
Statistical Machine Learning in Interactive Theorem
Proving

Katya Komendantskaya and Jonathan Heras
(Funded by EPSRC First Grant Scheme)

University of Dundee

8 November 2013

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 1 / 40

Outline

1 Introduction

2 ML4PG: “Machine Learning for Proof General”

3 Using ML4PG

4 More Examples
Detecting patterns across mathematical libraries
Detecting irrelevant libraries

5 Conclusions and Further work

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 2 / 40

Outline

1 Introduction

2 ML4PG: “Machine Learning for Proof General”

3 Using ML4PG

4 More Examples
Detecting patterns across mathematical libraries
Detecting irrelevant libraries

5 Conclusions and Further work

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 2 / 40

Outline

1 Introduction

2 ML4PG: “Machine Learning for Proof General”

3 Using ML4PG

4 More Examples
Detecting patterns across mathematical libraries
Detecting irrelevant libraries

5 Conclusions and Further work

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 2 / 40

Outline

1 Introduction

2 ML4PG: “Machine Learning for Proof General”

3 Using ML4PG

4 More Examples
Detecting patterns across mathematical libraries
Detecting irrelevant libraries

5 Conclusions and Further work

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 2 / 40

Outline

1 Introduction

2 ML4PG: “Machine Learning for Proof General”

3 Using ML4PG

4 More Examples
Detecting patterns across mathematical libraries
Detecting irrelevant libraries

5 Conclusions and Further work

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 2 / 40

Introduction

Interactive theorem proving:

(typically) higher-order language (Agda,Coq,Isabelle/HOL)

(often) dependently-typed (AGDA,Coq)

Interactive proof development: tactic – prover response;

Expressive enough to verify large areas of Maths, software, hardware.

. . . enriched with dependent types, (co)inductive types, type classes and
provide rich programming environments;
. . . applied in formal mathematical proofs: Four Colour Theorem
(60, 000 lines), Kepler conjecture (325, 000 lines), Feit-Thompson
Theorem (170, 000 lines), etc.
. . . applied in industrial proofs: seL4 microkernel (200, 000 lines),
verified C compiler (50, 000 lines), ARM microprocessor (20, 000 lines),
etc.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 3 / 40

Introduction

Interactive theorem proving:

(typically) higher-order language (Agda,Coq,Isabelle/HOL)

(often) dependently-typed (AGDA,Coq)

Interactive proof development: tactic – prover response;

Expressive enough to verify large areas of Maths, software, hardware.

. . . enriched with dependent types, (co)inductive types, type classes and
provide rich programming environments;
. . . applied in formal mathematical proofs: Four Colour Theorem
(60, 000 lines), Kepler conjecture (325, 000 lines), Feit-Thompson
Theorem (170, 000 lines), etc.
. . . applied in industrial proofs: seL4 microkernel (200, 000 lines),
verified C compiler (50, 000 lines), ARM microprocessor (20, 000 lines),
etc.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 3 / 40

Introduction

Coq and SSReflect

SSReflect is a dialect of Coq;

The SSReflect library was developed as the infrastructure for formal-
isation of the Four Colour Theorem;

played a key role in the formal proof of the Feit-Thompson theorem.

G. Gonthier. Formal proof - the four-color theorem. Notices of the American Math-
ematical Society, 55(11):13821393, 2008.

G. Gonthier et al. A Machine-Checked Proof of the Odd Order Theorem. In 4th
Conference on Interactive Theorem Proving (ITP13), volume 7998 of Lecture Notes in
Computer Science, pages 163179, 2013.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 4 / 40

Introduction

Challenges

. . . size and sophistication of libraries stand on the way of efficient
knowledge reuse;

. . . manual handling of various proofs, strategies, libraries, becomes
difficult;

. . . team-development is hard, especially that ITPs are sensitive to
notation;

. . . comparison of proof similarities is hard.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 5 / 40

Introduction

An example: JVM

Java Virtual Machine (JVM) is a stack-based abstract machine which can
execute Java bytecode.

Goal

Model a subset of the JVM in (e.g.) Coq, defining an interpreter for
JVM programs,

Verify the correctness of JVM programs within Coq.

This work is inspired by:

H. Liu and J S. Moore. Executable JVM model for analytic reasoning: a study. Journal
Science of Computer Programming - Special issue on advances in interpreters, virtual
machines and emulators (IVME’03), 57(3):253–274, 2003.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 6 / 40

Introduction

An example: JVM

Java Virtual Machine (JVM) is a stack-based abstract machine which can
execute Java bytecode.

Goal

Model a subset of the JVM in (e.g.) Coq, defining an interpreter for
JVM programs,

Verify the correctness of JVM programs within Coq.

This work is inspired by:

H. Liu and J S. Moore. Executable JVM model for analytic reasoning: a study. Journal
Science of Computer Programming - Special issue on advances in interpreters, virtual
machines and emulators (IVME’03), 57(3):253–274, 2003.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 6 / 40

Introduction

An example: JVM

Java Virtual Machine (JVM) is a stack-based abstract machine which can
execute Java bytecode.

Goal

Model a subset of the JVM in (e.g.) Coq, defining an interpreter for
JVM programs,

Verify the correctness of JVM programs within Coq.

This work is inspired by:

H. Liu and J S. Moore. Executable JVM model for analytic reasoning: a study. Journal
Science of Computer Programming - Special issue on advances in interpreters, virtual
machines and emulators (IVME’03), 57(3):253–274, 2003.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 6 / 40

Introduction

Computing 5!

Java code:

static int factorial(int n)

{

int a = 1;

while (n != 0){

a = a * n;

n = n-1;

}

return a;

}

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 7 / 40

Introduction

Computing 5!

Java code:

static int factorial(int n)

{

int a = 1;

while (n != 0){

a = a * n;

n = n-1;

}

return a;

}

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 7 / 40

Introduction

Computing 5!

Java code:

static int factorial(int n)

{

int a = 1;

while (n != 0){

a = a * n;

n = n-1;

}

return a;

}

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
0

stack:
. . .

local variables:
5 . . .

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 7 / 40

Introduction

Computing 5!

Java code:

static int factorial(int n)

{

int a = 1;

while (n != 0){

a = a * n;

n = n-1;

}

return a;

}

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
1

stack:
1 . . .

local variables:
5 . . .

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 7 / 40

Introduction

Computing 5!

Java code:

static int factorial(int n)

{

int a = 1;

while (n != 0){

a = a * n;

n = n-1;

}

return a;

}

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
2

stack:
. . .

local variables:
5 1 . . .

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 7 / 40

Introduction

Computing 5!

Java code:

static int factorial(int n)

{

int a = 1;

while (n != 0){

a = a * n;

n = n-1;

}

return a;

}

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
3

stack:
5 . . .

local variables:
5 1 . . .

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 7 / 40

Introduction

Computing 5!

Java code:

static int factorial(int n)

{

int a = 1;

while (n != 0){

a = a * n;

n = n-1;

}

return a;

}

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
4

stack:
. . .

local variables:
5 1 . . .

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 7 / 40

Introduction

Computing 5!

Java code:

static int factorial(int n)

{

int a = 1;

while (n != 0){

a = a * n;

n = n-1;

}

return a;

}

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
5

stack:
1 . . .

local variables:
5 1 . . .

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 7 / 40

Introduction

Computing 5!

Java code:

static int factorial(int n)

{

int a = 1;

while (n != 0){

a = a * n;

n = n-1;

}

return a;

}

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
6

stack:
5 1 . . .

local variables:
5 1 . . .

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 7 / 40

Introduction

Computing 5!

Java code:

static int factorial(int n)

{

int a = 1;

while (n != 0){

a = a * n;

n = n-1;

}

return a;

}

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
7

stack:
5 . . .

local variables:
5 1 . . .

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 7 / 40

Introduction

Computing 5!

Java code:

static int factorial(int n)

{

int a = 1;

while (n != 0){

a = a * n;

n = n-1;

}

return a;

}

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
8

stack:
. . .

local variables:
5 5 . . .

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 7 / 40

Introduction

Computing 5!

Java code:

static int factorial(int n)

{

int a = 1;

while (n != 0){

a = a * n;

n = n-1;

}

return a;

}

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
9

stack:
5 . . .

local variables:
5 5 . . .

