A many-sorted semantics for annotated logic programs

Ekaterina Komendantskaya

Department of Mathematics, University College Cork, Ireland

Information-MFCSIT, 1 August – 6 August, 2006

E.Komendantskaya (Dep. of Math., UCC) A many-sorted semantics for annotated logic

1 Motivation

2 Many-sorted languages and structures

Outline

Motivation

2 Many-sorted languages and structures

Translation of annotated logic programs into many-sorted

- Syntactical translation
- Semantical translation
- Translation for program clauses
- Two SLD-resolutions

Outline

Motivation

2 Many-sorted languages and structures

Translation of annotated logic programs into many-sorted

- Syntactical translation
- Semantical translation
- Translation for program clauses
- Two SLD-resolutions

When studying many-valued logic programming we need to establish:

- a better understanding of its semantics and models;
- a place for many-valued logic programs among other non-classical first-order logic programs;
- explicit description of properties of underlying structure of each program.

Many-sorted languages and structures

Many-sorted logic [Manzano]: signature

• We define a signature $\Sigma = \langle {\rm SORT}, {\rm RANK} \rangle {\rm :}$

Many-sorted languages and structures

Many-sorted logic [Manzano]: signature

- We define a signature $\Sigma = \langle {\rm SORT}, {\rm RANK} \rangle {\rm :}$
- Take an arbitrary set SORT and the set S_ω(SORT) of finite sequences of elements of SORT;
- Define a mapping RANK : OPER.SYM $\rightarrow S_{\omega}(SORT)$.

We take $SORT^* = \{0, 1, 2, < 0, 1, ..., 1, 2 >\}$ (for each $n \in \mathbb{N}$). And call the resulting many-sorted language MSL^* .

Function RANK over OPER.SYM:

$$\text{OPER.SYM} = \{\neg, \lor, \land, \supset, \doteq, \leq_k, f^n, \vartheta^n, R^n, I^n, \varepsilon\}.$$

Function RANK over OPER.SYM:

OPER.SYM = { \neg , \lor , \land , \supset , \doteq , \leq_k , f^n , ϑ^n , R^n , I^n , ε }. $\operatorname{RANK}(\neg) = \langle 0, 0 \rangle, \operatorname{RANK}(\lor) = \operatorname{RANK}(\land) = \operatorname{RANK}(\supset) = \langle 0, 0, 0 \rangle;$ $\operatorname{RANK}(\doteq) = \operatorname{RANK}(\leq_k) = \langle 0, 2, 2 \rangle.$ $\operatorname{RANK}(f^n(x_1,\ldots,x_n)) = \langle 1,\overbrace{1,\ldots,1}^n \rangle;$ RANK $(\vartheta^n((\mu_1,\nu_1),\ldots,(\mu_n,\nu_n)) = \langle 2,2,\ldots,2\rangle;$ $\operatorname{RANK}(R^n(x_1,\ldots,x_n)) = \langle 0,\overbrace{1,\ldots,1}^n \rangle.$ $\operatorname{RANK}(I^{n}((x_{1},\ldots,x_{n}),(\mu,\nu))) = \langle 0,\overbrace{1,\ldots,1}^{n},2\rangle.$ $\operatorname{RANK}(\varepsilon_{n}) = \langle 0,\overbrace{1,\ldots,1}^{n},2,<0,\overbrace{1,\ldots,1}^{n},2\rangle.$

Many-sorted structure

Definition

We define a many-sorted structure

$$\mathcal{S}=\langle \mathcal{A}_1,\mathcal{A}_2,\mathcal{A}_3^n,f^{\mathcal{A}_1},f^{\mathcal{A}_2},f^{\mathcal{A}_3^n}
angle,$$
 (for each $n\in\mathbb{N}$),

where A_1 , A_2 and A_3^n are universes for variables of sorts <1>, <2>, $<0, \overbrace{1, \dots, 1}^n, 2>$; $f^{A_1} \subseteq A_1^k$, $f^{A_2} \subseteq A_2^k$ and $f^{A_3^n} \subseteq (A_3^n)^k$.

