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Today's talk...

...continuation of Thanos'es talk of yesterday:
@ about logic programming (LP);
@ about first order (= in Thanos'es terms infinite) language for LP;
@ about how much we can merge methods of FP and LP...

@ may be you will see some references to a possible game semantics.
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Inductive Types and Recursive Functions

Inductive 1list (A : Type) : Type :=
| nil : 1list A
| cons : A -> 1list A -> list A.

Recursive functions have arguments of inductive types.

Fixpoint length (A:Type) (1: 1list A) : nat :=
match 1 with

| nil => 0

| _ e > => S (length 1°)
end.
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Coinductive Types and Corecursive Functions

CoInductive stream (A:Set) : Set :=
SCons: A -> stream A -> stream A. J

Corecursive functions have outputs of coinductive types. (Type of input
arguments is not important.)

CoFixpoint map (s:Stream A) : Stream B :=
SCons (f (hd s)) (map (tl s)). J
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Termination

We require all computations to terminate, because of:

@ Curry-Howard Isomorphism (propositions —+<— types; proofs —<—
programs): non-terminating proofs can lead to inconsistency.
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Termination

We require all computations to terminate, because of:

@ Curry-Howard Isomorphism (propositions —+<— types; proofs —<—
programs): non-terminating proofs can lead to inconsistency.

@ To decide type-checking of dependent types, we need to reduce
expressions to normal form.
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Productive Values

Values in co-inductive types are productive when all observations of

fragments made using recursive functions are guaranteed to be computable
in finite time.
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Productive Values

Values in co-inductive types are productive when all observations of
fragments made using recursive functions are guaranteed to be computable
in finite time.

The element of the stream at position n can be found by:

Definition

nth 0 (SCons a tl)=a
nth (S n) (SCons a tl) =nth n tl

A given stream s is productive if we can be sure that the computation of
the list nth n s is guaranteed to terminate, whatever the value of n is.

We call a function productive at the input value i, if it outputs a
productive value at /.
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Deciding Termination: Structural Recursion

A structurally recursive definition is such that every recursive call is
performed on a structurally smaller argument.

In this way we can be sure that the recursion terminates.
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Deciding Termination: Structural Recursion

A structurally recursive definition is such that every recursive call is
performed on a structurally smaller argument.

In this way we can be sure that the recursion terminates.

Example
Fixpoint length (A:Type) (1: 1list A) : nat :=
match 1 with
| nil => 0
| _:: 1° => S (length 1’)
end.
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Deciding Productivity: Guardedness

The guardedness condition insures that

* each corecursive call is made under at least one constructor;

** if the recursive call is under a constructor, it does not appear as an
argument of any function.

Violation of any of these two conditions makes a function rejected by the
guardedness test in Coqg.
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Deciding Productivity: Guardedness

The guardedness condition insures that

* each corecursive call is made under at least one constructor;

** if the recursive call is under a constructor, it does not appear as an
argument of any function.

Violation of any of these two conditions makes a function rejected by the
guardedness test in Coq.
Example

CoFixpoint map (s:Stream A) : Stream B :=
SCons (f (hd s)) (map (t1 s)).
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To notice:

(Terminating) (Non—terminating) CProductive} (Non—productive)
/ ~ _~

| Recursion I | Corecursion |

@ The role of types in definition of (co)recursive functions;

@ The role of constructors and (co)-pattern matching;
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Recursion and Corecursion in Logic Programming

Example
nat(0) <+
nat(s(x)) < nat(x)
list(nil) <«
list(cons x y) < nat(x), list(y)
Example
bit(0) <«
bit(1l) <«
stream(cons (x,y)) < bit(x),stream(y)
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SLD-resolution (+ unification and backtracking) behind

LP derivations.

Example

nat(0) «
nat(s(x)) < nat(x)
list(nil) <«

list(cons x y) < nat(x),

+ list(cons(x,y))

<+ nat(x), list(y)

list(y)

Katya (Dundee)

CoALP for Type Inference

Lyon'14

12 / 56



SLD-resolution (+ unification) is behind LP derivations.

Example List( (x.7))
%
nat(O) y 1S C‘OIIS Xy

nat(s(x)) + nat(x)
list(nil) «
list(cons x y) < nat(x),

+ nat(x), list(y)

— list(y)

list(y)
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SLD-resolution (+ unification) is behind LP derivations.

