Machine Learning for Proof General: Interfacing Interfaces (Funded by EPSRC First Grant Scheme)

Katya Komendantskaya and Jonathan Heras

University of Edinburgh

4 December 2012

1 Motivation: machine-learning for automated theorem proving?

1 Motivation: machine-learning for automated theorem proving?

2 Automation of interactive proofs: role of interfaces...

- 1 Motivation: machine-learning for automated theorem proving?
- 2 Automation of interactive proofs: role of interfaces...
- 3 ML4PG: machine-learning for proof general

1 Motivation: machine-learning for automated theorem proving?

- 2 Automation of interactive proofs: role of interfaces...
- 3 ML4PG: machine-learning for proof general
 - Amazing Examples
 - The bigop library
 - The COQEAL library
 - Formalisation of the Java Virtual Machine

1 Motivation: machine-learning for automated theorem proving?

- 2 Automation of interactive proofs: role of interfaces...
- ML4PG: machine-learning for proof general
 - 4 Amazing Examples
 - The bigop library
 - The CoqEAL library
 - Formalisation of the Java Virtual Machine

Further work

• ... Digital era means most of information (in science, industries, even art!) is stored/handled in electronic form.

- ... Digital era means most of information (in science, industries, even art!) is stored/handled in electronic form.
- ... Computer-generated data may not make much sense to human users; or in fact, other computers!

- ... Digital era means most of information (in science, industries, even art!) is stored/handled in electronic form.
- ... Computer-generated data may not make much sense to human users; or in fact, other computers!
- The volumes of data make it infeasible to be processed and interpreted manually.

- ... Digital era means most of information (in science, industries, even art!) is stored/handled in electronic form.
- ... Computer-generated data may not make much sense to human users; or in fact, other computers!
- The volumes of data make it infeasible to be processed and interpreted manually.
- ... the only hope is, our machine-learning algorithms become fast and clever enough to do that dirty (pre-processing) work for us!

- ... Digital era means most of information (in science, industries, even art!) is stored/handled in electronic form.
- ... Computer-generated data may not make much sense to human users; or in fact, other computers!
- The volumes of data make it infeasible to be processed and interpreted manually.
- ... the only hope is, our machine-learning algorithms become fast and clever enough to do that dirty (pre-processing) work for us!

So, why should we (logicians) care?

So, why should we (logicians) care?

Katya and Jonathan (Edinburgh)

Katya and Jonathan (Edinburgh)

Machine Learning for Proof General

Katya and Jonathan (Edinburgh)

• ... increasingly, theorems [be it mathematics or software/hardware verification] are proven IN automated provers.

- ... increasingly, theorems [be it mathematics or software/hardware verification] are proven IN automated provers.
- Manual handling of various proofs, strategies, libraries, becomes difficult.

- ... increasingly, theorems [be it mathematics or software/hardware verification] are proven IN automated provers.
- Manual handling of various proofs, strategies, libraries, becomes difficult.
- ... team-development is hard, especially that ITPs are sensitive to notation;

- ... increasingly, theorems [be it mathematics or software/hardware verification] are proven IN automated provers.
- Manual handling of various proofs, strategies, libraries, becomes difficult.
- ... team-development is hard, especially that ITPs are sensitive to notation;
- ... comparison of proofs and proof similarities across libraries or even within one big library are hard;

Motivation: machine-learning for automated theorem proving?

Main applications in Automated Theorem Proving:

Where can we use ML?

ML in other areas of (Computer) Science:

Where data is abundant, and needs quick automated classification:

- robotics (from space rovers to small apps in domestic appliences, cars...);
- image processing;
- natural language processing;
- web search;
- computer network analysis;
- Medical diagnostics;
- etc, etc, ...

In all these areas, ML is a common tool-of-the-trade, additional to the primary research specialisation. Will this practice come to Automated theorem proving?