We define a many-sorted language \mathcal{L} to consist of symbols from OPER.SYM, quantifier \exists and the set of variables $\mathcal{V} = V_i : i \in \text{SORT} - \{0\}.$

Syntactical translation of atomic annotated formulae

Definition

For atomic annotated formulae we define $\mathrm{TRANSL}_{BAP\mapsto \mathrm{MSL}^*}(R^n(x_1,\ldots,x_n):(\mu,\nu)) =$ $\forall I \forall x_1, \dots, x_n \forall (\mu', \nu') ((R^n(x_1, \dots, x_n) \supset (I^n(x_1, \dots, x_n) \doteq (\mu', \nu')) \supset$ $((\mu, \nu) <_k (\mu', \nu'))).$

Syntactical translation

Syntactical translation of atomic annotated formulae

Definition

For atomic annotated formulae we define $\mathrm{TRANSL}_{\mathsf{RAP}\mapsto\mathrm{MSL}^*}(R^n(x_1,\ldots,x_n):(\mu,\nu)) =$ $\forall I \forall x_1, \ldots, x_n \forall (\mu', \nu') ((R^n(x_1, \ldots, x_n) \supset (I^n(x_1, \ldots, x_n) \doteq (\mu', \nu')) \supset$ $((\mu, \nu) <_k (\mu', \nu'))).$

In fact, $(I^n(x_1, \ldots, x_n) \doteq (\mu', \nu'))$ stands for $\varepsilon x_1, \ldots, x_n, \mu'', \nu'' I((x_1, \ldots, x_n), (\mu'', \nu'')) \land (\mu'', \nu'') \doteq (\mu', \nu').$ Translation of annotated logic programs into many-sorted Syntactical translation

Translation of complex annotated formulae

$$\begin{split} \mathrm{TRANSL}^*(F_1\otimes F_2) &= \mathrm{TRANSL}^*(F_1)\wedge \mathrm{TRANSL}^*(F_2).\\ \mathrm{TRANSL}^*(\Sigma xF) &= \exists x \mathrm{TRANSL}^*(F). \end{split}$$

Important result

Lemma

Let F be an annotated formula of bilattice-based annotated language (BAL). Let Σ^* and S be a signature and a structure of MSL^{*}, respectively, and $||_I$ be an interpretation for the BAL, then the following holds:

 $|F|_I = \langle 1, 0 \rangle$ in BAL $\iff S(\operatorname{TRANSL}^*(F)) = T$ in MSL^* .

Translation for program clauses

For each clause of the form

 $R^n(x_1, \ldots, x_n) : (\mu, \nu) \leftarrow L_1 : (\mu_1, \nu_1) \otimes \ldots \otimes L_n : (\mu_n, \nu_n)$ we obtain the following set of many-sorted clauses:

- $(\mu, \nu) \leq_k (\mu', \nu') \leftarrow R^n(x_1, \ldots, x_n) \wedge I(x_1, \ldots, x_n) \doteq (\mu', \nu') \wedge \operatorname{TRANSL}^{**}(L_1 : (\mu_1, \nu_1) \otimes \ldots \otimes L_n : (\mu_n, \nu_n));$
- $I(x_1,\ldots,x_n) \doteq (\mu',\nu') \leftarrow R^n(x_1,\ldots,x_n) \wedge \text{TRANSL}^{**}(L_1 : (\mu_1,\nu_1) \otimes \ldots \otimes L_n : (\mu_n,\nu_n));$
- $R^n(x_1,\ldots,x_n) \leftarrow \mathrm{TRANSL}^{**}(L_1:(\mu_1,\nu_1)\otimes\ldots\otimes L_n:(\mu_n,\nu_n)).$

Some notes on how the translation works

● For each annotated literal L_i: (µ_i, ν_i) = R_i^m(y₁,..., y_m): (µ_i, ν_i) the translation function TRANSL^{**} gives the following result: TRANSL^{**}(R_i^m(y₁,..., y_m): (µ_i, ν_i)) = R_i^m(y₁,..., y_m) ∧ (I_i(y₁,..., y_m) ≐ (µ'_i, ν'_i)) ∧ ((µ_i, ν_i) ≤ (µ'_i, ν'_i)).