Example

nat (0) <

nat(s(x)) < nat(x)
list(nil) «

list(cons x y) < nat(x),

list(y)

+ list(cons(x,y))

+ nat(x), list(y)

+— list(y)

«~— 0

The answer is x/O, y/nil, but we can get more substitutions by
backtracking. We can backtrack infinitely many times, but each time

computation will terminate.
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SLD-resolution (+ unification) is behind LP derivations.

+ list(cons(x,y))

+ nat(x), list(y)

Example

nat(0) «
nat(s(x)) < nat(x)
list(nil) «+ _‘
list(cons x y) ¢ nat(x), ¢ list(y)

|

list(y)l «~ 0
The answer is x/O, y/nil, but we can get more substitutions by
backtracking. We can backtrack infinitely many times, but each time
computation will terminate.
Nice, clean semantics: least Herbrand model exists, sound&complete, etc.:
see Thanos'es Viva of yesterday.
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Corecursion in LP?

Example

bit (0)

bit(1) «+
stream(scons(x, y)) +

bit(x), stream(y)
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Corecursion in LP?

Example

bit (0)
bit(1) «+
stream(scons(x, y)) +

bit(x), stream(y)

No answer, as derivation never
terminates.
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Corecursion in LP?

Example

bit (0)

bit(1) «+
stream(scons(x, y)) «

bit(x), stream(y)

No answer, as derivation never
terminates.

Semantics may go wrong as well:
least Herbrand models will contain
an infinite term corresponding to
stream: so completeness fails.

<+ stream(scons(x,y))

+ bit(x), stream(y)

<+ stream(y)

< bit(xy), stream(y;)

<+ stream(y;)

+ bit(xz), stream(ys)

+ strean(ys)
\
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[t can be worse....

Example

bit (0) «

bit (1) «
list(cons(x, y)) «

bit(x), list(y)

list(nil) <
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[t can be worse....

Example

bit (0) «
bit (1) «
list(cons(x, y)) «

bit(x), list(y)

list(nil) <

No answer, as derivation never
terminates.

Katya (Dundee) CoALP for Type Inference



[t can be worse....

+ list(cons(x,y))

Example < bit(x), list(y)
bit(0) < |
bit (1) + list(y)

list(cons(x, y)) « |
< bit(Xl), liSt(Y1)
bit(x), list(y) |

— liSt(y1)

’ |

list(nil) <

No answer, as derivation never < bit(xp),list(ys)
terminates. |
Semantics goes wrong: this time, + list(ya)
soundness! \

Katya (Dundee) CoALP for Type Inference Lyon'14 16 / 56



To notice:

e Distinction between (co)inductive type, (co)recursive function over
(co)inductive type and a proof by (co)induction is erased.
e Without types guarding (co)recursion, things get messy:
> ...not "just” termination, but also semantics

@ We do not have a formalism to speak about termination and
productivity, or generally, recursion/corecursion.

Note aside: LP has instances of dependent types, mixed
induction/coinduction, recursion/corecursion....
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Outline

© Coalgebraic Logic Programming
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CoALP: what is it about?

syntactically — first-order logic programming;

operationally — lazy (co)recursion;

inspired by coalgebraic fibrational semantics;

explores the tree-structure of partial proofs — " coinductive trees”;

uses lazy guarded corecursion using measures of corecursive steps
given by coinductive trees (cf. "clocked corecursion”);

parallel...
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Fibrational Coalgebraic Semantics of CoALP in 3 ideas

Operational View of Logic Programming

© Let At be the set of all atoms appearing in a program P. Then P can
be identified with a PrP¢-coalgebra (At, p), where
p: At — Pr(Pf(At)) sends an atom A to the set of bodies of those
clauses in P with head A.
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Fibrational Coalgebraic Semantics of CoALP in 3 ideas

Operational View of Logic Programming

© Let At be the set of all atoms appearing in a program P. Then P can
be identified with a PrP¢-coalgebra (At, p), where
p: At — Pr(Pf(At)) sends an atom A to the set of bodies of those
clauses in P with head A.

