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Introduction

ACL2

ACL2 (A Computational Logic for an Applicative Common Lisp) is the
successor of the Boyer-Moore theorem prover.

ACL2 is . . .

. . . a programming language (an extension of an applicative subset of
Common Lisp).

. . . a logic (an untyped first-order logic with equality).

. . . a theorem prover.

Applications of ACL2:

Software and Hardware Verification (microprocessors, flash memories,
JVM-like bytecode, . . . )
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Introduction

Proving in ACL2

ACL2 has features of both interactive and automated theorem provers.

Automatic: once a proof attempt is started, the user can no longer
interact with ACL2.

Interactive: the user has to supply a suitable collection of definitions
and auxiliary lemmas to guide ACL2.
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Introduction

Challenges

. . . size of ACL2 library stands on the way of efficient knowledge reuse;

. . . manual handling of proofs, strategies, libraries becomes difficult;

. . . team-development is hard;

. . . comparison of proof similarities is hard;

. . . discovery of auxiliary lemmas can be difficult.

What can we do?

Statistical methods can discover patterns in proofs but are weak for
conceptualisation.

Symbolic methods (Proof planning, lemma discovery) can
conceptualise but have limitations.

Combination of statistical and symbolic methods:

Statistical methods can take advantage of symbolic methods to
conceptualise results.
Symbolic tools can use statistical results for efficient lemma discovery.
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An overview of ACL2(ml)

ACL2(ml)

. . . in [2013, Proceedings of LPAR’13]

User

feature extractionnew lemmas

Interface of ACL2(ml)

Symbolic Lemma Discovery

(Lemma Analogy)

Statistical Machine-Learning

(Clustering)

similar lemmas

similar lemmas

F.1. works on the background of Emacs extracting some low-level features from ACL2
definitions and theorems.

F.2. automatically sends the gathered statistics to a chosen machine-learning interface and
triggers execution of a clustering algorithm of user’s choice;

F.3. does some post-processing of the results and

F.3.a displays families of related proofs (or definitions) to the user.

F.3.b uses the families of related proofs to discover new lemmas.
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Statistical Pattern Recognition with ACL2(ml)

Extracting features from ACL2

1 Feature extraction:

We extract features directly from term trees of ACL2 terms.

Definition (Term tree)

A variable or a constant is represented by a tree consisting of one single node, labelled by the
variable or the constant itself. A function application f (t1, . . . , tn) is represented by the tree with
the root node labelled by f , and its immediate subtrees given by trees representing t1, . . . , tn.

(implies (natp n) (equal (fact-tail n) (fact n))

implies

natp

n

equal

fact-tail fact

n n
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Statistical Pattern Recognition with ACL2(ml)

ACL2(ml) term tree matrices

We have devised a compact feature extraction method.

Definition (Term tree depth level)

Given a term tree T , the depth of the node t in T , denoted by depth(t), is defined as follows:
− depth(t) = 0, if t is a root node;
− depth(t) = n + 1, where n is the depth of the parent node of t.

Definition (ACL2(ml) term tree matrices)

Given a term tree T for a term with signature Σ, and a function [.] : Σ→ Q, the ACL2(ml)
term tree matrix MT is a 7× 7 matrix that satisfies the following conditions:
− the (0, j)-th entry of MT is a number [t], such that t is a node in T , t is a variable and
depth(t) = j .
− the (i , j)-th entry of MT (i 6= 0) is a number [t], such that t is a node in T , t has arity i + 1
and depth(t) = j .
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Statistical Pattern Recognition with ACL2(ml)

ACL2(ml) term tree matrices

We have devised a compact feature extraction method.

Definition (Term tree depth level)

Given a term tree T , the depth of the node t in T , denoted by depth(t), is defined as follows:
− depth(t) = 0, if t is a root node;
− depth(t) = n + 1, where n is the depth of the parent node of t.

Definition (ACL2(ml) term tree matrices)

Given a term tree T for a term with signature Σ, and a function [.] : Σ→ Q, the ACL2(ml)
term tree matrix MT is a 7× 7 matrix that satisfies the following conditions:
− the (0, j)-th entry of MT is a number [t], such that t is a node in T , t is a variable and
depth(t) = j .
− the (i , j)-th entry of MT (i 6= 0) is a number [t], such that t is a node in T , t has arity i + 1
and depth(t) = j .

J. Heras (Dundee) ACL2(ml) 31 January 2014 11 / 30



Statistical Pattern Recognition with ACL2(ml)

ACL2(ml) term tree matrices

We have devised a compact feature extraction method.

Definition (Term tree depth level)

Given a term tree T , the depth of the node t in T , denoted by depth(t), is defined as follows:
− depth(t) = 0, if t is a root node;
− depth(t) = n + 1, where n is the depth of the parent node of t.