Katya and Jonathan (Edinburgh) Machine Learning for Proof General

Automated reasoning does NOT need ML applications:

...where AR does not need help

- verification (unlike in Medical diagnosis)
- language parsing (unlike in NLP)

Automated reasoning does NOT need ML applications:

...where AR does not need help

- verification (unlike in Medical diagnosis)
- language parsing (unlike in NLP)

.. where we do not trust them

- new theoretical break-throughs (formulation of new theorems);
- giving semantics to data (cf. Deep learning).

where do we both need ML-tools and trust them?

where do we both need ML-tools and trust them?

• finding common proof-patterns in proofs across various scripts, libraries, users, notations;

10 / 47

where do we both need ML-tools and trust them?

- finding common proof-patterns in proofs across various scripts, libraries, users, notations;
- providing proof-hints, especially in (industrial) cases where routine similar cases are frequent, and proof development is distributed across several programmers.

Motivation: machine-learning for automated theorem proving?

2 Automation of interactive proofs: role of interfaces...

3 ML4PG: machine-learning for proof general

4 Amazing Examples

- The bigop library
- The COQEAL library
- Formalisation of the Java Virtual Machine

Further work

Interfacing-1:

Interfacing-1:

Solution? – Interfacing

Solution? - Interfacing

ITP environment allows the user to "call" ATP for generating solutions.

Automation of interactive proofs: role of interfaces...

Solution? – Interfacing. Example

Automation of interactive proofs: role of interfaces...

Solution? – Interfacing. Example

A note: forward interfacing is easier than backwards interfacing.

Automation of interactive proofs: role of interfaces...

Less familiar alternative:

Less familiar alternative:

Benefits: learning "proof heuristics", speed up in computations. Some success: e.g. work by Stephan Shulz, Joseph Urban.

Less familiar alternative:

Less familiar alternative:

Benefits: helping users to handle big proof developments and libraries. Some attempts: Alan Bundy and Hazel Duncan, current Al4FM project (Edinburgh and Newcastle).

Why machine-learning interactive proofs is harder?

• The richer language reduces the chance of finding regularities and proof patterns by data-mining the syntax alone. Moreover, in ITPs, one and the same goal may have a range of different proofs, whereas different goals can be proven by the same sequence of tactics.

Why machine-learning interactive proofs is harder?

- The richer language reduces the chance of finding regularities and proof patterns by data-mining the syntax alone. Moreover, in ITPs, one and the same goal may have a range of different proofs, whereas different goals can be proven by the same sequence of tactics.
- The notions of a *proof* may be regarded from different perspectives in ITPs: it may be seen as a transition between the subgoals, a combination of applied tactics, or — more traditionally – a proof-tree showing the overall proof strategy.

Why machine-learning interactive proofs is harder?

- The richer language reduces the chance of finding regularities and proof patterns by data-mining the syntax alone. Moreover, in ITPs, one and the same goal may have a range of different proofs, whereas different goals can be proven by the same sequence of tactics.
- The notions of a *proof* may be regarded from different perspectives in ITPs: it may be seen as a transition between the subgoals, a combination of applied tactics, or — more traditionally – a proof-tree showing the overall proof strategy.

Demo...

$$\sum_{1}^{n} i = \frac{n(n+1)}{2}$$

Our solution?

Machine-learning tools for ITPs need to be interactive themsleves: they should guide the user.

Our solution?

Machine-learning tools for ITPs need to be interactive themsleves: they should guide the user.

- start with new user interface:

... new machine-learning extension of Proof General (itself an interface for a variety of ITPs).

Our solution?

Machine-learning tools for ITPs need to be interactive themsleves: they should guide the user.

- start with new user interface:

... new machine-learning extension of Proof General (itself an interface for a variety of ITPs).

Note: - similarly -

- huge role user interfaces play in Machine-learning community: MATLAB, WEKA, - are famous interfaces to run a range of statistical algorithms.