@ Taking p : At — P¢Ps(At), the corresponding C(PsPs)-coalgebra
where C(P¢Ps) is the cofree comonad on P¢Ps is given as follows:
C(PrPr)(At) is given by a limit of the form

.. — At X PfPf(At X PfPf(At')) — At X PfPf(At) — At.

This gives a “tree-like” structure: we call them & V/-trees.
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Fibrational Coalgebraic Semantics of CoALP in 3 ideas

Operational View of Logic Programming

© Let At be the set of all atoms appearing in a program P. Then P can
be identified with a PrP¢-coalgebra (At, p), where
p: At — Pr(Pf(At)) sends an atom A to the set of bodies of those
clauses in P with head A.

@ Taking p : At — P¢Ps(At), the corresponding C(PsPs)-coalgebra
where C(P¢Ps) is the cofree comonad on P¢Ps is given as follows:
C(PrPr)(At) is given by a limit of the form

.. — At X PfPf(At X PfPf(At')) — At X PfPf(At) — At.

This gives a “tree-like” structure: we call them & V/-trees.

© For first order extension: Take Lawvere Theory Ly to model the
signature X (objects are natural numbers, arrows — term arities,
composition = substitution), and take
Ly — Set — to model (predicates in) At.
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Examples

Program Stream: fibers are term arities. Take the fiber of 1. & V-trees:
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Examples

Program Stream: fibers are term arities. Take the fiber of 1. & V-trees:

stream(x)
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Examples

Program Stream: fibers are term arities. Take the fiber of 1. & V-trees:

stream(x) stream(scons(x,x))

/i\

bit(x) stream(x)
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Examples

Program Stream: fibers are term arities. Take the fiber of 1. & V-trees:

stream(x) stream(scons(x,x))

/i\

bit(x) stream(x)

stream(scons(0, scons(x, x)))

/K

bit(0) stream(scons(x,x))

S

bit(x) stream(x)
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Computationally essential:

@ for coinductive Stream program, the & V-trees are finite!!! — both in

depth and in breadth;

@ ceach tree gives only a partial computation — it is not like eager
SLD-trees we have seen earlier;

© the effect of fibers is best modelled by restricting unification to
term-matching (note resemblance to the pattern-matching in
Functional setting).
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Computationally essential:

@ for coinductive Stream program, the & V-trees are finite!!! — both in
depth and in breadth;

@ ceach tree gives only a partial computation — it is not like eager
SLD-trees we have seen earlier;

© the effect of fibers is best modelled by restricting unification to
term-matching (note resemblance to the pattern-matching in
Functional setting).

1. = gives hope for a formalism to describe termination and productivity
2. = hints there may be laziness involved...
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Lazy Corecursion in CoALP: Coinductive trees

&

stream(x)
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Lazy Corecursion in CoALP: Coinductive trees

s L

stream(x) stream(scons(z,y))

A

bit(z) stream(y)
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Lazy Corecursion in CoALP: Coinductive trees

s L

stream(x) stream(scons(z,y))

/K

bit(z) stream(y)
Note that transitions § may be determined in a number of ways:
@ using mgus;
@ non-deterministically;

@ in a distributed/parallel manner.

Katya (Dundee) CoALP for Type Inference Lyon'14

23 / 56



Lazy Corecursion in CoALP
4 .5

stream(x) stream(scons(z,y))

/K

bit(z) stream(y)

stream(scons(0, scons(y1,21)))

/K

bit(0) stream(scons(yi,z1))

bit(yi) stream(z;)
The above would correspond to one-branch of SLD-derivations we have

seen! The main driving force: separation of layers of computations into
different dimensions.
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Properties:

Komendantskaya, Power, Schmidt: Coalgebraic Logic Programming: from
Semantics to Implementation, Journal of Logic and Computation, 2014. J

@ Sound and complete with respect to the coalgebraic semantcs;

@ Finite computations are sound and complete with respect to the least
Herbrand model semantics (so, we can do as much as standard
Prolog for sure).

@ Adequacy result for observational semantics.
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Properties:

Komendantskaya, Power, Schmidt: Coalgebraic Logic Programming: from
Semantics to Implementation, Journal of Logic and Computation, 2014. J

@ Sound and complete with respect to the coalgebraic semantcs;

o Finite computations are sound and complete with respect to the least

Herbrand model semantics (so, we can do as much as standard
Prolog for sure).