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 7 / 40

Introduction

Computing 5!

Java code:

static int factorial(int n)

{

int a = 1;

while (n != 0){

a = a * n;

n = n-1;

}

return a;

}

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
10

stack:
1 5 . . .

local variables:
5 5 . . .

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 7 / 40

Introduction

Computing 5!

Java code:

static int factorial(int n)

{

int a = 1;

while (n != 0){

a = a * n;

n = n-1;

}

return a;

}

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
11

stack:
4 . . .

local variables:
5 5 . . .

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 7 / 40

Introduction

Computing 5!

Java code:

static int factorial(int n)

{

int a = 1;

while (n != 0){

a = a * n;

n = n-1;

}

return a;

}

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
12

stack:
. . .

local variables:
4 5 . . .

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 7 / 40

Introduction

Computing 5!

Java code:

static int factorial(int n)

{

int a = 1;

while (n != 0){

a = a * n;

n = n-1;

}

return a;

}

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
2

stack:
. . .

local variables:
4 5 . . .

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 7 / 40

Introduction

Computing 5!

Java code:

static int factorial(int n)

{

int a = 1;

while (n != 0){

a = a * n;

n = n-1;

}

return a;

}

Bytecode:

. . . JVM model:
. . .

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 7 / 40

Introduction

Computing 5!

Java code:

static int factorial(int n)

{

int a = 1;

while (n != 0){

a = a * n;

n = n-1;

}

return a;

}

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
13

stack:
0 . . .

local variables:
0 120 . . .

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 7 / 40

Introduction

Computing 5!

Java code:

static int factorial(int n)

{

int a = 1;

while (n != 0){

a = a * n;

n = n-1;

}

return a;

}

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
14

stack:
120 . . .

local variables:
0 120 . . .

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 7 / 40

Introduction

Computing 5!

Java code:

static int factorial(int n)

{

int a = 1;

while (n != 0){

a = a * n;

n = n-1;

}

return a;

}

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
15

stack:
120 . . .

local variables:
0 120 . . .

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 7 / 40

Introduction

Computing 5!

Java code:

static int factorial(int n)

{

int a = 1;

while (n != 0){

a = a * n;

n = n-1;

}

return a;

}

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
15

stack:
120 . . .

local variables:
0 120 . . .

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 7 / 40

Introduction

Formalisation of Java bytecode in Coq

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Methodology:

1 Write the specification of the
function

2 Write the algorithm (tail
recursive function)

3 Prove that the algorithm
satisfies the specification

4 Write the JVM program

5 Define the function that
schedules the program

6 Prove that the code implements
the algorithm

7 Prove total correctness

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 8 / 40

Introduction

Formalisation of Java bytecode in Coq

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Methodology:

1 Write the specification of the
function

2 Write the algorithm (tail
recursive function)

3 Prove that the algorithm
satisfies the specification

4 Write the JVM program

5 Define the function that
schedules the program

6 Prove that the code implements
the algorithm

7 Prove total correctness

Definition theta_fact (n : nat) := n‘!.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 8 / 40

Introduction

Formalisation of Java bytecode in Coq

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Methodology:

1 Write the specification of the
function

2 Write the algorithm (tail
recursive function)

3 Prove that the algorithm
satisfies the specification

4 Write the JVM program

5 Define the function that
schedules the program

6 Prove that the code implements
the algorithm

7 Prove total correctness

Fixpoint helper_fact (n a : nat) :=

match n with

| 0 => a

| S p => helper_fact p (n * a)

end.

Definition fn_fact (n : nat) :=

helper_fact n 1.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 8 / 40

Introduction

Formalisation of Java bytecode in Coq

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Methodology:

1 Write the specification of the
function

2 Write the algorithm (tail
recursive function)

3 Prove that the algorithm
satisfies the specification

4 Write the JVM program

5 Define the function that
schedules the program

6 Prove that the code implements
the algorithm

7 Prove total correctness

Lemma fn_fact_is_theta n :

fn_fact n = theta_fact n.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 8 / 40

Introduction

Formalisation of Java bytecode in Coq

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Methodology:

1 Write the specification of the
function

2 Write the algorithm (tail
recursive function)

3 Prove that the algorithm
satisfies the specification

4 Write the JVM program

5 Define the function that
schedules the program

6 Prove that the code implements
the algorithm

7 Prove total correctness

Definition pi_fact :=

[::(ICONST,1%Z);

(ISTORE,1%Z);

(ILOAD,0%Z);

(IFEQ,10%Z);

(ILOAD,1%Z);

(ILOAD,0%Z);

(IMUL, 0%Z);

(ISTORE, 1%Z);

(ILOAD, 0%Z);

(ICONST, 1%Z);

(ISUB, 0%Z);

(ISTORE, 0%Z);

(GOTO, (-10)%Z);

(ILOAD, 1%Z);

(HALT, 0%Z)].

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 8 / 40

Introduction

Formalisation of Java bytecode in Coq

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Methodology:

1 Write the specification of the
function

2 Write the algorithm (tail
recursive function)

3 Prove that the algorithm
satisfies the specification

4 Write the JVM program

5 Define the function that
schedules the program

6 Prove that the code implements
the algorithm

7 Prove total correctness

Fixpoint loop_sched_fact (n : nat) :=

match n with

| 0 => nseq 3 0

| S p => nseq 11 0 ++ loop_sched_fact p

end.

Definition sched_fact (n : nat) :=

nseq 2 0 ++ loop_sched_fact n.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 8 / 40

Introduction

Formalisation of Java bytecode in Coq

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Methodology:

1 Write the specification of the
function

2 Write the algorithm (tail
recursive function)

3 Prove that the algorithm
satisfies the specification

4 Write the JVM program

5 Define the function that
schedules the program

6 Prove that the code implements
the algorithm

7 Prove total correctness

Lemma program_is_fn_fact n :

run (sched_fact n)

(make_state 0 [::n] [::] pi_fact) =

(make_state 14 [::0;fn_fact n]

(push (fn_fact n) [::]) pi_fact).

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 8 / 40

Introduction

Formalisation of Java bytecode in Coq

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Methodology:

1 Write the specification of the
function

2 Write the algorithm (tail
recursive function)

3 Prove that the algorithm
satisfies the specification

4 Write the JVM program

5 Define the function that
schedules the program

6 Prove that the code implements
the algorithm

7 Prove total correctness

Theorem total_correctness_fact n sf :

sf = run (sched_fact n)

(make_state 0 [::n] [::] pi_fact) ->

next_inst sf = (HALT,0%Z) /\

top (stack sf) = (n‘!).

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 8 / 40

Introduction

Formalisation of Java bytecode in Coq

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Methodology:

1 Write the specification of the
function

2 Write the algorithm (tail
recursive function)

3 Prove that the algorithm
satisfies the specification

4 Write the JVM program

5 Define the function that
schedules the program

6 Prove that the code implements
the algorithm

7 Prove total correctness

Lemma fn_fact_is_theta n :

fn_fact n = theta_fact n.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 8 / 40

Introduction

Proof of lemma fn_fact_is_theta

Lemma fn_fact_is_theta : forall (n : nat), fn_fact n = theta_fact n.

Proof.

1 subgoals, subgoal 1 (ID 13)

============================

forall n : nat, fn_fact n = theta_fact n

. . . and now?

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 9 / 40

Introduction

Proof of lemma fn_fact_is_theta

Lemma fn_fact_is_theta : forall (n : nat), fn_fact n = theta_fact n.

Proof.

move => n.

1 subgoals, subgoal 1 (ID 14)

n : nat

============================

fn_fact n = theta_fact n

. . . and now?

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 9 / 40

Introduction

Proof of lemma fn_fact_is_theta

Lemma fn_fact_is_theta : forall (n : nat), fn_fact n = theta_fact n.

Proof.

move => n.

rewrite /fn_fact /theta_fact.

1 subgoals, subgoal 1 (ID 14)

n : nat

============================

helper_fact n 1 = n‘!

. . . and now?

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 9 / 40

Introduction

Proof of lemma fn_fact_is_theta

Lemma fn_fact_is_theta : forall (n : nat), fn_fact n = theta_fact n.

