
Statistical Proof Pattern Recognition: Automated or Interactive?∗

Jónathan Heras Ekaterina Komendantskaya
School of Computing, University of Dundee, UK

{jonathanheras,katya}@computing.dundee.ac.uk

Abstract: In this paper, we compare different existing approaches employed in data mining of big proof
libraries in automated and interactive theorem proving.

1 Motivation

Over the last few decades, theorem proving has seen ma-
jor developments. Automated (first-order) theorem provers
(ATPs) (e.g. E, Vampire, SPASS) and SAT/SMT solvers
(e.g. CVC3, Yices, Z3) are becoming increasingly fast
and efficient. Interactive (higher-order) theorem provers
(ITPs) (e.g. Coq, Isabelle/HOL, AGDA, Mizar) have been
enriched with dependent types, (co)inductive types, type
classes and provide rich programming environments.

The main conceptual difference between ATPs and ITPs
lies in the styles of proof development. For ATPs, the
proof process is primarily an automatically performed proof
search in first-order language. In ITPs, the proof steps are
suggested by the user who guides the prover by providing
the tactics. ITPs work with higher-order logic and type the-
ory, where many derivation algorithms (e.g. higher-order
unification) are inherently undecidable.

Communities working on development, implementation
and applications of ATPs and ITPs have accumulated big
corpora of electronic proof libraries. However, the size of
the libraries, as well as their technical and notational so-
phistication often stand on the way of efficient knowledge
re-use. Very often, it is easier to start a new library from
scratch rather than search the existing proof libraries for po-
tentially common heuristics and techniques. Proof-pattern
recognition is the area where statistical machine-learning is
likely to make an impact. Here, we discuss and compare
two different styles of proof-pattern recognition.

We will use the following convention: the term “goal”
will stand for an unproven proposition in the language of
a given theorem prover; the term “lemma” will refer to an
already proven proposition in the library.

2 Proof-pattern recognition in ATPs

Given a proof goal, ATPs apply various lemmas to rewrite
or simplify the goal until it is proven. The order in which
different lemmas are used plays a big role in speed and ef-
ficiency of the automated proof search. Hence, machine-
learning techniques can be used to improve the premise se-
lection procedure on the basis of previous experience ac-
quired from successful proofs; cf. [2, 6] .

The technical details of such machine-learning solutions
would differ [3, 4, 5, 6], but we can summarise the common
features of this approach, as follows:
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1. Feature extraction:
• The features are extracted from first-order formulas
(given by lemmas and goals). For every proposition (goal
or lemma), the associated binary feature vector records, for
every symbol and term of the library, whether it is present
or absent in the proposition. As a result, the feature vectors
grow to be as long as 106 features long.
•After the features are extracted, the machine-learning tool
constructs a classifier (e.g. SVM) for every lemma of the li-
brary. For two lemmas A and B, if B was used in the proof
of A, a feature vector |A| is sent as a positive example to the
classifier < B >, else |A| is considered to be a negative
example.

2. Machine-learning tools:
• Every classifier < B > has its set of positive and negative
examples, hence supervised learning is used for training.
• The classifier algorithms [3, 4, 5, 6] range from SVMs
with various kernel functions to Naive Bayes learning.
• Feature vectors are too big for traditional machine-
learning algorithms to tackle, and the special software
SNoW is used to deal with the over-sized feature vectors.
• The output of machine-learning algorithm provides a
“rank” of formula lying in the interval [0, 1], where increas-
ing values mean increased probability that B is used in the
proof of A.

3. The mode of interaction between the prover and
machine-learning tool:
• Given a new goal G, the feature vector |G| is sent to the
previously trained classifier < L >, for every Lemma L of
the given library. The classifier < L > then outputs a rank
showing how useful lemma L can be in the proof of G.
• Once the ranking is computed, it is used to decide, for
every lemma in the library, whether it should be used in the
new proof.

4. Main improvement: the number of goals proven au-
tomatically increases by up to 20% - 40%, depending on
the prover and the library in question.

Note that, if an ITP uses ATP tools to speed up the proof
of first-order lemmas, the method above can be used to
speed up the automated proof search, [2, 6]. The follow-
ing figure shows this scheme of using machine-learning in
ATPs and ITPs:
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3 Proof-pattern recognition in ITPs

Interactive style of theorem proving differs significantly
from that of ATPs. In particular, a given ITP will neces-
sarily depend on user instructions (e.g. in the form of tac-
tics). Because of the inherently interactive nature of proofs
in ITPs, user interfaces play an important role in the proof
development. One example is Proof General – a general-
purpose, emacs-based interface created for communication
with a range of higher-order theorem provers. In this set-
ting, machine-learning algorithms need to gather statistics
from the user’s behaviour, and feed the results back to the
user during the proof process. Proof-pattern recognition
must become an integral part of the user interface. The first
tool achieving this is ML4PG [1].

Similar interfacing trend exists in the machine learning
community. Since users need to monitor results computed
by the statistical tools, the community has developed uni-
form interfaces (Matlab, Weka) – environments in which
the user can choose which algorithm to use for processing
the data and for interpreting the results. ML4PG integrates
a range of machine-learning algorithms provided by Matlab
and Weka into the Proof General interface.

Comparing with the ATP-based machine-learning tools,
ML4PG can be characterised as follows:

1. Feature extraction:
• The features are extracted directly from higher-order
propositions and proofs.
• Feature extraction is built on the method of proof-traces:
the structure of the higher-order proposition is captured by
analysing several proof steps the user takes when proving it,
this includes the statistics of tactics, tactic arguments, tac-
tic argument types, top symbols of formulas and number of
generated subgoals, see [1].
• The feature vectors are fixed at the size of 30. This size
is manageable for literally any existing statistical machine-
learning algorithm.
• Longer proofs are analysed by means of the proof-patch
method: when features of one big proof are collected by
taking a collection of features of smaller proof fragments.

2. Machine-learning tools:
• As higher-order proofs in general can take a variety of
shapes, sizes and proof-styles, ML4PG does not use any a
priori given training labels. Instead, it uses unsupervised
learning (clustering), and in particular, Gaussian, k-means,
and farthest-first algorithms.
• The output of clustering algorithm provides proof families
based on some user defined parameters – e.g. cluster size,

and proximity of lemmas within the cluster.
3. The mode of interaction between the prover and

machine-learning tool:
• ML4PG works on the background of Proof General, and
extracts the features interactively in the process of Coq
compilation.
• On user’s request, it sends the gathered statistics to a cho-
sen machine-learning interface and triggers execution of a
clustering algorithm of the user’s choice, using adjustable
user-defined clustering parameters.
• ML4PG does some gentle post-processing of the results
given by the machine-learning tool, and displays families
of related proofs to the user.

4. Main improvement: ML4PG makes use of the rich
interfaces in ITPs and machine learning. It assists the user,
rather than the prover: the user may treat the suggested sim-
ilar lemmas as proof hints. The interaction with ML4PG is
fast and easy, so the user may receive these hints interac-
tively, and in real time. The process is summarised below:
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4 Conclusions

The automated and interactive styles of proof-pattern
recognition described here have been successfully applied
in big proof libraries in Mizar, HOL, Isabelle, Coq, and SS-
Reflect. The methods complement each other: one aims to
speed up the first-order proofs, and the other one provides
guidance where proofs cannot be fully automated.
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