@ Adequacy result for observational semantics.

What does it tell us beyond LP?
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CoALP: the three-dimensional calculus of trees

@ Dimension 1: term-trees;
@ Dimension 2: coinductive trees;

© Dimension 3: derivation trees.
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Dimension-1: Term-trees

Take a tree-language N*.

Given an L € N*, a term tree is a map L — ¥, satisfying term arity
restrictions.

Example:
0. 1.
f bitstream
o 0 N scc‘ms
00 01 X - ~ Y
Notation:

Term(X) | finite term trees over ¥
Term®™(X) | infinite term trees over ¥
Term®(X) | finite and infinite term trees over ¥
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Dimension-2: Coinductive trees

Given an L € N*, a coinductive tree is a map L — Term(Xp), satisfying
coinductive tree construction for P.

Example:

0. 2.

€ bitstream(scons(X,Y))

|
/ 0 )\
N . .
00 01 bit(X) bitstream(Y)
Notation:
CTree(Term(Xp), P) all finite coinductive trees over Term(Xp)
CTree™(Term(Xp),P) | all infinite coinductive trees over Term(Xp)

CTree®(Term(Xp),P) | all finite and infinite coinductive trees over
Term(Xp)
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Dimension-3: Derivation trees

Given an L € N*, a coinductive derivation is a map
L — CTree(Term(Xp), P), satisfying the mgu requirement.
L i} i
€ bitstream(X) 0 bitstream([X1|Y]) 00 bitstream([0|Y])

/K bit(0) bitstream(Y)

bit(X1) bitstream(Y) l
01 bitstream([X1|[X2|Y1]])

A

bit(X1) bitstream([X2|Y1])

A

bit(X2) bitstream(Y1)
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Dimension-3 notation

CDer(CTree(Term(Xp), P)) | all finite coinductive derivations over
(CTree(Term(Xp), P))
CDer>*(CTree(Term(Xp), P)) | all infinite coinductive trees over
(CTree(Term(Xp), P))
CDer”(CTree(Term(Xp), P)) | all finite and infinite coinductive trees
over (CTree(Term(Xp), P))
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Theory of Productivity for LP

A first-order logic program P is productive if

for any term t € Term(Xp), the coinductive tree CT with the root t
belongs to CTree(Term(Xp), P).
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Theory of Productivity for LP

A first-order logic program P is productive if

for any term t € Term(Xp), the coinductive tree CT with the root t
belongs to CTree(Term(Xp), P).

@ In the class of Productive LPs, we can further distinguish finite LP

that give rise to derivations in CDer(CTree(Term(Xp), P)),
E.g. bit.
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Theory of Productivity for LP

A first-order logic program P is productive if

for any term t € Term(Xp), the coinductive tree CT with the root t
belongs to CTree(Term(Xp), P).

@ In the class of Productive LPs, we can further distinguish finite LP
that give rise to derivations in CDer(CTree(Term(Xp), P)),
E.g. bit.

@ inductive LPs all derivations for which are in
CDer*(CTree(Term(Xp), P));
E.g. ListNat.
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Theory of Productivity for LP

A first-order logic program P is productive if

for any term t € Term(Xp), the coinductive tree CT with the root t
belongs to CTree(Term(Xp), P).

@ In the class of Productive LPs, we can further distinguish finite LP
that give rise to derivations in CDer(CTree(Term(Xp), P)),
E.g. bit.

@ inductive LPs all derivations for which are in
CDer*(CTree(Term(Xp), P));
E.g. ListNat.

@ coinductive LPs all derivations for which are in
CDer>(CTree(Term(Xp), P)))
E.g. Stream.
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Theory of Productivity in LP

Productive
N
|(Coinductive) Derivations (_  Finite )

(Non—productive)
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Theory of Productivity in LP

Productive
N
|(Coinductive) Derivationsl (_  Finite )

Compare with:

(Non—productive)

(Terminating) (Non—terminatin@ CProductive} (Non—productive)
/ ™~

| Recursion I | Corecursion |
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Deciding Productivity: Guardedness

@ Dimension 1. Measures of reduction on term trees:
stream(y) is a reduction of stream(scons(x,y))