Proof.

move => n.

rewrite /fn_fact /theta_fact.

1 subgoals, subgoal 1 (ID 14)

n : nat

============================

helper_fact n 1 = n‘!

. . . and now?

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 9 / 40

ML4PG: “Machine Learning for Proof General”

Outline

1 Introduction

2 ML4PG: “Machine Learning for Proof General”

3 Using ML4PG

4 More Examples
Detecting patterns across mathematical libraries
Detecting irrelevant libraries

5 Conclusions and Further work

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 10 / 40

ML4PG: “Machine Learning for Proof General”

Machine Learning 4 Proof General: interfacing interfaces

...in [2013, Postproc. of UITP’12]

Proof General MATLAB/WekaML4PG

feature extraction

proof families

Interactive Prover:
Coq, SSReflect

Clustering:
K-means, Gaussian, . . .

F.1. works on the background of Proof General extracting some low-level
features from proofs in Coq/SSReflect.

F.2. automatically sends the gathered statistics to a chosen
machine-learning interface and triggers execution of a clustering
algorithm of user’s choice;

F.3. does some post-processing of the results and displays families of
related proofs to the user.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 11 / 40

ML4PG: “Machine Learning for Proof General”

Machine Learning 4 Proof General: interfacing interfaces

...in [2013, Postproc. of UITP’12]

Proof General MATLAB/WekaML4PG

feature extraction

proof families

Interactive Prover:
Coq, SSReflect

Clustering:
K-means, Gaussian, . . .

F.1. works on the background of Proof General extracting some low-level
features from proofs in Coq/SSReflect.

F.2. automatically sends the gathered statistics to a chosen
machine-learning interface and triggers execution of a clustering
algorithm of user’s choice;

F.3. does some post-processing of the results and displays families of
related proofs to the user.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 11 / 40

ML4PG: “Machine Learning for Proof General”

Features of this approach

1 Feature extraction:

features are extracted from higher-order propositions and proofs;
feature extraction is built on the method of proof-traces;
longer proofs are analysed by means of the proof-patch method.

Proof General MATLAB/WekaML4PG

feature extraction

proof families

Interactive Prover:
Coq, SSReflect

Clustering:
K-means, Gaussian, . . .

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 12 / 40

ML4PG: “Machine Learning for Proof General”

What are the significant features of proofs?

1-2 names and the number of tactics used in one command line,

3 types of the tactic arguments;

4 relation of the tactic arguments to the (inductive) hypotheses or
library lemmas,

5-7 three top symbols in the term-tree of the current subgoal, and

8 the number of subgoals each tactic command-line generates.

Taken within 5 proof steps;
...40 features for one proof patch.
Thus a proof fragment is given by a point in a 40-dimensional space.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 13 / 40

ML4PG: “Machine Learning for Proof General”

What are the significant features of proofs?

1-2 names and the number of tactics used in one command line,

3 types of the tactic arguments;

4 relation of the tactic arguments to the (inductive) hypotheses or
library lemmas,

5-7 three top symbols in the term-tree of the current subgoal, and

8 the number of subgoals each tactic command-line generates.

Taken within 5 proof steps;
...40 features for one proof patch.
Thus a proof fragment is given by a point in a 40-dimensional space.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 13 / 40

ML4PG: “Machine Learning for Proof General”

Features of this approach

2 Machine-learning tools:

works with unsupervised learning (clustering) algorithms implemented
in MATLAB and Weka;
uses algorithms such as Gaussian, K-means, and farthest-first.

Proof General MATLAB/WekaML4PG

feature extraction

proof families

Interactive Prover:
Coq, SSReflect

Clustering:
K-means, Gaussian, . . .

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 14 / 40

ML4PG: “Machine Learning for Proof General”

ML4PG approach to proof-clustering

We have integrated Proof General with a variety of clustering algorithms:

Unsupervised machine learning technique:

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 15 / 40

ML4PG: “Machine Learning for Proof General”

ML4PG approach to proof-clustering

We have integrated Proof General with a variety of clustering algorithms:

Unsupervised machine learning technique:

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 15 / 40

ML4PG: “Machine Learning for Proof General”

ML4PG approach to proof-clustering

We have integrated Proof General with a variety of clustering algorithms:

Unsupervised machine learning technique:

Engines: Matlab, Weka, Octave, R, . . .

Algorithms: K-means, Gaussian Mixture models, simple Expectation

Maximisation, . . .

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 15 / 40

ML4PG: “Machine Learning for Proof General”

ML4PG approach to proof-clustering

We have integrated Proof General with a variety of clustering algorithms:

Unsupervised machine learning technique:

Engines: Matlab, Weka, Octave, R, . . .

Algorithms: K-means, Gaussian Mixture models, simple Expectation

Maximisation, . . .

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 15 / 40

ML4PG: “Machine Learning for Proof General”

ML4PG approach to proof-clustering

We have integrated Proof General with a variety of clustering algorithms:

Unsupervised machine learning technique:

Engines: Matlab, Weka, Octave, R, . . .

Algorithms: K-means, Gaussian Mixture models, simple Expectation

Maximisation, . . .

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 15 / 40

ML4PG: “Machine Learning for Proof General”

Order your own copy of Ml4PG!

ML4PG is now a part of standard Proof General distribution

Easy to find: just google “ML4PG” for our page with all software
resources, libraries of examples, papers, etc.
This talk:

J. Heras and K. Komendantskaya. Recycling Proof-Patterns in Coq: Case Studies.
31 page. Submitted, available in ARXIV.

Easy to install;

Easy to use?

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 16 / 40

ML4PG: “Machine Learning for Proof General”

Order your own copy of Ml4PG!

ML4PG is now a part of standard Proof General distribution

Easy to find: just google “ML4PG” for our page with all software
resources, libraries of examples, papers, etc.
This talk:

J. Heras and K. Komendantskaya. Recycling Proof-Patterns in Coq: Case Studies.
31 page. Submitted, available in ARXIV.

Easy to install;

Easy to use?

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 16 / 40

Using ML4PG

Outline

1 Introduction

2 ML4PG: “Machine Learning for Proof General”

3 Using ML4PG

4 More Examples

5 Conclusions and Further work

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 17 / 40

Using ML4PG

Continuation of proof of lemma fn_fact_is_theta

Lemma fn_fact_is_theta : forall (n : nat), fn_fact n = theta_fact n.

Proof.

move => n.

rewrite /fn_fact /theta_fact.

1 subgoals, subgoal 1 (ID 14)

n : nat

============================

helper_fact n 1 = n‘!

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 18 / 40

Using ML4PG

Continuation of proof of lemma fn_fact_is_theta

Lemma fn_fact_is_theta : forall (n : nat), fn_fact n = theta_fact n.

Proof.

move => n.

rewrite /fn_fact /theta_fact.

1 subgoals, subgoal 1 (ID 14)

n : nat

============================

helper_fact n 1 = n‘!

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 18 / 40

Using ML4PG

Continuation of proof of lemma fn_fact_is_theta

Lemma fn_fact_is_theta : forall (n : nat), fn_fact n = theta_fact n.

Proof.

move => n.

rewrite /fn_fact /theta_fact.

1 subgoals, subgoal 1 (ID 14)

n : nat

============================

helper_fact n 1 = n‘!

Lemma fn_fact_is_theta is similar

to lemmas:

- fn_expt_is_theta

- fn_mult_is_theta

- fn_power_is_theta

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 18 / 40

Using ML4PG

Proving lemma fn_fact_is_theta by analogy

Factorial Exponentiation

Lemma fn_fact_is_theta n : fn_fact n = n‘!. Lemma fn_expt_is_theta n m : fn_expt n m = n^m.

Proof. Proof.

move => n. rewrite /fn_fact. by move => n; rewrite /fn_expt helper_expt_is_theta

mul1n.

Qed.

Lemma helper_expt_is_theta n m a :

helper_expt n m a = a * (n ^ m).

Proof.

move : a; elim : n => [a| n IH a /=].

by rewrite /theta_expt expn0 muln1.

by rewrite IH /theta_expt expnS

mulnA [a * _]mulnC.

Qed.