Definition (ACL2(ml) term tree matrices)

Given a term tree T for a term with signature Σ, and a function [.] : Σ→ Q, the ACL2(ml)
term tree matrix MT is a 7× 7 matrix that satisfies the following conditions:
− the (0, j)-th entry of MT is a number [t], such that t is a node in T , t is a variable and
depth(t) = j .
− the (i , j)-th entry of MT (i 6= 0) is a number [t], such that t is a node in T , t has arity i + 1
and depth(t) = j .

J. Heras (Dundee) ACL2(ml) 31 January 2014 11 / 30



Statistical Pattern Recognition with ACL2(ml)

An example

implies

natp

n

equal

fact-tail fact

n n

variables arity 0 arity 1 arity 2

td0 0 0 0 [implies]
td1 0 0 [natp] [equal]
td2 [n] 0 [fact-tail]::[fact] 0
td3 [n]::[n] 0 0 0
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Statistical Pattern Recognition with ACL2(ml)

Clustering in ACL2(ml)

We have integrated Emacs with a variety of clustering algorithms:

Unsupervised machine learning technique:
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Statistical Pattern Recognition with ACL2(ml)

Recurrent clustering

How is the function [.] defined?

Definition (Function [.])

Given the nth term definition of the library (call the term t), a function [.] is inductively defined
for every symbol s in t as follows:
− [s] = i , if s is the ith distinct variable in t (formulas are implicitly universally quantified);
− [s] = −[m], if t is a recursive definition defining the function s with measure function m;
− [s] = k , if s is a function imported from CLISP; and [s] = k in the figure below;
− [s] = 5 + 2× j + p, where Cj is a cluster obtained as a result of definition clustering with
granularity 3 for library definitions 1 to n − 1, s ∈ Cj and p is the proximity value of s in Cj .

∗ Type recognisers (r = {symbolp, characterp, stringp, consp, acl2-numberp, integerp, rationalp, complex-rationalp}):

[ri ] = 1 +
∑i

j=1
1

10×2j−1 (where ri is the ith element of r).

∗ Constructors (c = {cons, complex}): [ci ] = 2 +
∑i

j=1
1

10×2j−1 .

∗ Accessors (a1 = {car, cdr}, a2 = {denominator, numerator}, a3 = {realpart, imagpart}): [a
j
i ] = 3 + 1

10×j
+ i−1

100
.

∗ Operations on numbers (o = {unary-/, unary–, binary-+, binary-*}): [oi ] = 4 +
∑i

j=1
1

10×2j−1 .

∗ Integers and rational numbers: [0] = 4.3, [n] = 4.3 +
|n|
10

(with n 6= 0 and |n| < 1) and [n] = 4.3 + 1
100∗|n| (with n 6= 0

and |n| ≥ 1).

∗ Boolean operations (b = {equal, if, ¡}): [bi ] = 5 +
∑i

j=1
1

10×2j−1 .
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Statistical Pattern Recognition with ACL2(ml)

Demo

Finding similar theorems across libraries.

Obtaining more precise clusters.

Finding similar definitions across libraries.
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Symbolic methods in ACL2(ml)

Lemma analogy in ACL2(ml)

Can we use the output of the statistical side of ACL2(ml) to generate
useful lemmas?

Terminology:

Target Theorem (TT): the theorem that we want to prove.
Source Theorem (ST): theorem suggested as similar to TT.
Source Lemma (SL): a user-supplied lemma to prove ST.
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Symbolic methods in ACL2(ml)

Overview of the process
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Symbolic methods in ACL2(ml)

Analogy mapping

Definition (Analogy Mapping A)

For all symbols s1, . . . , sn occurring in the current ST, the set of admissible
analogy mappings is the set of all mappings A such that
- A(si ) = si for all shared background symbols; otherwise:
- A(si ) = sj for all combinations of i , j ∈ 1 . . . n, such that si and sj belong
to the same cluster in the last iteration of definition clustering.

Example

For our running example, the shared background theory includes symbols
{+, *,-, 1, 0}. We thus get a mapping:
A = {fact 7→ fib, helper-fact 7→ helper-fib, + 7→ +, 1 7→ 1,...}

J. Heras (Dundee) ACL2(ml) 31 January 2014 19 / 30
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Symbolic methods in ACL2(ml)

Term tree mutation

Term tree mutation consists of three iterations:

Tree reconstruction.

Node expansion.

Term tree expansion.