Our solution: Interfacing Interfaces:

Katya and Jonathan (Edinburgh) Machine Learning for Proof General

Our solution: Interfacing Interfaces:

21 / 47

Our solution: ML4PG:

Our solution: ML4PG:

Outline

- Motivation: machine-learning for automated theorem proving?
- Automation of interactive proofs: role of interfaces...
- 3 ML4PG: machine-learning for proof general
 - 4 Amazing Examples
 - The bigop library
 - The COQEAL library
 - Formalisation of the Java Virtual Machine

Further work

Interaction with ML4PG:

25 / 47

Interaction with ML4PG:

• User interacts with Proof General as usual,

25 / 47

- User interacts with Proof General as usual,
- User gets stuck in a proof,

- User interacts with Proof General as usual,
- User gets stuck in a proof,
- User configures ML4PG,

- User interacts with Proof General as usual,
- User gets stuck in a proof,
- User configures ML4PG,
- User calls for a statistical hint,

- User interacts with Proof General as usual,
- User gets stuck in a proof,
- User configures ML4PG,
- User calls for a statistical hint,
- ML4PG informs the user of arising proof patterns.

The most clever part... Feature extraction in ML4PG

Problem:

 statistical ML tools expect, as input, a fixed number of features describing all objects to be classified;

The most clever part... Feature extraction in ML4PG

Problem:

- statistical ML tools expect, as input, a fixed number of features describing all objects to be classified;
- in higher-order proofs, we cannot fix a finite number of goal shapes or proofs configurations to describe all possible proofs;

The most clever part... Feature extraction in ML4PG

Problem:

- statistical ML tools expect, as input, a fixed number of features describing all objects to be classified;
- in higher-order proofs, we cannot fix a finite number of goal shapes or proofs configurations to describe all possible proofs;
- we gather statistics based on a fixed number of implicit proof parameters – proof traces.

...gathers statistics on the basis of:

...gathers statistics on the basis of:

• ways the user treats the goal - i.e. which tactics he applies

...gathers statistics on the basis of:

- ways the user treats the goal i.e. which tactics he applies
- simple parameters such as top symbol, types of arguments, number of generated subgoals...

...gathers statistics on the basis of:

- ways the user treats the goal i.e. which tactics he applies
- simple parameters such as top symbol, types of arguments, number of generated subgoals...
- the relative transformation of these parameters within several proof-steps.

An "ordinary miracle":

• Neither of the parameters: tactic sequence, goal shape, or argument types is sufficient on its own for drawing conclusions about significant proof patterns;

...gathers statistics on the basis of:

- ways the user treats the goal i.e. which tactics he applies
- simple parameters such as top symbol, types of arguments, number of generated subgoals...
- the relative transformation of these parameters within several proof-steps.

An "ordinary miracle":

- Neither of the parameters: tactic sequence, goal shape, or argument types is sufficient on its own for drawing conclusions about significant proof patterns;
- For one proof step, the collection of these parameters is insufficient for meaningful proof-pattern recognition;

...gathers statistics on the basis of:

- ways the user treats the goal i.e. which tactics he applies
- simple parameters such as top symbol, types of arguments, number of generated subgoals...
- the relative transformation of these parameters within several proof-steps.

An "ordinary miracle":

- Neither of the parameters: tactic sequence, goal shape, or argument types is sufficient on its own for drawing conclusions about significant proof patterns;
- For one proof step, the collection of these parameters is insufficient for meaningful proof-pattern recognition;
- Collection of these features over several proof steps a proof trace gives amazing results.

We have integrated Proof General with a variety of clustering algorithms:

We have integrated Proof General with a variety of clustering algorithms:

• Unsupervised machine learning technique:

We have integrated Proof General with a variety of clustering algorithms:

• Unsupervised machine learning technique:

• Engines: Matlab, Weka, Octave, R, ...

We have integrated Proof General with a variety of clustering algorithms:

• Unsupervised machine learning technique:

• Engines: Matlab, Weka, Octave, R, ...

We have integrated Proof General with a variety of clustering algorithms:

• Unsupervised machine learning technique:

- Engines: Matlab, Weka, Octave, R, ...
- Algorithms: K-means, Gaussian Mixture models, simple Expectation Maximisation, . . .

