for Type Inference Lyon’14 35 / 56

Soundness of Corecursion in LP

CoALP is sound and complete for inductive programs;

Soundness of coinductive programs is our next step.

Two directions:

Imposing guardedness conditions, to ensure every coinductive tree is
finite.
To ban programs that are not guarded by constructors:
stream(scons x,y) ← stream(scons x,y)

Unlike termination checks in Coq/Agda cannot be done fully statically
(no types to help!), and needs some proof search in Dimension 3.

Determining when it is safe to make a coinductive conclusion (and
finding a right coinductive hypothesis).
(Again, the troubles come form un-typed setting.)

Katya (Dundee) CoALP for Type Inference Lyon’14 35 / 56

Stream of Fibonacci numbers:

Falls into infinite loops in Prolog and Prolog-like version of CoLP [Gupta
et al. 2007] [Both are eager...] Those powerful SAT/SMT solvers would
not do it either.

1. add(0,Y,Y).

2. add(s(X),Y,s(Z)) :- add(X,Y,Z).

3. fibs(X,Y,cons(X,S)) :- add(X,Y,Z), fibs(Y,Z,S).

4. nth(0,cons(X,S),X).

5. nth(s(N),cons(X,S),Y) :- nth(N,S,Y).

6. fib(N,X) :- fibs(0,s(0),S), nth(N,S,X).

7. fib2(X) :- fib(s(s(0)),X).

Katya (Dundee) CoALP for Type Inference Lyon’14 36 / 56

Examples of derivations with Fib: lazy step 1

fib2(X)

fib(s2(0)),X)

fibs(0,s(0),S) nth(s2(0),S,X)

5,S/c(X1,S1)−−−−−−−−→

→

1. add(0,Y,Y).

2. add(s(X),Y,s(Z)) :-

add(X,Y,Z).

3. fibs(X,Y,cons(X,S)) :-

add(X,Y,Z), fibs(Y,Z,S).

4. nth(0,cons(X,S),X).

5. nth(s(N),cons(X,S),Y) :-

nth(N,S,Y).

6. fib(N,X) :- fibs(0,s(0),S),

nth(N,S,X).

7. fib2(X) :- fib(s(s(0)),X).

Katya (Dundee) CoALP for Type Inference Lyon’14 37 / 56

Examples of derivations with Fib: lazy step 1

fib2(X)

fib(s2(0)),X)

fibs(0,s(0),S) nth(s2(0),S,X)

5,S/c(X1,S1)−−−−−−−−→

→

1. add(0,Y,Y).

2. add(s(X),Y,s(Z)) :-

add(X,Y,Z).

3. fibs(X,Y,cons(X,S)) :-

add(X,Y,Z), fibs(Y,Z,S).

4. nth(0,cons(X,S),X).

5. nth(s(N),cons(X,S),Y) :-

nth(N,S,Y).

6. fib(N,X) :- fibs(0,s(0),S),

nth(N,S,X).

7. fib2(X) :- fib(s(s(0)),X).

Katya (Dundee) CoALP for Type Inference Lyon’14 37 / 56

Examples of derivations with Fib: lazy step 2

fib2(X)

fib(s2(0)),X)

fibs(0,s(0),c(X1,S1)) nth(s2(0),c(X1,S1),X)

nth(s(0),S1,X)

5,S1/c(X2,S2)−−−−−−−−−→

→

1. add(0,Y,Y).

2. add(s(X),Y,s(Z)) :-

add(X,Y,Z).

3. fibs(X,Y,cons(X,S)) :-

add(X,Y,Z), fibs(Y,Z,S).

4. nth(0,cons(X,S),X).

5. nth(s(N),cons(X,S),Y) :-

nth(N,S,Y).

6. fib(N,X) :- fibs(0,s(0),S),

nth(N,S,X).

7. fib2(X) :- fib(s(s(0)),X).

Katya (Dundee) CoALP for Type Inference Lyon’14 38 / 56

Examples of derivations with Fib: lazy step 2

fib2(X)

fib(s2(0)),X)

fibs(0,s(0),c(X1,S1)) nth(s2(0),c(X1,S1),X)

nth(s(0),S1,X)

5,S1/c(X2,S2)−−−−−−−−−→

→

1. add(0,Y,Y).

2. add(s(X),Y,s(Z)) :-

add(X,Y,Z).