@ Dimension 2. Reduction on coinductive tree loops:

stream(scons(z,y))

/l\

bit(z) stream(y)

@ Dimension 3. Discovery of derivation loops.
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Example of guardedness issues

p(s(X1),X2,Y1,Y2) + q(X2,X2,Y1,Y2)
q(X1,%X2,s(Y1),Y2) + p(X1,X2,Y2,Y2)
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Example of guardedness issues

p(s(X1),X2,Y1,Y2) + q(X2,X2,Y1,Y2)
q(X1,%X2,s(Y1),Y2) + p(X1,X2,Y2,Y2)

p(s(X1),X2,Y1,Y2)
¢
q(X2,X2,Y1,Y2)
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Example of guardedness issues

p(s(X1),X2,Y1,Y2) + q(X2,X2,Y1,Y2)
q(X1,X2,s(Y1),Y2) « p(X1,X2,Y2,Y2)

p(s(X1),X2,Y1,Y2)
¢
q(X2,X2,Y1,Y2)

p(s(x1),s(x2),s(y1),5(y2))
q(s(x2), s(x2),s(y1), s(y2))
p(s(x2),s(x2), s(y2),5(y2))
q(s(x2), s(x2), s(y2), s(y2))

Katya (Dundee)
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Soundness of Corecursion in LP

@ CoALP is sound and complete for inductive programs;

@ Soundness of coinductive programs is our next step.

Two directions:
@ Imposing guardedness conditions, to ensure every coinductive tree is
finite.
To ban programs that are not guarded by constructors:
stream(scons x,y) < stream(scons x,y)
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Soundness of Corecursion in LP

@ CoALP is sound and complete for inductive programs;

@ Soundness of coinductive programs is our next step.

Two directions:
@ Imposing guardedness conditions, to ensure every coinductive tree is
finite.
To ban programs that are not guarded by constructors:
stream(scons x,y) < stream(scons x,y)
Unlike termination checks in Coq/Agda cannot be done fully statically
(no types to help!), and needs some proof search in Dimension 3.
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Soundness of Corecursion in LP

@ CoALP is sound and complete for inductive programs;

@ Soundness of coinductive programs is our next step.

Two directions:

@ Imposing guardedness conditions, to ensure every coinductive tree is
finite.
To ban programs that are not guarded by constructors:
stream(scons x,y) < stream(scons x,y)
Unlike termination checks in Coq/Agda cannot be done fully statically
(no types to help!), and needs some proof search in Dimension 3.

@ Determining when it is safe to make a coinductive conclusion (and
finding a right coinductive hypothesis).
(Again, the troubles come form un-typed setting.)
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Stream of Fibonacci numbers:

Falls into infinite loops in Prolog and Prolog-like version of CoLP [Gupta
et al. 2007] [Both are eager...] Those powerful SAT/SMT solvers would
not do it either

add(0,Y,Y).

add(s(X),Y,s(2)) :- add(X,Y,Z).
fibs(X,Y,cons(X,S)) :- add(X,Y,Z), fibs(Y,Z,S).
nth(0,cons(X,S) ,X).

nth(s(N),cons(X,S),Y) :- nth(N,S,Y).

fib(N,X) :- fibs(0,s(0),S), nth(N,S,X).

fib2(X) :- £ib(s(s(0)),X).

~N o O W N
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Examples of derivations with Fib: lazy step 1

£ib2(X)

%

£ib(s2(0)),X)

A

£ibs(0,s(0),8)  nth(s2(0),S,X)

5,5/c(X1,51)
e
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Examples of derivations with Fib: lazy step 1

£ib2(X)

|

£ib(s2(0)),X)

A

£ibs(0,s(0),8)  nth(s2(0),S,X)

5,8/c(X1,81)
e

Katya (Dundee)

1. add(0,Y,Y).

2. add(s(X),Y,s(Z)) :-
add(X,Y,Z).

3. fibs(X,Y,cons(X,S)) :-
add(X,Y,z), fibs(Y,Z,S).

4. nth(0,cons(X,S),X).

5. nth(s(N),cons(X,S),Y) :-
nth(N,S,Y).

6. fib(N,X) :- fibs(0,s(0),S),
nth(N,S,X) .