- Clustering algorithms:
- Problem:
 - Results of one run may differ from another, for one data set.
- Clustering algorithms:
- Problem:
 - Results of one run may differ from another, for one data set.
- Solution:
 - Certain clusters are found repeatedly in different runs.
 - Certain clusters have higher "similarity" value than others (0.5 is our threshold).

- Clustering algorithms:
- Problem:
 - Results of one run may differ from another, for one data set.
- Solution:
 - Certain clusters are found repeatedly in different runs.
 - Certain clusters have higher "similarity" value than others (0.5 is our threshold).
 - Those clusters are the most reliable.

- Clustering algorithms:
- Problem:
 - Results of one run may differ from another, for one data set.
- Solution:
 - Certain clusters are found repeatedly in different runs.
 - Certain clusters have higher "similarity" value than others (0.5 is our threshold).
 - Those clusters are the most reliable.
- We have extended Matlab and Weka programs to obtain the most frequent clusters.

- Clustering algorithms:
- Problem:
 - Results of one run may differ from another, for one data set.
- Solution:
 - Certain clusters are found repeatedly in different runs.
 - Certain clusters have higher "similarity" value than others (0.5 is our threshold).
 - Those clusters are the most reliable.
- We have extended Matlab and Weka programs to obtain the most frequent clusters.

This means the ML4PG user does not have to analyse the statistics manually!!!

• ML4PG statistical tool can be switched on/off on user's demand;

- ML4PG statistical tool can be switched on/off on user's demand;
- ML4PG does not assume any knowledge of machine-learning interfaces from the user;

- ML4PG statistical tool can be switched on/off on user's demand;
- ML4PG does not assume any knowledge of machine-learning interfaces from the user;
- modular: allows the user to make choices regarding approach to levels of proofs and particular statistical algorithms;

- ML4PG statistical tool can be switched on/off on user's demand;
- ML4PG does not assume any knowledge of machine-learning interfaces from the user;
- modular: allows the user to make choices regarding approach to levels of proofs and particular statistical algorithms;
- tolerant to mixing and matching different proof libraries and different notation used in proofs across different users.

- ML4PG statistical tool can be switched on/off on user's demand;
- ML4PG does not assume any knowledge of machine-learning interfaces from the user;
- modular: allows the user to make choices regarding approach to levels of proofs and particular statistical algorithms;
- tolerant to mixing and matching different proof libraries and different notation used in proofs across different users.
- easily extendable: in our case from Coq to SSReflect.

- ML4PG statistical tool can be switched on/off on user's demand;
- ML4PG does not assume any knowledge of machine-learning interfaces from the user;
- modular: allows the user to make choices regarding approach to levels of proofs and particular statistical algorithms;
- tolerant to mixing and matching different proof libraries and different notation used in proofs across different users.
- easily extendable: in our case from Coq to SSReflect.

Most amazingly...

- ML4PG statistical tool can be switched on/off on user's demand;
- ML4PG does not assume any knowledge of machine-learning interfaces from the user;
- modular: allows the user to make choices regarding approach to levels of proofs and particular statistical algorithms;
- tolerant to mixing and matching different proof libraries and different notation used in proofs across different users.
- easily extendable: in our case from Coq to SSReflect.

Most amazingly... it really works!!!!

- ML4PG statistical tool can be switched on/off on user's demand;
- ML4PG does not assume any knowledge of machine-learning interfaces from the user;
- modular: allows the user to make choices regarding approach to levels of proofs and particular statistical algorithms;
- tolerant to mixing and matching different proof libraries and different notation used in proofs across different users.
- easily extendable: in our case from Coq to SSReflect.

Most amazingly... it really works!!!! Demo...