3. fibs(X,Y,cons(X,S)) :-

add(X,Y,Z), fibs(Y,Z,S).

4. nth(0,cons(X,S),X).

5. nth(s(N),cons(X,S),Y) :-

nth(N,S,Y).

6. fib(N,X) :- fibs(0,s(0),S),

nth(N,S,X).

7. fib2(X) :- fib(s(s(0)),X).

Katya (Dundee) CoALP for Type Inference Lyon’14 38 / 56

Examples of derivations with Fib: lazy step 3

fib2(X)

fib(s2(0)),X)

fibs(0,s(0),c(X1,c(X2,S2))) nth(s2(0),c(X1,c(X2,S2)),X)

nth(s(0),c(X2,S2),X)

nth(0,S2,X)

S2/c(X,S3)−−−−−−−→

→

Katya (Dundee) CoALP for Type Inference Lyon’14 39 / 56

Examples of derivations with Fib: lazy step 4

fib2(X)

fib(s2(0)),X)

fibs(0,s(0),c(X1,c(X2,c(X,S3)))) nth(s2(0),c(X1,c(X2,c(X,S3))),X)

nth(s(0),c(X2,c(X,S3)),X)

nth(0,c(X,S3),X)

nth(0,c(X,S3),X)

X1/0−−−→

→

Katya (Dundee) CoALP for Type Inference Lyon’14 40 / 56

Examples of derivations with Fib: lazy step 5

fib2(X)

fib(s2(0)),X)

fibs(0,s(0),c(0,c(X2,c(X,S3))))

a(0,s(0),Z) fibs(s(0),Z,c(X2,c(X,S3)))

nth(s2(0),c(0,c(X2,c(X,S3))),X)

nth(s(0),c(X2,c(X,S3)),X)

nth(0,c(X,S3),X)

nth(0,c(X,S3),X)

Z/0−−→

→

Katya (Dundee) CoALP for Type Inference Lyon’14 41 / 56

Examples of derivations with Fib: lazy step 6

fib2(X)

fib(s2(0)),X)

fibs(0,s(0),c(0,c(X2,c(X,S3))))

a(0,s(0),s(0)) fibs(s(0),s(0),c(X2,c(X,S3)))

nth(s2(0),c(0,c(X2,c(X,S3))),X)

nth(s(0),c(X2,c(X,S3)),X)

nth(0,c(X,S3),X)

nth(0,c(X,S3),X)

X2/s(0)−−−−−→

→

Katya (Dundee) CoALP for Type Inference Lyon’14 42 / 56

Examples of derivations with Fib: lazy step 7

fib2(X)

fib(s2(0)),X)

fibs(0,s(0),c(0,c(s(0),c(X,S3))))

a(0,s(0),s(0)) fibs(s(0),s(0),c(s(0),c(X,S3)))

a(s(0),s(0),Z) fibs(s(0),Z,c(X,S3))

nth(s2(0),c(0,c(s(0),c(X,S3))),X)

nth(s(0),c(s(0),c(X,S3)),X)

nth(0,c(X,S3),X)

nth(0,c(X,S3),X)

Z/s(s(0))−−−−−−→

→

Katya (Dundee) CoALP for Type Inference Lyon’14 43 / 56

Examples of derivations with Fib: lazy step 8
fib2(X)

fib(s2(0)),X)

fibs(0,s(0),c(0,c(s(0),c(X,S3))))

a(0,s(0),s(0)) fibs(s(0),s(0),c(s(0),c(X,S3)))

a(s(0),s(0),s(s(0)))

a(0,s(0),s(0))

fibs(s(0),s(s(0)),c(X,S3))

nth(s2(0),c(0,c(s(0),c(X,S3))),X)

nth(s(0),c(s(0),c(X,S3)),X)

nth(0,c(X,S3),X)

nth(0,c(X,S3),X)