7. £ib2(X) :- fib(s(s(0)),X).
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Examples of derivations with Fib: lazy step 2

£ib2(X)

+

£ib(s2(0)),X)

A

£ibs(0,5(0),c(X1,51))  nth(s2(0),c(X1,51),X)

l

nth(s(0),81,X)

5,81/c(X2,82)
-
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Examples of derivations with Fib: lazy step 2

£ib2(X)

+

£ib(s2(0)),X)

A

fibs(0,s(0),c(X1,51)) nth(s2(0),c(X1,51),X)

+

nth(s(0),81,X)

5,81/c(X2,82)
—_

Katya (Dundee)

CoALP for Type Inference

1. add(0,Y,Y).

2. add(s(X),Y,s(Z)) :-
add(X,Y,Z).

3. fibs(X,Y,cons(X,S)) :-
add(X,Y,Z), fibs(Y,Z,S).

4. nth(0,cons(X,S),X).

5. nth(s(N),cons(X,S),Y) :-

nth(N,S,Y).

6. fib(N,X) :- fibs(0,s(0),S),
nth(N,S,X).

7. fib2(X) :- fib(s(s(0)),X).
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Examples of derivations with Fib: lazy step 3

£ib2(X)

+

£ib(s2(0)),X)

/l\

£ibs(0,s(0) ,c(X1,c(X2,82))) nth(s?(0),c(X1,c(X2,52)),X)

i

nth(s(0),c(X2,52),X)

{

nth(0,52,X)

52/c(X,83)
I,
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Examples of derivations with Fib: lazy step 4

£ib2(X)

|

£ib(s2(0)),X)
£ibs(0,s(0),c(X1,c(X2,c(X,83)))) nth(sz(O) ,c(X1,c(X2,c(X,83))),X)

nth(s(0),c(X2,c(X,83)),X)

nth(0,c(X,S3),X)

nth(0,c(X,83),X)

l
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Examples of derivations with Fib: lazy step 5

£ib2(X)

|

£1b(s2(0)),X)

/\

fibs(0,s(0),c(0,c(X2,c(X,S3)))) nth(s?(0),c(0,c(X2,c(X,53))),X)
a(0,s(0),2) £ibs(s(0),Z,c(X2,c(X,83))) nth(s(0),c(X2,c(X,S3)),X)

nth(0,c(X,83),X)

nth(0,c(X,83),X)

l
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Examples of derivations with Fib: lazy step 6

£ib2(X)

|

£ib(s2(0)),X)

/l\

£ibs(0,s(0),c(0,c(X2,c(X,83)))) nth(sz(O),c(O,c(X2,c(X,SS))),X)
a(0,s(0),s(0)) fibs(s(0),s(0),c(X2,c(X,S3))) nth(s(0),c(X2,c(X,83)),X)

|

nth(0,c(X,S3),X)

X2/s(0)

nth(0,c(X,83),X)

l
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Examples of derivations with Fib: lazy step 7

£ib2(X)
£ib(s2(0)),X)
£ibs(0,s(0),c(0,c(s(0),c(X,83)))) nth(s?(0),c(0,c(s(0),c(X,53))),X)
a(0,s(0),s(0)) fibs(s(0),s(0),c(s(0),c(X,83))) nth(s(0),c(s(0),c(X,83)),X)

l

a(s(0),s(0),2) £ibs(s(0),Z,c(X,83)) nth(0,c(X,83),X)

Z/s(s(0))

nth(0,c(X,S83),X)

1
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Examples of derivations with Fib: lazy step 8

£ib2(X)

|

£ib(s2(0)),X)

/\

£ibs(0,s(0),c(0,c(s(0),c(X,83)))) nth(s(0),c(0,c(s(0),c(X,$3))),X)
,/”////1\\\\\\\\
a(0,s(0),s(0)) £ibs(s(0),s(0),c(s(0),c(X,83))) nth(s(0),c(s(0),c(X,83)),X)
l ,/’/////l\\\\\\\\
a(s(0),s(0),s(s(0))) fibs(s(0),s(s(0)),c(X,S3)) nth(0,c(X,S3),X)
|
a(0,s(0),s(0)) nth(0,c(X,83),X)

l l

X/s(0)
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Examples of derivations with Fib: lazy step 9