J. Heras (Dundee) ACL2(ml) 31 January 2014 20 / 30



Symbolic methods in ACL2(ml)

Tree reconstruction

Tree Reconstruction phase replaces symbols in the SL with their analogical counterparts.

equal

helper-fact *

n a fact

n

a

equal

helper-fib *

n n1 a fib

n1

a
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Symbolic methods in ACL2(ml)

Node expansion

Node expansion phase mutates the term, by synthesising small terms (max depth 2) in place of

variables.

equal

helper-fib *

n n1 a fib

n1

a

equal

helper-fib *

n n1 a fib

-

n 1

a
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Symbolic methods in ACL2(ml)

Term Tree Expansion

Term Tree Expansion phase is similar to Node expansion phase, but adding new term structure

on the top-level of the term.

equal

helper-fib *

n n1 a fib

-

n 1

a

equal

helper-fib +

n n1 a * *

fib

-

n1 1

n a fib

n1
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Symbolic methods in ACL2(ml)

Using guards to generate preconditions

Using the lemma analogy tool, ACL2(ml) generates the following
suggestion:

(equal (helper_fib n j k)

(+ (* (theta_fib (- n 1)) j) (* (theta_fib n) k))))

This result cannot be directly proven in ACL2, we need some
preconditions.

ACL2 is an untyped system, but we can restrict a function to a
particular domain using the guard mechanism.

Guards are optional and several functions do not include them.

ACL2 recommendation for novices: “novices are often best served by
avoiding guards”.

Solution: compute recursively the guards of a function f .
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Symbolic methods in ACL2(ml)

Using guards to generate preconditions

(defun helper_fib (n j k)

(if (zp n) j (if (equal n 1) k (helper_fib (- n 1) k (+ j k)))))

* zp -> (natp x)

* equal -> t

* + -> (and (acl2-numberp x) (acl2-numberp y))

* - -> (and (acl2-numberp x) (acl2-numberp y))

Guards generated for helper_fib →

(and (natp n) t (and (acl2-numberp n) (acl2-numberp 1))

(and (acl2-numberp j) (acl2-numberp k)))

simpl−−−→ (and (integerp n) (not (< n 0)) (acl2-numberp j) (acl2-numberp k))

(defthm helper_fib_theta_fib

(equal (helper_fib n j k) (+ (* (theta_fib (- n 1)) j) (* (theta_fib n) k))))

Guards:

(and (integerp n) (not (< n 0)) (acl2-numberp j) (acl2-numberp k)

(not (< (+ -1 n) 0)))

J. Heras (Dundee) ACL2(ml) 31 January 2014 25 / 30
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(defun helper_fib (n j k)

(if (zp n) j (if (equal n 1) k (helper_fib (- n 1) k (+ j k)))))
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Symbolic methods in ACL2(ml)

Demo

Lemma discovery.

Guard generation.
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Conclusions

Benefits of ACL2(ml)

ACL2(ml) statistical and symbolic tools can be switched on/off on
user’s demand;

ACL2(ml) does not assume any knowledge of machine-learning
interfaces from the user;
modular: allows the user to make choices regarding approach to levels
of proofs and particular statistical algorithms;
tolerant to mixing and matching different proof libraries and different
notation used in proofs across different users.

Conclusions

ACL2(ml) combines statistical machine learning (detection of
patterns) with symbolic techniques (generation of lemmas).

ACL2(ml) is different to other tools:

its methods of generating the proof-hints interactively and in real-time;
its flexible environment for integration of statistical and symbolic
techniques.

J. Heras (Dundee) ACL2(ml) 31 January 2014 28 / 30



Conclusions

Benefits of ACL2(ml)

ACL2(ml) statistical and symbolic tools can be switched on/off on
user’s demand;
ACL2(ml) does not assume any knowledge of machine-learning
interfaces from the user;

modular: allows the user to make choices regarding approach to levels
of proofs and particular statistical algorithms;
tolerant to mixing and matching different proof libraries and different
notation used in proofs across different users.

Conclusions

ACL2(ml) combines statistical machine learning (detection of
patterns) with symbolic techniques (generation of lemmas).

ACL2(ml) is different to other tools:

its methods of generating the proof-hints interactively and in real-time;
its flexible environment for integration of statistical and symbolic
techniques.

J. Heras (Dundee) ACL2(ml) 31 January 2014 28 / 30



Conclusions

Benefits of ACL2(ml)

ACL2(ml) statistical and symbolic tools can be switched on/off on
user’s demand;
ACL2(ml) does not assume any knowledge of machine-learning
interfaces from the user;
modular: allows the user to make choices regarding approach to levels
of proofs and particular statistical algorithms;

tolerant to mixing and matching different proof libraries and different
notation used in proofs across different users.

Conclusions

ACL2(ml) combines statistical machine learning (detection of
patterns) with symbolic techniques (generation of lemmas).

ACL2(ml) is different to other tools:

its methods of generating the proof-hints interactively and in real-time;
its flexible environment for integration of statistical and symbolic
techniques.