Proof Strategy

Prove an auxiliary lemma about the helper considering the most general case. For example, if the helper function is defined with
formal parameters n, m, and a, and the wrapper calls the helper initializing a at 0, the helper theorem must be about
(helper n m a), not just about the special case (helper n m 0). Subsequently, instantiate the lemma for the concrete case.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 19 / 40

Using ML4PG

Proving lemma fn_fact_is_theta by analogy

Factorial Exponentiation

Lemma fn_fact_is_theta n : fn_fact n = n‘!. Lemma fn_expt_is_theta n m : fn_expt n m = n^m.

Proof. Proof.

move => n. rewrite /fn_fact. by move => n; rewrite /fn_expt helper_expt_is_theta

mul1n.

Qed.

Lemma helper_fact_is_theta n a : Lemma helper_expt_is_theta n m a :

helper_fact n a = a * n‘!. helper_expt n m a = a * (n ^ m).

Proof. Proof.

move : n a; elim : m => [a m| m IH n a /=]. move : a; elim : n => [a| n IH a /=].

by rewrite /theta_fact fact0 muln1. by rewrite /theta_expt expn0 muln1.

by rewrite IH /theta_fact factS by rewrite IH /theta_expt expnS

mulnA [a * _]mulnC. mulnA [a * _]mulnC.

Qed. Qed.

Proof Strategy

Prove an auxiliary lemma about the helper considering the most general case. For example, if the helper function is defined with
formal parameters n, m, and a, and the wrapper calls the helper initializing a at 0, the helper theorem must be about
(helper n m a), not just about the special case (helper n m 0). Subsequently, instantiate the lemma for the concrete case.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 19 / 40

Using ML4PG

Proving lemma fn_fact_is_theta by analogy

Factorial Exponentiation

Lemma fn_fact_is_theta n : fn_fact n = n‘!. Lemma fn_expt_is_theta n m : fn_expt n m = n^m.

Proof. Proof.

move => n. rewrite /fn_fact. by move => n; rewrite /fn_expt helper_expt_is_theta

by rewrite helper_fact_is_theta mul1n. mul1n.

Qed. Qed.

Lemma helper_fact_is_theta n a : Lemma helper_expt_is_theta n m a :

helper_fact n a = a * n‘!. helper_expt n m a = a * (n ^ m).

Proof. Proof.

move : n a; elim : m => [a m| m IH n a /=]. move : a; elim : n => [a| n IH a /=].

by rewrite /theta_fact fact0 muln1. by rewrite /theta_expt expn0 muln1.

by rewrite IH /theta_fact factS by rewrite IH /theta_expt expnS

mulnA [a * _]mulnC. mulnA [a * _]mulnC.

Qed. Qed.

Proof Strategy

Prove an auxiliary lemma about the helper considering the most general case. For example, if the helper function is defined with
formal parameters n, m, and a, and the wrapper calls the helper initializing a at 0, the helper theorem must be about
(helper n m a), not just about the special case (helper n m 0). Subsequently, instantiate the lemma for the concrete case.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 19 / 40

Using ML4PG

Proving lemma fn_fact_is_theta by analogy

Factorial Exponentiation

Lemma fn_fact_is_theta n : fn_fact n = n‘!. Lemma fn_expt_is_theta n m : fn_expt n m = n^m.

Proof. Proof.

move => n. rewrite /fn_fact. by move => n; rewrite /fn_expt helper_expt_is_theta

by rewrite helper_fact_is_theta mul1n. mul1n.

Qed. Qed.

Lemma helper_fact_is_theta n a : Lemma helper_expt_is_theta n m a :

helper_fact n a = a * n‘!. helper_expt n m a = a * (n ^ m).

Proof. Proof.

move : n a; elim : m => [a m| m IH n a /=]. move : a; elim : n => [a| n IH a /=].

by rewrite /theta_fact fact0 muln1. by rewrite /theta_expt expn0 muln1.

by rewrite IH /theta_fact factS by rewrite IH /theta_expt expnS

mulnA [a * _]mulnC. mulnA [a * _]mulnC.

Qed. Qed.

Proof Strategy

Prove an auxiliary lemma about the helper considering the most general case. For example, if the helper function is defined with
formal parameters n, m, and a, and the wrapper calls the helper initializing a at 0, the helper theorem must be about
(helper n m a), not just about the special case (helper n m 0). Subsequently, instantiate the lemma for the concrete case.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 19 / 40

Using ML4PG

Consistency of ML4PG clusters

g = 1 g = 2 g = 3 g = 4 g = 5
Algorithm: (n = 16) (n = 18) (n = 21) (n = 24) (n = 29)

K-means 30a,b,d 4a−d 4a−d 2c,d 0

E.M. 21a−d 7a−d 7a−d 0 0

FarthestFirst 28a−d 25a−d 0 0 0

a) Lemma about JVM multiplication program

b) Lemma about JVM power program

c) Lemma about JVM exponentiation program

d) Lemma about JVM factorial

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 20 / 40

Using ML4PG

Where else ML4PG can be applied?

Similarly, ML4PG can be used in:

1 Write the specification of the function

2 Write the algorithm (tail recursive function)

3 Prove that the algorithm satisfies the specification

4 Write the JVM program

5 Define the function that schedules the program

6 Prove that the code implements the algorithm

7 Prove total correctness

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 21 / 40

Using ML4PG

Proving lemma program_is_fn_fact by analogy

Factorial

Lemma program_is_fn_fact n :

run (sched_fact n)(make_state 0 [::n] [::] pi_fact)=

(make_state 14 [::0;fn_fact n] (push (fn_fact n)[::])pi_fact).

Proof.

rewrite run_app.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 22 / 40

Using ML4PG

Proving lemma program_is_fn_fact by analogy

Exponentiation (ML4PG suggestion)

Lemma program_is_fn_expt n m :

run (sched_expt n m)(make_state 0 [::n;m] [::] pi_expt)=

(make_state 14 [::0;fn_expt n m] (push (fn_expt n m)[::])pi_expt).

Proof.

rewrite run_app loop_is_helper_expt.

Qed.

Lemma loop_is_helper_expt n m a :

run (loop_sched_expt n)(make_state 2 [::n;m;a] [::] pi_expt)=

(make_state 14 [::0;(helper_expt n m a)] (push (helper_expt n m a)[::])pi_expt)

Proof.

move : n a; elim : m => [// | m IH n a].

by rewrite -IH subn1 -pred_Sn.

Qed.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 22 / 40

Using ML4PG

Proving lemma program_is_fn_fact by analogy

Factorial

Lemma program_is_fn_fact n :

run (sched_fact n)(make_state 0 [::n] [::] pi_fact)=

(make_state 14 [::0;fn_fact n] (push (fn_fact n)[::])pi_fact).

Proof.

rewrite run_app.

Lemma loop_is_helper_fact n a :

run (loop_sched_fact n)(make_state 2 [::n;a] [::] pi_fact)=

(make_state 14 [::0;(helper_fact n a)] (push (helper_fact n a)[::])pi_fact)

Proof.

move : a; elim : n => [// | n IH a].

by rewrite -IH subn1 -pred_Sn [_ * a]mulnC.

Qed.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 22 / 40

Using ML4PG

Proving lemma program_is_fn_fact by analogy

Factorial

Lemma program_is_fn_fact n :

run (sched_fact n)(make_state 0 [::n] [::] pi_fact)=

(make_state 14 [::0;fn_fact n] (push (fn_fact n)[::])pi_fact).

Proof.

rewrite run_app.

rewrite loop_is_helper_fact.

Qed.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 22 / 40

Using ML4PG

Proving lemma program_is_fn_fact by analogy

Factorial

Lemma program_is_fn_fact n :

run (sched_fact n)(make_state 0 [::n] [::] pi_fact)=

(make_state 14 [::0;fn_fact n] (push (fn_fact n)[::])pi_fact).

Proof.

rewrite run_app.

rewrite loop_is_helper_fact.

Qed.