X/s(0)−−−−→

→
Katya (Dundee) CoALP for Type Inference Lyon’14 44 / 56

Examples of derivations with Fib: lazy step 9

fib2(s(0))

fib(s2(0)),s(0))

fibs(0,s(0),c(0,c(s(0),c(s(0),S3))))

a(0,s(0),s(0)) fibs(s(0),s(0),c(s(0),c(s(0),S3)))

a(s(0),s(0),s(s(0)))

a(0,s(0),s(0))

fibs(s(0),s(s(0)),c(s(0),S3))

a(s(0),s(s(0)),Z) fibs(s(s(0)),Z,S3)

nth(s2(0),c(0,c(s(0),c(s(0),S3))),s(0))

nth(s(0),c(s(0),c(s(0),S3)),s(0))

nth(0,c(s(0),S3),s(0))

nth(0,c(s(0),S3),s(0))

Katya (Dundee) CoALP for Type Inference Lyon’14 45 / 56

Logic Programming dialects, compared

Prolog Parallel Prolog Co-LP CoALP

Fib example No No No
Yes

Execution Eager Eager Eager
Lazy

Corecursion

No No by Regular Loop
detection

Guardedness by
constructors

Mode of execu-
tion

Sequential Parallel Sequential Parallel

Declarative se-
mantics

lfp lfp gfp (restricted) coalgebraic

Operational se-
mantics

transitions;
states: lists of
formulae

transitions;
states: lists of
formulae

transitions;
states: lists of
formulae

transitions;
states: coinduc-
tive trees

Katya (Dundee) CoALP for Type Inference Lyon’14 46 / 56

Logic Programming dialects, compared

Prolog Parallel Prolog Co-LP CoALP

Fib example No No No
Yes

Execution Eager Eager Eager
Lazy

Corecursion
No No by Regular Loop

detection
Guardedness by
constructors

Mode of execu-
tion

Sequential Parallel Sequential Parallel

Declarative se-
mantics

lfp lfp gfp (restricted) coalgebraic

Operational se-
mantics

transitions;
states: lists of
formulae

transitions;
states: lists of
formulae

transitions;
states: lists of
formulae

transitions;
states: coinduc-
tive trees

Katya (Dundee) CoALP for Type Inference Lyon’14 46 / 56

Logic Programming dialects, compared

Prolog Parallel Prolog Co-LP CoALP

Fib example No No No
Yes

Execution Eager Eager Eager
Lazy

Corecursion
No No by Regular Loop

detection
Guardedness by
constructors

Mode of execu-
tion Sequential Parallel Sequential Parallel

Declarative se-
mantics

lfp lfp gfp (restricted) coalgebraic

Operational se-
mantics

transitions;
states: lists of
formulae

transitions;
states: lists of
formulae

transitions;
states: lists of
formulae

transitions;
states: coinduc-
tive trees

Katya (Dundee) CoALP for Type Inference Lyon’14 46 / 56

Logic Programming dialects, compared

Prolog Parallel Prolog Co-LP CoALP

Fib example No No No
Yes

Execution Eager Eager Eager
Lazy

Corecursion
No No by Regular Loop

detection
Guardedness by
constructors

Mode of execu-
tion Sequential Parallel Sequential Parallel

Declarative se-
mantics lfp lfp gfp (restricted) coalgebraic

Operational se-
mantics

transitions;
states: lists of
formulae

transitions;
states: lists of
formulae

transitions;
states: lists of
formulae

transitions;
states: coinduc-
tive trees

Katya (Dundee) CoALP for Type Inference Lyon’14 46 / 56

Logic Programming dialects, compared

Prolog Parallel Prolog Co-LP CoALP

Fib example No No No
Yes

Execution Eager Eager Eager
Lazy

Corecursion
No No by Regular Loop

detection
Guardedness by
constructors

Mode of execu-
tion Sequential Parallel Sequential Parallel

Declarative se-
mantics lfp lfp gfp (restricted) coalgebraic

Operational se-
mantics transitions;

states: lists of
formulae

transitions;
states: lists of
formulae

transitions;
states: lists of
formulae

transitions;
states: coinduc-
tive trees

Katya (Dundee) CoALP for Type Inference Lyon’14 46 / 56

Outline

1 Recursion and Corecursion
Inductive and Coinductive Types in Coq
Terminative and Productive Functions
Recursion and Corecursion without types

2 Coalgebraic Logic Programming

3 Parallelism

4 Future directions: Applications to type inference

5 Appendix: LP in Type inference

Katya (Dundee) CoALP for Type Inference Lyon’14 47 / 56

Parallelising CoALP

Komendantskaya, Schmidt, Heras: Exploiting Parallelism in Coalgebraic
Logic Programming, ENTCS, 2014

1. bit(0).