J. Heras (Dundee) ACL2(ml) 31 January 2014 28 / 30



Conclusions

Benefits of ACL2(ml)

ACL2(ml) statistical and symbolic tools can be switched on/off on
user’s demand;
ACL2(ml) does not assume any knowledge of machine-learning
interfaces from the user;
modular: allows the user to make choices regarding approach to levels
of proofs and particular statistical algorithms;
tolerant to mixing and matching different proof libraries and different
notation used in proofs across different users.

Conclusions

ACL2(ml) combines statistical machine learning (detection of
patterns) with symbolic techniques (generation of lemmas).

ACL2(ml) is different to other tools:

its methods of generating the proof-hints interactively and in real-time;
its flexible environment for integration of statistical and symbolic
techniques.

J. Heras (Dundee) ACL2(ml) 31 January 2014 28 / 30



Conclusions

Benefits of ACL2(ml)

ACL2(ml) statistical and symbolic tools can be switched on/off on
user’s demand;
ACL2(ml) does not assume any knowledge of machine-learning
interfaces from the user;
modular: allows the user to make choices regarding approach to levels
of proofs and particular statistical algorithms;
tolerant to mixing and matching different proof libraries and different
notation used in proofs across different users.

Conclusions

ACL2(ml) combines statistical machine learning (detection of
patterns) with symbolic techniques (generation of lemmas).

ACL2(ml) is different to other tools:

its methods of generating the proof-hints interactively and in real-time;
its flexible environment for integration of statistical and symbolic
techniques.

J. Heras (Dundee) ACL2(ml) 31 January 2014 28 / 30



Conclusions

Further work

Different patterns. Statistical ACL2(ml) groups in the same clusters
theorems whose lemmas cannot be mutated to generate any useful
lemma.

Smaller lemmas. The lemma analogy tool currently only adds term
structure; therefore, it cannot generate smaller lemmas.

Conditional lemmas. Discovering appropriate conditions for
generated lemmas is a difficult problem for theory exploration systems.

New definitions. Another big challenge in lemma discovery is
invention of new concepts.
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Methods to represent term-trees

A variety of methods exists: e.g. incidence matrices, adjacency matrices.

implies

natp

n

equal

fact-tail fact

n n

impl natp equal fact-t. fact n n’ n”

impl 0 1 1 0 0 0 0 0
natp 0 0 0 0 0 1 0 0
equal 0 0 0 1 1 0 0 0
fact-t. 0 0 0 0 0 0 1 0

fact 0 0 0 0 0 0 0 1
n 0 0 0 0 0 0 0 0
n’ 0 0 0 0 0 0 0 0
n” 0 0 0 0 0 0 0 0

Properties of these methods:

different tree nodes are represented by distinct matrix entries;

the matrix entries are binary;

the size of the matrix depend on the tree size; and

they can grow very large.
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Evaluation

Scalability: ACL2(ml) works well with libraries of varied sizes and complexities.

(150 lemmas) g = 1 g = 2 g = 3 g = 4 g = 5
(n = 16) (n = 18) (n = 21) (n = 25) (n = 30)

fib-fib-tail 9a,b,c 4a,b,c 3a,c 2a 2a

(996 lemmas ) g = 1 g = 2 g = 3 g = 4 g = 5
(n = 110) (n = 124) (n = 142) (n = 166) (n = 199)

fib-fib-tail 57a,b,c 50a,b,c 25a,b,c 8a,b,c 4a,b,c

Usability of Statistical Suggestions (996 lemmas):

37% of clusters can be directly used by the Lemma Analogy tool of ACL2(ml) to mutate
lemmas.

19% of cluster contain basic theorems whose proofs are similar (based on simplification).

15% of clusters contain theorems that use the same lemmas in their proofs.

15% of clusters consist of theorems that are used in the proofs of other theorems of the
same cluster.

14% of clusters do not show a clear correlation that could be reused.
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Evaluation II

Modularity: ACL2(ml) provides a flexible environment for integrating statistical and symbolic

machine-learning methods.

Lemma discovery: reduces the combinatorial explosion of theory exploration techniques.
Comparison with QuickSpec:

Target QuickSpec
fact power expt sum sum sq mult fib Lemma Valid Invalid

Source

fact - X1 X1 X1 X1 X2 X1 × 10 5
power X1 - X1 X1 X1 X2 X1 × 17 4
expt X1 X1 - X1 X1 X2 X1 × OoM OoM
sum X1 X1 X1 - X1 X2 X1 × 7 2

sum sq X1 X1 X1 X1 - X2 X1 × 7 1
mult X1 X1 X1 X1 X1 - X1 × 200 20
fib (X2) (X2) × × × × - × OoM OoM
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