£ib2(s(0))

+

£ib(s2(0)),5(0))

/L\

£ibs(0,5(0),c(0,c(s(0),c(s(0),83)))) nth(s2(0),c(0,c(s(0),c(s(0),53))),5(0))
/J\ +
a(0,s(0),s(0)) £ibs(s(0),s(0),c(s(0),c(s(0),S3))) nth(s(0),c(s(0),c(s(0),83)),s(0))
a(s(0),s(0),s(s(0))) £ibs(s(0),s(s(0)),c(s(0),83)) nth(0,c(s(0),83),s(0))
! A +
a(0,s(0),s(0))a(s(0),s(s(0)),2) fibs(s(s(0)),Z,S3) nth(0,c(s(0),S3),s(0))

l !
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Logic Programming dialects, compared

|| Prolog

| Parallel Prolog | Co-LP

| CoALP

Fib example

|| No

|No

|No

| Yes

Execution

Eager

Eager

Eager

Lazy

Corecursion

Mode of execu-
tion

Declarative se-
mantics

Operational se-
mantics

Katya (Dundee)

CoALP for Type Inference
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Logic Programming dialects, compared

Prolog Parallel Prolog Co-LP CoALP
| Fib example || No | No | No
Yes
Execution Eager Eager Eager
Lazy
Corecursion
No No by Regular Loop | Guardedness by
detection constructors
Mode of execu-
tion Sequential Parallel Sequential Parallel
Declarative se-
mantics
Operational se-
mantics
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Logic Programming dialects, compared

|| Prolog

Parallel Prolog Co-LP CoALP
| Fib example || No | No | No
Yes
Execution Eager Eager Eager
Lazy
Corecursion
No No by Regular Loop | Guardedness by
detection constructors
Mode of execu-
tion Sequential Parallel Sequential Parallel
Declarative se- . .
mantics Ifp Ifp gfp (restricted) coalgebraic
Operational se-
mantics
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Logic Programming dialects, compared

Parallel Prolog ‘

‘ CoALP ‘

Co-LP
‘ Fib example H No ‘ No ‘ No ‘ ‘
Yes
Execution Eager Eager Eager
Lazy
Corecursion
No No by Regular Loop | Guardedness by
detection constructors
Mode of execu-
tion Sequential Parallel Sequential Parallel
Declarative se-
mantics Ifp Ifp gfp (restricted) coalgebraic
Operational se- . . . .
mantics transitions; transitions; transitions; transitions;
states: lists of | states: lists of | states: lists of | states: coinduc-
formulae formulae formulae tive trees
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Outline

© Parallelism
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Parallelising CoALP

Komendantskaya, Schmidt, Heras: Exploiting Parallelism in Coalgebraic
Logic Programming, ENTCS, 2014 J

1. bit(0).

2 bit(1).

3. Dbtree(empty).

4. Dbtree(tree(L,X,R)) ¢+ btree(L), bit(X), btree(R).
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Parallel CoALP

speedup

—@— 1000 solutions.
—m— 2000 solutions.
—@— 3000 solutions.
—— 4000 solutions.
—4— 5000 solutions.
@ - 6000 solutions.

1t
2t
3t
4t -
5t
6t |-

6t+1e |-

6t+2e |-
6t+3e |-
6t+4e |-
6t-+5e |-

6t-+6e |-

threads (t) and expand threads (e)

Katya (Dundee)

o
£
=]

401

20 -

e

‘ ‘ ‘ ‘ ‘ ‘
1,000 2,000 3,000 4,000 5,000 6,000

answers
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Directions we are exploring

Haskell implementation is nearly finished.
Current task: to find a “right” language to try CoALP-based type
inference

@ Using CoALP in Hume: for analysis of stream-based networks and/or
for type inference;

@ Type-inference in Haskell;

@ SSReflect: overloading in canonical structures currently requires the
use of back-tracking in LP-like algorithm. It could be parallel CoALP
execution instead;

@ CoALP for global type analysis in object-oriented languages: ColLP is
already used for that.

@ Formal Verification of CoALP-based type inference
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The end

@ Komendantskaya, Power, Schmidt: Coalgebraic Logic Programming:
from Semantics to Implementation, Journal of Logic and
Computation, 2014.