Proof Strategy

Prove that the loop implements the helper using an auxiliary lemma. Such a lemma about the loop must consider the general
case as in the previous proof strategy. Subsequently, instantiate the result to the concrete case.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 22 / 40

Using ML4PG

Proving lemma program_is_fn_fact by analogy

Factorial

Lemma program_is_fn_fact n :

run (sched_fact n)(make_state 0 [::n] [::] pi_fact)=

(make_state 14 [::0;fn_fact n] (push (fn_fact n)[::])pi_fact).

Proof.

rewrite run_app.

rewrite loop_is_helper_fact.

Qed.

Proof Strategy

Prove that the loop implements the helper using an auxiliary lemma. Such a lemma about the loop must consider the general
case as in the previous proof strategy. Subsequently, instantiate the result to the concrete case.

ML4PG suggestions (for several parameters): Analogous theorems for multiplication, exponentiation and power.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 22 / 40

Using ML4PG

Proving total correctness by analogy

Factorial

Theorem total_correctness_fact n sf :

sf = run (sched_fact n)(make_state 0 [::n] [::] pi_fact)->

next_inst sf = (HALT,0\%Z)/\ top (stack sf)= (n‘!).

Proof.

move => H; split

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 23 / 40

Using ML4PG

Proving total correctness by analogy

Exponentiation (ML4PG suggestion)

Theorem total_correctness_expt n m sf :

sf = run (sched_expt m)(make_state 0 [::n;m] [::] pi_expt)->

next_inst sf = (HALT,0%Z)/\ top (stack sf)= (n^m).

Proof.

by move => H; split; rewrite H program_is_fn_expt fn_expt_is_theta.

Qed.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 23 / 40

Using ML4PG

Proving total correctness by analogy

Factorial

Theorem total_correctness_fact n sf :

sf = run (sched_fact n)(make_state 0 [::n] [::] pi_fact)->

next_inst sf = (HALT,0\%Z)/\ top (stack sf)= (n‘!).

Proof.

move => H; split

; rewrite H program_is_fn_fact fn_fact_is_theta.

Qed.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 23 / 40

Using ML4PG

Proving total correctness by analogy

Factorial

Theorem total_correctness_fact n sf :

sf = run (sched_fact n)(make_state 0 [::n] [::] pi_fact)->

next_inst sf = (HALT,0\%Z)/\ top (stack sf)= (n‘!).

Proof.

move => H; split

; rewrite H program_is_fn_fact fn_fact_is_theta.

Qed.

Proof Strategy

Combine lemmas of the two previous steps.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 23 / 40

Using ML4PG

Proving total correctness by analogy

Factorial

Theorem total_correctness_fact n sf :

sf = run (sched_fact n)(make_state 0 [::n] [::] pi_fact)->

next_inst sf = (HALT,0\%Z)/\ top (stack sf)= (n‘!).

Proof.

move => H; split

; rewrite H program_is_fn_fact fn_fact_is_theta.

Qed.

Proof Strategy

Combine lemmas of the two previous steps.

ML4PG suggestions (for several parameters): Analogous theorems for multiplication, exponenti-

ation and power.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 23 / 40

More Examples

Outline

1 Introduction

2 ML4PG: “Machine Learning for Proof General”

3 Using ML4PG

4 More Examples
Detecting patterns across mathematical libraries
Detecting irrelevant libraries

5 Conclusions and Further work

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 24 / 40

More Examples Detecting patterns across mathematical libraries

The bigop library

SSReflect library about indexed big “operations”

Examples:

∑
0≤i<2n|odd i

i = n2,
∏

0≤i≤n

i = n!,
⋃
i∈I

f (i), . . .

Applications:

Definition of matrix multiplication
Binomials
Union of sets
. . .

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 25 / 40

More Examples Detecting patterns across mathematical libraries

The bigop library

SSReflect library about indexed big “operations”

Examples:∑
0≤i<2n|odd i

i = n2,
∏

0≤i≤n

i = n!,
⋃
i∈I

f (i), . . .

Applications:

Definition of matrix multiplication
Binomials
Union of sets
. . .

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 25 / 40

More Examples Detecting patterns across mathematical libraries

The bigop library

SSReflect library about indexed big “operations”

Examples:∑
0≤i<2n|odd i

i = n2,
∏

0≤i≤n

i = n!,
⋃
i∈I

f (i), . . .

Applications:

Definition of matrix multiplication
Binomials
Union of sets
. . .

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 25 / 40

More Examples Detecting patterns across mathematical libraries

Application of ML4PG: Inverse of nilpotent matrices

Definition

Let M be a square matrix, M is nilpotent if it exists an n such that Mn = 0

Lemma

Let M be a nilpotent matrix, then

(1 −M) ×
∑

0≤i<n

M i = 1

where n is such that Mn = 0

Lemma inverse_I_minus_M_big (M : ’M_m) : (exists n, M^n = 0) ->

(1 - M) *m (\sum_(0<=i<n) M^i) = 1.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 26 / 40

More Examples Detecting patterns across mathematical libraries

Application of ML4PG: Inverse of nilpotent matrices

Definition

Let M be a square matrix, M is nilpotent if it exists an n such that Mn = 0

Lemma

Let M be a nilpotent matrix, then

(1 −M) ×
∑

0≤i<n

M i = 1

where n is such that Mn = 0

Lemma inverse_I_minus_M_big (M : ’M_m) : (exists n, M^n = 0) ->

(1 - M) *m (\sum_(0<=i<n) M^i) = 1.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 26 / 40

More Examples Detecting patterns across mathematical libraries

Starting the proof

Goals and Subgoals Proof-Steps (Tactics)

∀ (M : Mn)(m : nat), Mm = 0 =⇒ (1− M)×
m−1∑
i=0

M i = 1

move => M m nilpotent.

(1− M)×
m−1∑
i=0

M i = 1

rewrite big_distrr mulmxBr mul1mx.

m−1∑
i=0

M i − M i+1

case : n.

∀ (M : M0)(m : nat), Mm = 0 =⇒
m−1∑
i=0

M i − M i+1

by rewrite !thinmx0.

∀ (M : Mn+1)(m : nat), Mm = 0 =⇒
m−1∑
i=0

M i − M i+1

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 27 / 40

More Examples Detecting patterns across mathematical libraries

Suggestions provided by ML4PG

Theorem (Fundamental Lemma of Persistent Homology)

βj,k
i : N× N× N→ Z

βk,l
n − βk,m

n =
∑

1≤i≤k

∑
l<j≤m

(βj,p−1
n − βj,p

n)− (βj−1,p−1
n − βj−1,p

n)

Proof

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 28 / 40

More Examples Detecting patterns across mathematical libraries

Suggestions provided by ML4PG

Theorem (Fundamental Lemma of Persistent Homology)

βj,k
i : N× N× N→ Z

βk,l
n − βk,m

n =
∑

1≤i≤k

∑
l<j≤m

(βj,p−1
n − βj,p

n)− (βj−1,p−1
n − βj−1,p

n)

Proof ∑
1≤i≤k

∑
l<j≤m(βj,i−1

n − βj,i
n)− (βj−1,i−1

n − βj−1,i
n) =

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 28 / 40

More Examples Detecting patterns across mathematical libraries

Suggestions provided by ML4PG

Theorem (Fundamental Lemma of Persistent Homology)

βj,k
i : N× N× N→ Z

βk,l
n − βk,m

n =
∑

1≤i≤k

∑
l<j≤m

(βj,p−1
n − βj,p

n)− (βj−1,p−1
n − βj−1,p

n)

Proof ∑
1≤i≤k

∑
l<j≤m

(βj,i−1
n − βj,i

n)− (βj−1,i−1
n − βj−1,i

n) =∑
1≤i≤k

((βl+1,i−1
n − βl+1,i

n)− (βl,i−1
n − βl,i

n)+

(βl+2,i−1
n − βl+2,i

n)− (βl+1,i−1
n − βl+1,i

n)+
. . .