Demo: ML4PG options and various clusters

$$\sum_{1}^{n} i = \frac{n(n+1)}{2}$$
$$\sum_{1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6},$$
$$\sum_{1}^{n} i^{3} = \frac{n^{4}+2n^{3}+n^{2}}{4},$$
$$\sum_{1}^{n} (2i-1) = n^{2},$$
$$\sum_{1}^{n} (2i-1)^{2} = \frac{4n^{3}-n}{3},$$
$$\sum_{1}^{n} (2i-1)^{3} = 2n^{4}-n^{2}.$$

Katya and Jonathan (Edinburgh)

Machine Learning for Proof General

Table of Contents

- Motivation: machine-learning for automated theorem proving?
- 2 Automation of interactive proofs: role of interfaces...
- 3 ML4PG: machine-learning for proof general
- 4 Amazing Examples
 - 5 Further work

$\bullet~\mathrm{SSReflect}$ library about indexed big "operations"

- SSREFLECT library about indexed big "operations"
- Examples:

$$\sum_{0 \le i < 2n \mid odd \ i} i = n^2, \prod_{0 \le i \le n} i = n!, \bigcup_{i \in I} f(i), \ldots$$

- SSREFLECT library about indexed big "operations"
- Examples:

$$\sum_{0 \leq i < 2n \mid odd \ i} i = n^2, \prod_{0 \leq i \leq n} i = n!, \bigcup_{i \in I} f(i), \ldots$$

- Applications:
 - Definition of matrix multiplication
 - Binomials
 - Union of sets
 - . . .

Application of ML4PG: Inverse of nilpotent matrices

Definition

Let M be a square matrix, M is nilpotent if it exists an n such that $M^n = 0$

Application of ML4PG: Inverse of nilpotent matrices

Definition

Let M be a square matrix, M is nilpotent if it exists an n such that $M^n = 0$

Lemma

Let M be a nilpotent matrix, then

$$(1-M) imes \sum_{0 \le i \le n} M^i = 1$$

where *n* is such that $M^n = 0$

Lemma inverse_I_minus_M_big (M : 'M_m) : (exists n, M^n = 0) -> (1 - M) *m (\sum_(0<=i<n) M^i) = 1.

Theorem (Fundamental Lemma of Persistent Homology) $\beta_i^{j,k} : \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{Z}$

$$\beta_n^{k,l} - \beta_n^{k,m} = \sum_{1 \le i \le k} \sum_{1 < j \le m} (\beta_n^{j,p-1} - \beta_n^{j,p}) - (\beta_n^{j-1,p-1} - \beta_n^{j-1,p})$$

Theorem (Fundamental Lemma of Persistent Homology) $\beta_i^{j,k} : \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{Z}$

$$\beta_n^{k,l} - \beta_n^{k,m} = \sum_{1 \le i \le k} \sum_{1 < j \le m} (\beta_n^{j,p-1} - \beta_n^{j,p}) - (\beta_n^{j-1,p-1} - \beta_n^{j-1,p})$$

Proof

$$\sum_{1 < i < k} \sum_{l < j \le m} (\beta_n^{j,i-1} - \beta_n^{j,i}) - (\beta_n^{j-1,i-1} - \beta_n^{j-1,i}) =$$

Katya and Jonathan (Edinburgh)

Machine Learning for Proof General

4 December 2012 35 / 47

Suggestions provided by ML4PG

Theorem (Fundamental Lemma of Persistent Homology) $\beta_i^{j,k} : \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{Z}$

$$\beta_n^{k,l} - \beta_n^{k,m} = \sum_{1 \le i \le k} \sum_{l < j \le m} (\beta_n^{j,p-1} - \beta_n^{j,p}) - (\beta_n^{j-1,p-1} - \beta_n^{j-1,p})$$

$$\begin{split} &\sum_{1 \leq i \leq k} \sum_{l < j \leq m} (\beta_n^{j,i-1} - \beta_n^{j,i}) - (\beta_n^{j-1,i-1} - \beta_n^{j,-1,i}) &= \\ &\sum_{1 \leq i \leq k} ((\beta_n^{l+1,i-1} - \beta_n^{l+1,i}) - (\beta_n^{l,i-1} - \beta_n^{l,i}) + \\ & (\beta_n^{l+2,i-1} - \beta_n^{l+2,i}) - (\beta_n^{l+1,i-1} - \beta_n^{l+1,i}) + \\ & \dots \\ & (\beta_n^{m-1,i-1} - \beta_n^{m-1,i}) - (\beta_n^{m-2,i-1} - \beta_n^{m-2,i}) + \\ & (\beta_n^{m,i-1} - \beta_n^{m,i}) - (\beta_n^{m-1,i-1} - \beta_n^{m-1,i})) \end{split}$$