Some notes on how the translation works

- For each annotated literal $L_i : (\mu_i, \nu_i) = R_i^m(y_1, \dots, y_m) : (\mu_i, \nu_i)$ the translation function TRANSL^{**} gives the following result: TRANSL^{**} $(R_i^m(y_1, \dots, y_m) : (\mu_i, \nu_i)) = R_i^m(y_1, \dots, y_m) \land (l_i(y_1, \dots, y_m) \doteq (\mu'_i, \nu'_i)) \land ((\mu_i, \nu_i) \le (\mu'_i, \nu'_i)).$
- We enrich each TRANSL^{**}(P) with axioms which describe properties of ≐ and ≤_k and we will denote this enriched program as P^{**}.

Axioms for bilattice-based logic programs

•
$$\forall (x \doteq x \leftarrow);$$

- $\forall (f(x_1,\ldots,x_y) \doteq f(y_1,\ldots,y_n) \leftarrow (x_1 \doteq y_1) \land \ldots \land (x_1 \doteq y_1));$
- $\forall (x \leq_k x) \leftarrow;$
- $\forall (x \leq_k y) \leftarrow (y \leq_k x) \land (x \neq y);$
- $\forall ((x \leq_k z) \leftarrow (x \leq_k y) \land (y \leq_k z));$
- ∀((x ⊙ y) ≤_k (x' ⊙ y') ← (x ≤_k x') ∧ (y ≤_k y')), where ⊙ stands for any of bilattice operations ⊕, ⊗;
- $\forall (x \leq_k (y \oplus z) \leftarrow (x \leq_k y));$
- $\forall ((x \otimes y) \leq_k z \leftarrow (x \leq_k z));$

• $\forall ((0,0) \leq_k x \leftarrow).$

Main theorem

Theorem

For any bilattice-based annotated logic program P and any annotated formula F, $(P \models F) \Rightarrow (\mathcal{P}^{**} \models_S \operatorname{TRANSL}^{**}(F)).$

Translation of annotated logic programs into many-sorted

Two SLD-resolutions

Two SLD-resolutions

Theorem

For any bilattice-based annotated logic program P and goal G the following property holds: if $P \cup \{\leftarrow G\}$ has a refutation, than $\mathcal{P}^{**} \cup \mathrm{TRANSL}^{**}(\leftarrow G)$ has a refutation.

The algorithm of translation of annotated logic programs into many-sorted works uniformly for most of many-valued logic programs, such as annotation-free logic programs; logic programs with annotations in implication; generalized annotated logic programs.

- The algorithm of translation of annotated logic programs into many-sorted works uniformly for most of many-valued logic programs, such as annotation-free logic programs; logic programs with annotations in implication; generalized annotated logic programs.
- The many-sorted structures we use are similar to the structures which Manzano used for translation of second-order logics into many-sorted. And this shows that many-valued logic programs are essentially second-order.

- The algorithm of translation of annotated logic programs into many-sorted works uniformly for most of many-valued logic programs, such as annotation-free logic programs; logic programs with annotations in implication; generalized annotated logic programs.
- The many-sorted structures we use are similar to the structures which Manzano used for translation of second-order logics into many-sorted. And this shows that many-valued logic programs are essentially second-order.
- Translation of (complicated) annotated resolution into many-sorted resolution shows the way of simplifying existing many-valued resolutions and gives resolution procedure for those many-valued logic programs which have not received it yet.

- The algorithm of translation of annotated logic programs into many-sorted works uniformly for most of many-valued logic programs, such as annotation-free logic programs; logic programs with annotations in implication; generalized annotated logic programs.
- The many-sorted structures we use are similar to the structures which Manzano used for translation of second-order logics into many-sorted. And this shows that many-valued logic programs are essentially second-order.
- Translation of (complicated) annotated resolution into many-sorted resolution shows the way of simplifying existing many-valued resolutions and gives resolution procedure for those many-valued logic programs which have not received it yet.
- Properties of an underlying set/lattice/bilattice (or whatever) of a many-valued logic programs are shown explicitly in its many-sorted translation.

Thank you!