(βm−1,i−1
n − βm−1,i

n)− (βm−2,i−1
n − βm−2,i

n)+

(βm,i−1
n − βm,i

n)− (βm−1,i−1
n − βm−1,i

n))

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 28 / 40

More Examples Detecting patterns across mathematical libraries

Suggestions provided by ML4PG

Theorem (Fundamental Lemma of Persistent Homology)

βj,k
i : N× N× N→ Z

βk,l
n − βk,m

n =
∑

1≤i≤k

∑
l<j≤m

(βj,p−1
n − βj,p

n)− (βj−1,p−1
n − βj−1,p

n)

Proof ∑
1≤i≤k

∑
l<j≤m

(βj,i−1
n − βj,i

n)− (βj−1,i−1
n − βj−1,i

n) =∑
1≤i≤k

((((
(((((βl+1,i−1

n − βl+1,i
n)− (βl,i−1

n − βl,i
n)+

(βl+2,i−1
n − βl+2,i

n)−((((
((((βl+1,i−1

n − βl+1,i
n)+

. . .

(βm−1,i−1
n − βm−1,i

n)− (βm−2,i−1
n − βm−2,i

n)+

(βm,i−1
n − βm,i

n)− (βm−1,i−1
n − βm−1,i

n))

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 28 / 40

More Examples Detecting patterns across mathematical libraries

Suggestions provided by ML4PG

Theorem (Fundamental Lemma of Persistent Homology)

βj,k
i : N× N× N→ Z

βk,l
n − βk,m

n =
∑

1≤i≤k

∑
l<j≤m

(βj,p−1
n − βj,p

n)− (βj−1,p−1
n − βj−1,p

n)

Proof ∑
1≤i≤k

∑
l<j≤m

(βj,i−1
n − βj,i

n)− (βj−1,i−1
n − βj−1,i

n) =∑
1≤i≤k

((((
(((((βl+1,i−1

n − βl+1,i
n)− (βl,i−1

n − βl,i
n)+

((((
((((βl+2,i−1

n − βl+2,i
n)−((((

((((βl+1,i−1
n − βl+1,i

n)+
. . .

(((
((((

(
(βm−1,i−1

n − βm−1,i
n)−((((

(((((βm−2,i−1
n − βm−2,i

n)+

(βm,i−1
n − βm,i

n)−((((
(((((βm−1,i−1

n − βm−1,i
n))

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 28 / 40

More Examples Detecting patterns across mathematical libraries

Suggestions provided by ML4PG

Theorem (Fundamental Lemma of Persistent Homology)

βj,k
i : N× N× N→ Z

βk,l
n − βk,m

n =
∑

1≤i≤k

∑
l<j≤m

(βj,p−1
n − βj,p

n)− (βj−1,p−1
n − βj−1,p

n)

Proof ∑
1≤i≤k

∑
l<j≤m

(βj,i−1
n − βj,i

n)− (βj−1,i−1
n − βj−1,i

n) =∑
1≤i≤k

(βm,i−1
n − βm,i

n)− (βl,i−1
n − βl,i

n) = . . .

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 28 / 40

More Examples Detecting patterns across mathematical libraries

Suggestions provided by ML4PG

Lemma
If g : N→ Z, then ∑

0≤i≤k

(g(i + 1)− g(i)) = g(k + 1)− g(0)

Proof

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 29 / 40

More Examples Detecting patterns across mathematical libraries

Suggestions provided by ML4PG

Lemma
If g : N→ Z, then ∑

0≤i≤k

(g(i + 1)− g(i)) = g(k + 1)− g(0)

Proof ∑
0≤i≤k (g(i + 1)− g(i)) =

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 29 / 40

More Examples Detecting patterns across mathematical libraries

Suggestions provided by ML4PG

Lemma
If g : N→ Z, then ∑

0≤i≤k

(g(i + 1)− g(i)) = g(k + 1)− g(0)

Proof ∑
0≤i≤k (g(i + 1)− g(i)) =

g(1)− g(0) + g(2)− g(1) + . . .+ g(k + 1)− g(k)

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 29 / 40

More Examples Detecting patterns across mathematical libraries

Suggestions provided by ML4PG

Lemma
If g : N→ Z, then ∑

0≤i≤k

(g(i + 1)− g(i)) = g(k + 1)− g(0)

Proof ∑
0≤i≤k (g(i + 1)− g(i)) =

��g(1)− g(0) + g(2)−��g(1) + . . .+ g(k + 1)− g(k)

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 29 / 40

More Examples Detecting patterns across mathematical libraries

Suggestions provided by ML4PG

Lemma
If g : N→ Z, then ∑

0≤i≤k

(g(i + 1)− g(i)) = g(k + 1)− g(0)

Proof ∑
0≤i≤k (g(i + 1)− g(i)) =

��g(1)− g(0) +��g(2)−��g(1) + . . .+ g(k + 1)−��g(k)

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 29 / 40

More Examples Detecting patterns across mathematical libraries

Suggestions provided by ML4PG

Lemma
If g : N→ Z, then ∑

0≤i≤k

(g(i + 1)− g(i)) = g(k + 1)− g(0)

Proof ∑
0≤i≤k (g(i + 1)− g(i)) = g(k + 1)− g(0)

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 29 / 40

More Examples Detecting patterns across mathematical libraries

Suggestions provided by ML4PG

Proof Strategy

Apply case on n.

1 Prove the base case (a simple task).

2 Prove the case 0 < n:

1 expand the summation,
2 cancel the terms pairwise,

3 the only terms remaining after the cancellation are the first and the last one.

Lemma
Let M be a nilpotent matrix, then

(1− M)×
∑

0≤i<n

M i = 1

where n is such that Mn = 0

Proof

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 30 / 40

More Examples Detecting patterns across mathematical libraries

Suggestions provided by ML4PG

Proof Strategy

Apply case on n.

1 Prove the base case (a simple task).

2 Prove the case 0 < n:

1 expand the summation,
2 cancel the terms pairwise,

3 the only terms remaining after the cancellation are the first and the last one.

Lemma
Let M be a nilpotent matrix, then

(1− M)×
∑

0≤i<n

M i = 1

where n is such that Mn = 0

Proof

(1− M)×
∑

0≤i<n
M i =

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 30 / 40

More Examples Detecting patterns across mathematical libraries

Suggestions provided by ML4PG

Proof Strategy

Apply case on n.

1 Prove the base case (a simple task).

2 Prove the case 0 < n:

1 expand the summation,
2 cancel the terms pairwise,

3 the only terms remaining after the cancellation are the first and the last one.

Lemma
Let M be a nilpotent matrix, then

(1− M)×
∑

0≤i<n

M i = 1

where n is such that Mn = 0

Proof

(1− M)×
∑

0≤i<n
M i =∑

0≤i<n
M i − M i+1

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 30 / 40

More Examples Detecting patterns across mathematical libraries

Suggestions provided by ML4PG

Proof Strategy

Apply case on n.

1 Prove the base case (a simple task).

2 Prove the case 0 < n:

1 expand the summation,
2 cancel the terms pairwise,

3 the only terms remaining after the cancellation are the first and the last one.

Lemma
Let M be a nilpotent matrix, then

(1− M)×
∑

0≤i<n

M i = 1

where n is such that Mn = 0

Proof

(1− M)×
∑

0≤i<n
M i =∑

0≤i<n
M i − M i+1 =

M0 − M1 + M1 − M2 + . . . + Mn−1 − Mn

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 30 / 40

More Examples Detecting patterns across mathematical libraries

Suggestions provided by ML4PG

Proof Strategy

Apply case on n.

1 Prove the base case (a simple task).

2 Prove the case 0 < n:

1 expand the summation,
2 cancel the terms pairwise,

3 the only terms remaining after the cancellation are the first and the last one.

Lemma
Let M be a nilpotent matrix, then

(1− M)×
∑

0≤i<n

M i = 1

where n is such that Mn = 0

Proof

(1− M)×
∑

0≤i<n
M i =∑

0≤i<n
M i − M i+1 =

M0 −��M1 +��M1 −��M2 + . . . +��Mn−1 − Mn

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 30 / 40

More Examples Detecting patterns across mathematical libraries

Suggestions provided by ML4PG

Proof Strategy

Apply case on n.

1 Prove the base case (a simple task).

2 Prove the case 0 < n:

1 expand the summation,
2 cancel the terms pairwise,

3 the only terms remaining after the cancellation are the first and the last one.