Theorem (Fundamental Lemma of Persistent Homology) $\beta_i^{j,k} : \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{Z}$

$$\beta_n^{k,l} - \beta_n^{k,m} = \sum_{1 \le i \le k} \sum_{l < j \le m} (\beta_n^{j,p-1} - \beta_n^{j,p}) - (\beta_n^{j-1,p-1} - \beta_n^{j-1,p})$$

$$\sum_{1 \leq i \leq k} \sum_{\substack{l < j \leq m \\ l \leq i \leq k}} (\beta_n^{j,i-1} - \beta_n^{j,i}) - (\beta_n^{j-1,i-1} - \beta_n^{j-1,i}) = \\ \sum_{1 \leq i \leq k} \underbrace{((\beta_n^{l+1,i-1} - \beta_n^{l+1,i}) - (\beta_n^{l,i-1} - \beta_n^{l,i}) +}_{(\beta_n^{l+2,i-1} - \beta_n^{l+2,i}) - (\beta_n^{l+1,i-1} - \beta_n^{l+1,i}) +}_{\dots} \\ (\beta_n^{m-1,i-1} - \beta_n^{m-1,i}) - (\beta_n^{m-2,i-1} - \beta_n^{m-2,i}) + \\ (\beta_n^{m,i-1} - \beta_n^{m,i}) - (\beta_n^{m-1,i-1} - \beta_n^{m-1,i}))$$

Theorem (Fundamental Lemma of Persistent Homology) $\beta_i^{j,k} : \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{Z}$

$$\beta_n^{k,l} - \beta_n^{k,m} = \sum_{1 \le i \le k} \sum_{l < j \le m} (\beta_n^{j,p-1} - \beta_n^{j,p}) - (\beta_n^{j-1,p-1} - \beta_n^{j-1,p})$$

$$\begin{split} \sum_{1 \leq i \leq k} \sum_{\substack{l < j \leq m}} (\beta_n^{j,i-1} - \beta_n^{j,i}) - (\beta_n^{j-1,i-1} - \beta_n^{j-1,i}) &= \\ \sum_{1 \leq i \leq k} (\underline{(\beta_n^{l+1,i-1} - \beta_n^{l+1,i})} - (\beta_n^{l,i-1} - \beta_n^{l,i}) + \\ \underline{(\beta_n^{l+2,i-1} - \beta_n^{l+2,i})} - (\underline{\beta_n^{l+1,i-1} - \beta_n^{l+1,i})} + \\ \dots \\ \underline{(\beta_n^{m-1,i-1} - \beta_n^{m-1,i})} - (\underline{(\beta_n^{m-2,i-1} - \beta_n^{m-2,i})} + \\ \underline{(\beta_n^{m,i-1} - \beta_n^{m,i})} - (\underline{(\beta_n^{m-1,i-1} - \beta_n^{m-1,i})}) \end{split}$$

Theorem (Fundamental Lemma of Persistent Homology) $\beta_i^{j,k} : \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{Z}$

$$\beta_n^{k,l} - \beta_n^{k,m} = \sum_{1 \le i \le k} \sum_{1 < j \le m} (\beta_n^{j,p-1} - \beta_n^{j,p}) - (\beta_n^{j-1,p-1} - \beta_n^{j-1,p})$$