2. bit(1).

3. btree(empty).

4. btree(tree(L,X,R)) ← btree(L), bit(X), btree(R).

Katya (Dundee) CoALP for Type Inference Lyon’14 48 / 56

Parallel CoALP

1t 2t 3t 4t 5t 6t

6t
+

1e

6t
+

2e

6t
+

3e

6t
+

4e

6t
+

5e

6t
+

6e

1

2

3

4

5

threads (t) and expand threads (e)

sp
ee

d
u

p

1000 solutions

2000 solutions

3000 solutions

4000 solutions

5000 solutions

6000 solutions

1,000 2,000 3,000 4,000 5,000 6,000

0

20

40

60

answers

ti
m

e 1t

6t

6t+6e

Katya (Dundee) CoALP for Type Inference Lyon’14 49 / 56

Directions we are exploring

Haskell implementation is nearly finished.
Current task: to find a “right” language to try CoALP-based type
inference

Using CoALP in Hume: for analysis of stream-based networks and/or
for type inference;

Type-inference in Haskell;

SSReflect: overloading in canonical structures currently requires the
use of back-tracking in LP-like algorithm. It could be parallel CoALP
execution instead;

CoALP for global type analysis in object-oriented languages: CoLP is
already used for that.

Formal Verification of CoALP-based type inference

Katya (Dundee) CoALP for Type Inference Lyon’14 50 / 56

The end

Komendantskaya, Power, Schmidt: Coalgebraic Logic Programming:
from Semantics to Implementation, Journal of Logic and
Computation, 2014.

Komendantskaya, Schmidt, Heras: Exploiting Parallelism in
Coalgebraic logic Programming, ENTCS, 2014.

A paper on implementing lazy guarded corecursion in CoALP using
Haskell is in preparation...

CoALP webpage has various prototype implementations to play
with... http://staff.computing.dundee.ac.uk/katya/CoALP/

We will be happy to apply CoALP for TI (or other purposes) in *YOUR*
language!

Katya (Dundee) CoALP for Type Inference Lyon’14 51 / 56

Milner, 1978

“A theory of Type Polymorphism in Programming”

An elegant match between polymorphic λ-calculus and type inference by
means of Robinson’s unification/resolution algorithm.

Katya (Dundee) CoALP for Type Inference Lyon’14 52 / 56

Milner, 1978

“A theory of Type Polymorphism in Programming”
An elegant match between polymorphic λ-calculus and type inference by
means of Robinson’s unification/resolution algorithm.

Katya (Dundee) CoALP for Type Inference Lyon’14 52 / 56

Trend in type inference:
improvement in expressiveness of the underlying type system, e.g., in
terms of

Dependent Types,

Type Classes [Wadler&Blott 89],

Generalised Algebraic Types (GADTs) [Peyton Jones & al, 2006]

Dependent Type Classes [Sozeau & al 08] and

Canonical Structures [Gonthier& al 11].

Milner-style decidable type inference does not always suffice (e.g. the
principal type may no longer exist), and TI requires additional inference
algorithms.

Implementations of new type inference algorithms include a variety of
first-order decision procedures, notably Unification and Logic
Programming (LP) [Peyton Jones & al, 2006], Constraint LP [Odersky
Sulzmann, Vytiniotis & many more 1999-], LP embedded into interactive
tactics (Coq’s eauto) Sozeau & al. 08], and LP supplemented by rewriting
[Gonthier & al, 11].

Katya (Dundee) CoALP for Type Inference Lyon’14 53 / 56

Trend in type inference:
improvement in expressiveness of the underlying type system, e.g., in
terms of

Dependent Types,

Type Classes [Wadler&Blott 89],

Generalised Algebraic Types (GADTs) [Peyton Jones & al, 2006]

Dependent Type Classes [Sozeau & al 08] and

Canonical Structures [Gonthier& al 11].

Milner-style decidable type inference does not always suffice (e.g. the
principal type may no longer exist), and TI requires additional inference
algorithms.
Implementations of new type inference algorithms include a variety of
first-order decision procedures, notably Unification and Logic
Programming (LP) [Peyton Jones & al, 2006], Constraint LP [Odersky
Sulzmann, Vytiniotis & many more 1999-], LP embedded into interactive
tactics (Coq’s eauto) Sozeau & al. 08], and LP supplemented by rewriting
[Gonthier & al, 11].