Lemma
Let M be a nilpotent matrix, then

(1− M)×
∑

0≤i<n

M i = 1

where n is such that Mn = 0

Proof

(1− M)×
∑

0≤i<n
M i =∑

0≤i<n
M i − M i+1 =

M0 − Mn = M0 = 1

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 30 / 40

More Examples Detecting patterns across mathematical libraries

An unusual discovery

Lemma

Let M be a nilpotent matrix, then there exists N such that N × (1−M) = 1

Goals and Subgoals Proof-Steps (Tactics)

∀ (M : Mn)(m : nat), Mm = 0 =⇒ ∃N, N × (1− M) = 1

move => M m nilpotent.

∃N, N × (1− M) = 1

exists

\sum_(0<=i<m.+1)(pot_matrix M i).

(
m−1∑
i=0

M i)× (1− M)

rewrite big_distrl mulmxrB mulmx1.

m−1∑
i=0

M i − M i+1

case : n.

∀ (M : M0)(m : nat), Mm = 0 =⇒
m−1∑
i=0

M i − M i+1

by rewrite !thinmx0.

∀ (M : Mn+1)(m : nat), Mm = 0 =⇒
m−1∑
i=0

M i − M i+1

Table : First steps of the proof of Lemma ??. Note the correlation between
this proof and the proof of Lemma ?? in Table ??.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 31 / 40

More Examples Detecting patterns across mathematical libraries

An unusual discovery

Lemma

Let M be a nilpotent matrix, then there exists N such that N × (1−M) = 1

Goals and Subgoals Proof-Steps (Tactics)

∀ (M : Mn)(m : nat), Mm = 0 =⇒ ∃N, N × (1− M) = 1

move => M m nilpotent.

∃N, N × (1− M) = 1

exists

\sum_(0<=i<m.+1)(pot_matrix M i).

(
m−1∑
i=0

M i)× (1− M)

rewrite big_distrl mulmxrB mulmx1.

m−1∑
i=0

M i − M i+1

case : n.

∀ (M : M0)(m : nat), Mm = 0 =⇒
m−1∑
i=0

M i − M i+1

by rewrite !thinmx0.

∀ (M : Mn+1)(m : nat), Mm = 0 =⇒
m−1∑
i=0

M i − M i+1

Table : First steps of the proof of Lemma ??. Note the correlation between
this proof and the proof of Lemma ?? in Table ??.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 31 / 40

More Examples Detecting irrelevant libraries

Outline

1 Introduction

2 ML4PG: “Machine Learning for Proof General”

3 Using ML4PG

4 More Examples
Detecting patterns across mathematical libraries
Detecting irrelevant libraries

5 Conclusions and Further work

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 32 / 40

More Examples Detecting irrelevant libraries

An example coming from Game Theory

An (abstract) sequential game can be represented as a tree with pay-off
functions in the leaves.

Each internal node is owned by a player and a play of a game is a path
from the root to a leaf.
A strategy is a game where each internal node has chosen a child.

A Nash equilibrium is a strategy in which no agent can change one or
more of his choices to obtain a better result.
A strategy is a subgame perfect equilibrium if it represents Nash
equilibrium of every subgame of the original game.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 33 / 40

More Examples Detecting irrelevant libraries

An example coming from Game Theory

An (abstract) sequential game can be represented as a tree with pay-off
functions in the leaves.
Each internal node is owned by a player and a play of a game is a path
from the root to a leaf.

A strategy is a game where each internal node has chosen a child.

A Nash equilibrium is a strategy in which no agent can change one or
more of his choices to obtain a better result.
A strategy is a subgame perfect equilibrium if it represents Nash
equilibrium of every subgame of the original game.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 33 / 40

More Examples Detecting irrelevant libraries

An example coming from Game Theory

An (abstract) sequential game can be represented as a tree with pay-off
functions in the leaves.
Each internal node is owned by a player and a play of a game is a path
from the root to a leaf.
A strategy is a game where each internal node has chosen a child.

A Nash equilibrium is a strategy in which no agent can change one or
more of his choices to obtain a better result.
A strategy is a subgame perfect equilibrium if it represents Nash
equilibrium of every subgame of the original game.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 33 / 40

More Examples Detecting irrelevant libraries

An example coming from Game Theory

An (abstract) sequential game can be represented as a tree with pay-off
functions in the leaves.
Each internal node is owned by a player and a play of a game is a path
from the root to a leaf.
A strategy is a game where each internal node has chosen a child.

A Nash equilibrium is a strategy in which no agent can change one or
more of his choices to obtain a better result.
A strategy is a subgame perfect equilibrium if it represents Nash
equilibrium of every subgame of the original game.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 33 / 40

More Examples Detecting irrelevant libraries

An example coming from Game Theory

An (abstract) sequential game can be represented as a tree with pay-off
functions in the leaves.
Each internal node is owned by a player and a play of a game is a path
from the root to a leaf.
A strategy is a game where each internal node has chosen a child.

A Nash equilibrium is a strategy in which no agent can change one or
more of his choices to obtain a better result.

A strategy is a subgame perfect equilibrium if it represents Nash
equilibrium of every subgame of the original game.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 33 / 40

More Examples Detecting irrelevant libraries

An example coming from Game Theory

An (abstract) sequential game can be represented as a tree with pay-off
functions in the leaves.
Each internal node is owned by a player and a play of a game is a path
from the root to a leaf.
A strategy is a game where each internal node has chosen a child.

A Nash equilibrium is a strategy in which no agent can change one or
more of his choices to obtain a better result.
A strategy is a subgame perfect equilibrium if it represents Nash
equilibrium of every subgame of the original game.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 33 / 40

More Examples Detecting irrelevant libraries

Formalisations in Coq

All sequential games have Nash equilibrium.

Binary case:

R. Vestergaard. A constructive approach to sequential nash equilibria. Information
Processing Letter, 97:4651, 2006.

General case:
S. Le Roux. Acyclic Preferences and Existence of Sequential Nash Equilibria: A Formal and
Constructive Equivalence. In 20th International Conference on Theorem Proving in Higher
Order Logics (TPHOLs07), volume 5674 of Lecture Notes in Computer Science, pages
293309, 2009.

Is it possible to reuse patterns between these libraries? It is natural to
think so, but . . .

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 34 / 40

More Examples Detecting irrelevant libraries

Formalisations in Coq

All sequential games have Nash equilibrium.
Binary case:

R. Vestergaard. A constructive approach to sequential nash equilibria. Information
Processing Letter, 97:4651, 2006.

General case:
S. Le Roux. Acyclic Preferences and Existence of Sequential Nash Equilibria: A Formal and
Constructive Equivalence. In 20th International Conference on Theorem Proving in Higher
Order Logics (TPHOLs07), volume 5674 of Lecture Notes in Computer Science, pages
293309, 2009.

Is it possible to reuse patterns between these libraries? It is natural to
think so, but . . .

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 34 / 40

More Examples Detecting irrelevant libraries

Formalisations in Coq

All sequential games have Nash equilibrium.
Binary case:

R. Vestergaard. A constructive approach to sequential nash equilibria. Information
Processing Letter, 97:4651, 2006.

General case:
S. Le Roux. Acyclic Preferences and Existence of Sequential Nash Equilibria: A Formal and
Constructive Equivalence. In 20th International Conference on Theorem Proving in Higher
Order Logics (TPHOLs07), volume 5674 of Lecture Notes in Computer Science, pages
293309, 2009.

Is it possible to reuse patterns between these libraries? It is natural to
think so, but . . .

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 34 / 40

More Examples Detecting irrelevant libraries

Formalisations in Coq

All sequential games have Nash equilibrium.
Binary case:

R. Vestergaard. A constructive approach to sequential nash equilibria. Information
Processing Letter, 97:4651, 2006.

General case:
S. Le Roux. Acyclic Preferences and Existence of Sequential Nash Equilibria: A Formal and
Constructive Equivalence. In 20th International Conference on Theorem Proving in Higher
Order Logics (TPHOLs07), volume 5674 of Lecture Notes in Computer Science, pages
293309, 2009.

Is it possible to reuse patterns between these libraries?

It is natural to
think so, but . . .

