
Scaling Automated Theory Exploration

Chris Warburton and Ekaterina Komendantskaya

University of Dundee,
http://tocai.computing.dundee.ac.uk

Abstract. We investigate the theory exploration (TE) paradigm for
computer-assisted Mathematics and identify limitations and improve-
ments for current approaches. Unlike the theorem-proving paradigm,
which requires user-provided conjectures, TE performs an open-ended
search for theorems satisfying given criteria. We see promise in TE for
identifying new abstractions and connections in libraries of software and
proofs, but realising this potential requires more scalable algorithms than
presently used.

1 Introduction

Given a signature Σ and a set of variables V , we call the pair (Σ,V ) a theory and

use theory exploration (TE) to refer to any process (Σ,V )
TE→ Terms(Σ,V ) for

producing terms of the theory which are well-formed, provable and satisfy some
criterion referred to as “interesting”. These conditions give rise to the following
questions, which we use to characterise TE systems:

Q1 How do we generate terms?
Q2 How do we guarantee well-formedness?
Q3 How do we prove terms?
Q4 What is considered “interesting”?

Early implementations like Theorema [2] provided interactive environments,
similar to computer algebra systems and interactive theorem provers, to assist
the user in finding theorems. In this setting, terms are formed by the user in
whichever way they find interesting, whilst the software provides support for Q2
and Q3.

Subsequent systems have investigated automated theory exploration, for tasks
such as lemma discovery [7]. By removing user interaction, Q1 and Q4 must be
solved by algorithms. In existing systems these are tightly coupled to improve
efficiency, which makes it difficult to try different approaches independently.

As an example, QuickSpec [4] discovers equations about Haskell code, which
are defined as “interesting” if they cannot be simplified using previously discov-
ered equations. The intuition for such criteria is to avoid special cases of known
theorems, such as 0 + 0 = 0, 0 + 1 = 1, etc. when we already know 0 + x = x.
Whilst Q4 is elegantly implemented with a congruence closure relation (ver-
sion 1) and a term rewriting system (version 2), the term generation for Q1 is
performed by brute-force.



2

Although QuickSpec only tests its equations rather than proving them, it is
still used as the exploration component of more rigorous systems like HipSpec
and Hipster.

In the following, we give an overview of the state of the art in automated
theory exploration, then present potential improvements and our initial attempts
at implementation.

2 Theory Exploration in Haskell

Automated theory exploration has been applied to libraries in Isabelle and
Haskell, although we focus on the latter as its implementations are the most
mature (demonstrated by the fact that Hipster explores Isabelle by first trans-
lating it to Haskell). Haskell is interesting to target, since its use of pure functions
and algebraic datatypes causes many programs to follow algebraic laws. However,
since Haskell’s type system cannot easily encode such laws, less effort is given to
finding and stating them; compared to full theorem provers like Isabelle. Hence
we imagine even a shallow exploration of code repositories such as Hackage
could find many interesting theorems.

Currently, the most powerful TE system for Haskell is HipSpec, which uses
off-the-shelf automated theorem provers (ATPs) to verify the conjectures of
QuickSpec. QuickSpec, in turn, enumerates all type-correct combinations of
the terms in the theory up to some depth, groups them into equivalence classes
using the QuickCheck counterexample finder, then conjectures equations re-
lating the members of these classes. This approach works well as a lemma gen-
eration system, making HipSpec a capable inductive theorem prover as well as
a theory exploration system [3].

3 The ML4HS Framework

We consider Q2 and Q3 to be adequately solved by the existing use of type sys-
tems and ATPs, respectively. We identify the following potential improvements
for the other questions:

Q1 Enumerating all type-correct terms is a brute-force solution to this question.
Scalable alternatives to brute-force algorithms are a well-studied area of
Artificial Intelligence and Machine Learning. In particular, heuristic search
algorithms like those surveyed in [1] could be used. We could also use Machine
Learning methods to identify some sub-set of a given theory, to prioritise over
the rest.

Q4 Various alternative “interestingness” criteria have been proposed, for exam-
ple those surveyed in [5]. Augmenting or replacing the criteria may be useful,
for example to distinguish useful relationships from incidental coincidences;
or to prevent surprising, insightful equations from being discarded because
they can be simplified.



3

We are implementing a system called ML4HS to investigate these ideas. Its
current form is a pre-processor for QuickSpec for prioritising theory elements.
Inspired by the use of premise selection [9] to reduce the search space in ATP,
we select sub-sets of the given theory to explore, chosen to try and keep together
those expressions which combine in interesting ways, and to separate those which
combine in uninteresting ways.

We hypothesise that similarity-based clustering of expressions, inspired by
that of ML4PG [8] and related work in ACL2 [6], is an effective method for
performing this separation. Future experiments will test this by comparing the
throughput of QuickSpec with and without the ML4HS pre-processor.

Acknowledgements

Thank you to the HipSpec team at Chalmers University (Moa Johansson, Koen
Claessen, Nick Smallbone, Dan Rosén and Irene Lobo Valbuena) for useful dis-
cussions of these ideas.

References

1. Christian Blum, Jakob Puchinger, Günther R Raidl, and Andrea Roli. Hybrid
metaheuristics in combinatorial optimization: A survey. Applied Soft Computing,
11(6):4135–4151, 2011.

2. Bruno Buchberger. Theory exploration with theorema. Analele Universitatii Din
Timisoara, ser. Matematica-Informatica, 38(2):9–32, 2000.

3. Koen Claessen, Moa Johansson, Dan Rosén, and Nicholas Smallbone. Automat-
ing inductive proofs using theory exploration. In Automated Deduction–CADE-24,
pages 392–406. Springer, 2013.

4. Koen Claessen, Nicholas Smallbone, and John Hughes. Quickspec: Guessing formal
specifications using testing. In Gordon Fraser and Angelo Gargantini, editors, Tests
and Proofs, volume 6143 of Lecture Notes in Computer Science, pages 6–21. Springer
Berlin Heidelberg, 2010.

5. Liqiang Geng and Howard J Hamilton. Interestingness measures for data mining:
A survey. ACM Computing Surveys (CSUR), 38(3):9, 2006.

6. Jónathan Heras, Ekaterina Komendantskaya, Moa Johansson, and Ewen Maclean.
Proof-pattern recognition and lemma discovery in acl2. In Logic for Programming,
Artificial Intelligence, and Reasoning, pages 389–406. Springer, 2013.

7. Moa Johansson, Dan Rosn, Nicholas Smallbone, and Koen Claessen. Hipster: Inte-
grating theory exploration in a proof assistant. In StephenM. Watt, JamesH. Dav-
enport, AlanP. Sexton, Petr Sojka, and Josef Urban, editors, Intelligent Computer
Mathematics, volume 8543 of Lecture Notes in Computer Science, pages 108–122.
Springer International Publishing, 2014.

8. Ekaterina Komendantskaya, Jónathan Heras, and Gudmund Grov. Machine Learn-
ing in Proof General: Interfacing Interfaces. In Cezary Kaliszyk and Christoph Lüth,
editors, UITP, volume 118 of EPTCS, pages 15–41, 2013.

9. Daniel Kühlwein, Twan van Laarhoven, Evgeni Tsivtsivadze, Josef Urban, and Tom
Heskes. Overview and evaluation of premise selection techniques for large theory
mathematics. In Automated Reasoning, pages 378–392. Springer, 2012.


	Scaling Automated Theory Exploration