Katya (Dundee) CoALP for Type Inference Lyon’14 53 / 56

Motivation: type inference with Polymorphic types

List Length in Haskell

length :: [a] -> Integer

length [] = 0

length (x:xs) = 1 + length xs

Logic program for type inference

cons(X) ← X = Y→ list(Y)→ list(Y).
plus(X) ← X = int→ int→ int.
nil(X) ← X = list(Y).
length(X)← (X = Y→ Z) & nil(Y) & Z = int & cons(W) &

(W = W1→ W2→ Y) & plus(U) &
(U = int→ Z→ Z) & W2 = Y.

Query: length(X)?
Answer (any existing PROLOG version): X = list()→ int.

Katya (Dundee) CoALP for Type Inference Lyon’14 54 / 56

Trend to do more by type-inference:

... session types,

... writing contracts by means of types:

Example

Vytiniotis et al. ”HALO: Haskell to Logic Through Denotational
Semantics” [POPL’13]
f xs = head (reverse (True : xs))

g xs = head (reverse xs)

Both f and g are well typed and ”‘can’t go wrong”’ in Milner’s sense, but
g will crash for empty list, and f will never crash.
Contract:

reverse ∈ (xs : CF)→ {ys | null xs <=> null ys}

Requires strong first-order type inference engines: Z3, Vampire, E...

Katya (Dundee) CoALP for Type Inference Lyon’14 55 / 56

Could it get any better?

Clear trend on Type theory side: increase in type expressivenes
(dependent types, GADTs, type classes, session types, etc etc)

Chaotic use of type-inference engines, also known in the literature as
“using off-the-shelf” first order TPs.

Would it pay-off to get more conceptually elegant on type inference
side? – especially bearing in mind the big emphasis on type inference
in more expressive type systems.

Would our ”Coalgebraic Logic programming” grow to become a
type-inference specific theorem prover (with stronger theoretical
background and motivation than state-of-the-art SAT/SMT-solvers)?

Katya (Dundee) CoALP for Type Inference Lyon’14 56 / 56

Could it get any better?

Clear trend on Type theory side: increase in type expressivenes
(dependent types, GADTs, type classes, session types, etc etc)

Chaotic use of type-inference engines, also known in the literature as
“using off-the-shelf” first order TPs.

Would it pay-off to get more conceptually elegant on type inference
side? – especially bearing in mind the big emphasis on type inference
in more expressive type systems.

Would our ”Coalgebraic Logic programming” grow to become a
type-inference specific theorem prover (with stronger theoretical
background and motivation than state-of-the-art SAT/SMT-solvers)?

Katya (Dundee) CoALP for Type Inference Lyon’14 56 / 56

Could it get any better?

Clear trend on Type theory side: increase in type expressivenes
(dependent types, GADTs, type classes, session types, etc etc)

Chaotic use of type-inference engines, also known in the literature as
“using off-the-shelf” first order TPs.

Would it pay-off to get more conceptually elegant on type inference
side? – especially bearing in mind the big emphasis on type inference
in more expressive type systems.

Would our ”Coalgebraic Logic programming” grow to become a
type-inference specific theorem prover (with stronger theoretical
background and motivation than state-of-the-art SAT/SMT-solvers)?

Katya (Dundee) CoALP for Type Inference Lyon’14 56 / 56

Could it get any better?

Clear trend on Type theory side: increase in type expressivenes
(dependent types, GADTs, type classes, session types, etc etc)

Chaotic use of type-inference engines, also known in the literature as
“using off-the-shelf” first order TPs.

Would it pay-off to get more conceptually elegant on type inference
side? – especially bearing in mind the big emphasis on type inference
in more expressive type systems.

Would our ”Coalgebraic Logic programming” grow to become a
type-inference specific theorem prover (with stronger theoretical
background and motivation than state-of-the-art SAT/SMT-solvers)?

Katya (Dundee) CoALP for Type Inference Lyon’14 56 / 56

	Recursion and Corecursion
	Inductive and Coinductive Types in Coq
	Terminative and Productive Functions
	Recursion and Corecursion without types

	Coalgebraic Logic Programming
	Parallelism
	Future directions: Applications to type inference
	Appendix: LP in Type inference