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 34 / 40

More Examples Detecting irrelevant libraries

Formalisations in Coq

All sequential games have Nash equilibrium.
Binary case:

R. Vestergaard. A constructive approach to sequential nash equilibria. Information
Processing Letter, 97:4651, 2006.

General case:
S. Le Roux. Acyclic Preferences and Existence of Sequential Nash Equilibria: A Formal and
Constructive Equivalence. In 20th International Conference on Theorem Proving in Higher
Order Logics (TPHOLs07), volume 5674 of Lecture Notes in Computer Science, pages
293309, 2009.

Is it possible to reuse patterns between these libraries? It is natural to
think so, but . . .

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 34 / 40

More Examples Detecting irrelevant libraries

Formalisations are just too different

Subgame Perfect Equilibrium implies Nash Equilibrium:

Binary case General case

Lemma SGP_is_NashEq : Lemma SPE_is_Eq :

forall s : Strategy, SGP s -> NashEq s. forall s : Strat, SPE s -> Eq s.

Proof. Proof.

induction s. intros. destruct s; simpl in H; tauto.

unfold NashEq. intros _. induction s’. Qed.

intros. unfold stratPO. unfold agentConv in H.

rewrite (H a). trivial.

unfold agentConv. intros. contradiction.

unfold SGP. intros [_ [_ done]]. trivial.

Qed.

No correlation among important theorems of the 2 libraries: completely
different datastructures and strategies to prove lemmas.
ML4PG discovers the absence of patterns.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 35 / 40

More Examples Detecting irrelevant libraries

Formalisations are just too different

Subgame Perfect Equilibrium implies Nash Equilibrium:

Binary case General case

Lemma SGP_is_NashEq : Lemma SPE_is_Eq :

forall s : Strategy, SGP s -> NashEq s. forall s : Strat, SPE s -> Eq s.

Proof. Proof.

induction s. intros. destruct s; simpl in H; tauto.

unfold NashEq. intros _. induction s’. Qed.

intros. unfold stratPO. unfold agentConv in H.

rewrite (H a). trivial.

unfold agentConv. intros. contradiction.

unfold SGP. intros [_ [_ done]]. trivial.

Qed.

No correlation among important theorems of the 2 libraries: completely
different datastructures and strategies to prove lemmas.

ML4PG discovers the absence of patterns.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 35 / 40

More Examples Detecting irrelevant libraries

Formalisations are just too different

Subgame Perfect Equilibrium implies Nash Equilibrium:

Binary case General case

Lemma SGP_is_NashEq : Lemma SPE_is_Eq :

forall s : Strategy, SGP s -> NashEq s. forall s : Strat, SPE s -> Eq s.

Proof. Proof.

induction s. intros. destruct s; simpl in H; tauto.

unfold NashEq. intros _. induction s’. Qed.

intros. unfold stratPO. unfold agentConv in H.

rewrite (H a). trivial.

unfold agentConv. intros. contradiction.

unfold SGP. intros [_ [_ done]]. trivial.

Qed.

No correlation among important theorems of the 2 libraries: completely
different datastructures and strategies to prove lemmas.
ML4PG discovers the absence of patterns.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 35 / 40

More Examples Detecting irrelevant libraries

Comparison of the two examples

Orthogonal examples:

Nilpotent matrices example:

Completely unrelated libraries, but common proof strategy.

Nash example:

Similar results, but completely different proof strategies.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 36 / 40

Conclusions and Further work

Outline

1 Introduction

2 ML4PG: “Machine Learning for Proof General”

3 Using ML4PG

4 More Examples

5 Conclusions and Further work

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 37 / 40

Conclusions and Further work

Summary: Benefits of this approach:

ML4PG statistical tool can be switched on/off on user’s demand;

ML4PG does not assume any knowledge of machine-learning
interfaces from the user;

modular: allows the user to make choices regarding approach to levels
of proofs and particular statistical algorithms;

tolerant to mixing and matching different proof libraries and different
notation used in proofs across different users.

easily extendable: e.g. from Coq to SSReflect and ACL2.

Most amazingly...

it really works!!!!

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 38 / 40

Conclusions and Further work

Summary: Benefits of this approach:

ML4PG statistical tool can be switched on/off on user’s demand;

ML4PG does not assume any knowledge of machine-learning
interfaces from the user;

modular: allows the user to make choices regarding approach to levels
of proofs and particular statistical algorithms;

tolerant to mixing and matching different proof libraries and different
notation used in proofs across different users.

easily extendable: e.g. from Coq to SSReflect and ACL2.

Most amazingly...

it really works!!!!

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 38 / 40

Conclusions and Further work

Summary: Benefits of this approach:

ML4PG statistical tool can be switched on/off on user’s demand;

ML4PG does not assume any knowledge of machine-learning
interfaces from the user;

modular: allows the user to make choices regarding approach to levels
of proofs and particular statistical algorithms;

tolerant to mixing and matching different proof libraries and different
notation used in proofs across different users.

easily extendable: e.g. from Coq to SSReflect and ACL2.

Most amazingly...

it really works!!!!

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 38 / 40

Conclusions and Further work

Summary: Benefits of this approach:

ML4PG statistical tool can be switched on/off on user’s demand;

ML4PG does not assume any knowledge of machine-learning
interfaces from the user;

modular: allows the user to make choices regarding approach to levels
of proofs and particular statistical algorithms;

tolerant to mixing and matching different proof libraries and different
notation used in proofs across different users.

easily extendable: e.g. from Coq to SSReflect and ACL2.

Most amazingly...

it really works!!!!

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 38 / 40

Conclusions and Further work

Summary: Benefits of this approach:

ML4PG statistical tool can be switched on/off on user’s demand;

ML4PG does not assume any knowledge of machine-learning
interfaces from the user;

modular: allows the user to make choices regarding approach to levels
of proofs and particular statistical algorithms;

tolerant to mixing and matching different proof libraries and different
notation used in proofs across different users.

easily extendable: e.g. from Coq to SSReflect and ACL2.

Most amazingly...

it really works!!!!

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 38 / 40

Conclusions and Further work

Summary: Benefits of this approach:

ML4PG statistical tool can be switched on/off on user’s demand;

ML4PG does not assume any knowledge of machine-learning
interfaces from the user;

modular: allows the user to make choices regarding approach to levels
of proofs and particular statistical algorithms;

tolerant to mixing and matching different proof libraries and different
notation used in proofs across different users.

easily extendable: e.g. from Coq to SSReflect and ACL2.

Most amazingly...

it really works!!!!

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 38 / 40

Conclusions and Further work

Summary: Benefits of this approach:

ML4PG statistical tool can be switched on/off on user’s demand;

ML4PG does not assume any knowledge of machine-learning
interfaces from the user;

modular: allows the user to make choices regarding approach to levels
of proofs and particular statistical algorithms;

tolerant to mixing and matching different proof libraries and different
notation used in proofs across different users.

easily extendable: e.g. from Coq to SSReflect and ACL2.

Most amazingly...

it really works!!!!

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 38 / 40

Conclusions and Further work

Conclusions and Further work

Conclusions

We can, and perhaps should, apply statistical machine-learning in
theorem proving;

The general task is to use it to process “big data”, or for
distributed/collaborative proving.

Conceptualisation of ML4PG output is a challenge.

Related Work

ACL2(ml) works as ML4PG in the ACL2 prover and also
conceptualise new lemmas. Part of SICSA industrial grant.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 39 / 40

Conclusions and Further work

Conclusions and Further work

Conclusions

We can, and perhaps should, apply statistical machine-learning in
theorem proving;

The general task is to use it to process “big data”, or for
distributed/collaborative proving.

Conceptualisation of ML4PG output is a challenge.

Related Work

ACL2(ml) works as ML4PG in the ACL2 prover and also
conceptualise new lemmas. Part of SICSA industrial grant.

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 39 / 40

Thank you for your attention Questions?

Statistical Machine Learning in Interactive Theorem
Proving

Katya Komendantskaya and Jonathan Heras
(Funded by EPSRC First Grant Scheme)

University of Dundee

8 November 2013

Katya and Jónathan (Dundee) Statistical Machine Learning in ITP 8 November 2013 40 / 40

	Introduction
	ML4PG: ``Machine Learning for Proof General''
	Using ML4PG
	More Examples
	Detecting patterns across mathematical libraries
	Detecting irrelevant libraries

	Conclusions and Further work