Komendantskaya, Schmidt, Heras: Exploiting Parallelism in
Coalgebraic logic Programming, ENTCS, 2014.

@ A paper on implementing lazy guarded corecursion in CoALP using
Haskell is in preparation...

@ CoALP webpage has various prototype implementations to play
with... http://staff.computing.dundee.ac.uk/katya/CoALP/

We will be happy to apply CoALP for Tl (or other purposes) in *YOUR*
language!
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Milner, 1978

“A theory of Type Polymorphism in Programming”
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Milner, 1978

“A theory of Type Polymorphism in Programming”
An elegant match between polymorphic A-calculus and type inference by
means of Robinson’s unification/resolution algorithm.
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Trend in type inference:

improvement in expressiveness of the underlying type system, e.g., in
terms of

@ Dependent Types,

o Type Classes [Wadler&Blott 89],

o Generalised Algebraic Types (GADTs) [Peyton Jones & al, 2006]
o Dependent Type Classes [Sozeau & al 08] and

e Canonical Structures [Gonthier& al 11].

Milner-style decidable type inference does not always suffice (e.g. the
principal type may no longer exist), and TI requires additional inference
algorithms.
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Trend in type inference:
improvement in expressiveness of the underlying type system, e.g., in
terms of

@ Dependent Types,

o Type Classes [Wadler&Blott 89],

o Generalised Algebraic Types (GADTs) [Peyton Jones & al, 2006]
o Dependent Type Classes [Sozeau & al 08] and

e Canonical Structures [Gonthier& al 11].

Milner-style decidable type inference does not always suffice (e.g. the
principal type may no longer exist), and TI requires additional inference
algorithms.

Implementations of new type inference algorithms include a variety of
first-order decision procedures, notably Unification and Logic
Programming (LP) [Peyton Jones & al, 2006], Constraint LP [Odersky
Sulzmann, Vytiniotis & many more 1999-], LP embedded into interactive
tactics (Coq's eauto) Sozeau & al. 08], and LP supplemented by rewriting
[Gonthier & al, 11].
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Motivation: type inference with Polymorphic types

List Length in Haskell

length :: [a] -> Integer
length [1 = 0

length (x:xs) = 1 + length xs

Logic program for type inference

cons(X) <+ X=Y — list(Y) — list(Y).

plus(X) <« X=int — int — int.

nil(X) <« X = list(Y).

length(X) <~ (X =Y — Z) & nil(Y) & Z = int & cons(W) &
(W=1W1— W2 — Y) & plus(U) &
(U=int —2Z—2) & W2 =Y.

Query: length(X)?
Answer (any existing PROLOG version): X = list(_) — int.
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Trend to do more by type-inference:

. session types,
. writing contracts by means of types:

Example

Vytiniotis et al. "HALO: Haskell to Logic Through Denotational
Semantics” [POPL'13]

f xs = head (reverse (True : xs))

g xs = head (reverse xs)

Both f and g are well typed and "‘can’t go wrong”' in Milner's sense, but
g will crash for empty list, and £ will never crash.

Contract:

reverse € (xs : CF) — {ys | null xs <=> null ys}

Requires strong first-order type inference engines: Z3, Vampire, E...
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Could it get any better?

@ Clear trend on Type theory side: increase in type expressivenes
(dependent types, GADTs, type classes, session types, etc etc)
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@ Clear trend on Type theory side: increase in type expressivenes
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o Chaotic use of type-inference engines, also known in the literature as
“using off-the-shelf” first order TPs.
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@ Would it pay-off to get more conceptually elegant on type inference
side? — especially bearing in mind the big emphasis on type inference
in more expressive type systems.
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Could it get any better?

@ Clear trend on Type theory side: increase in type expressivenes
(dependent types, GADTs, type classes, session types, etc etc)

o Chaotic use of type-inference engines, also known in the literature as
“using off-the-shelf” first order TPs.

@ Would it pay-off to get more conceptually elegant on type inference
side? — especially bearing in mind the big emphasis on type inference
in more expressive type systems.

@ Would our " Coalgebraic Logic programming” grow to become a
type-inference specific theorem prover (with stronger theoretical
background and motivation than state-of-the-art SAT /SMT-solvers)?
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