Proof

$$\sum_{\substack{1 \le i \le k}} \sum_{\substack{l < j \le m}} (\beta_n^{j,i-1} - \beta_n^{j,i}) - (\beta_n^{j-1,i-1} - \beta_n^{j-1,i}) =$$

$$\sum_{\substack{1 \le i \le k}} (\beta_n^{m,i-1} - \beta_n^{m,i}) - (\beta_n^{l,i-1} - \beta_n^{l,i}) = \dots$$

Katya and Jonathan (Edinburgh)

Lemma

If $g:\mathbb{N}\to\mathbb{Z}$, then

$$\sum_{0 \le i \le k} (g(i+1) - g(i)) = g(k+1) - g(0)$$

36 / 47

Lemma

If $g:\mathbb{N}\to\mathbb{Z}$, then

$$\sum_{0 \le i \le k} (g(i+1) - g(i)) = g(k+1) - g(0)$$

Proof

$$\sum_{0\leq i\leq k}(g(i+1)-g(i)) =$$

 Katya and Jonathan (Edinburgh)
 Machine Learning for Proof General
 4 December 2012
 36 / 47

Lemma

If $g:\mathbb{N}\to\mathbb{Z}$, then

$$\sum_{0 \le i \le k} (g(i+1) - g(i)) = g(k+1) - g(0)$$

Proof

$$\begin{array}{rl} \sum_{0 \leq i \leq k} (g(i+1) - g(i)) &= \\ g(1) - g(0) + g(2) - g(1) + \ldots + g(k+1) - g(k) \end{array}$$

Katya and Jonathan (Edinburgh)

Lemma

If $g:\mathbb{N}\to\mathbb{Z}$, then

$$\sum_{0 \le i \le k} (g(i+1) - g(i)) = g(k+1) - g(0)$$

Proof

$$\sum_{\substack{0 \le i \le k}} (g(i+1) - g(i)) = g(1) - g(0) + g(2) - g(1) + \dots + g(k+1) - g(k)$$

Katya and Jonathan (Edinburgh)

Lemma

If $g:\mathbb{N}\to\mathbb{Z}$, then

$$\sum_{0 \le i \le k} (g(i+1) - g(i)) = g(k+1) - g(0)$$

Proof

$$\sum_{\substack{0 \le i \le k}} (g(i+1) - g(i)) = g(1) - g(0) + g(2) - g(1) + \dots + g(k+1) - g(k)$$

Katya and Jonathan (Edinburgh)

4 December 2012 36 / 47

Lemma

If $g:\mathbb{N}\to\mathbb{Z}$, then

$$\sum_{0 \le i \le k} (g(i+1) - g(i)) = g(k+1) - g(0)$$

Proof

$$\sum_{0 \le i \le k} (g(i+1) - g(i)) = g(k+1) - g(0)$$

 Katya and Jonathan (Edinburgh)
 Machine Learning for Proof General
 4 December 2012
 36 / 47

Lemma

Let M be a nilpotent matrix, then

$$(1-M) imes \sum_{0 \le i < n} M^i = 1$$

where *n* is such that $M^n = 0$

37 / 47

Lemma

Let M be a nilpotent matrix, then

$$(1-M) imes \sum_{0 \le i < n} M^i = 1$$

where *n* is such that $M^n = 0$

Proof

$$(1-M) \times \sum_{0 \le i < n} M^i =$$

 Katya and Jonathan (Edinburgh)
 Machine Learning for Proof General
 4 December 2012
 37 / 47

Lemma

Let M be a nilpotent matrix, then

$$(1-M) imes \sum_{0 \le i < n} M^i = 1$$

where *n* is such that $M^n = 0$

$$(1-M) \times \sum_{\substack{0 \le i < n \\ 0 \le i < n}} M^{i} - M^{i+1}$$

Lemma

Let M be a nilpotent matrix, then

$$(1-M) imes \sum_{0 \le i < n} M^i = 1$$

where *n* is such that $M^n = 0$

$$(1 - M) \times \sum_{\substack{0 \le i < n \\ 0 \le i < n}} M^{i} =$$

$$\sum_{\substack{0 \le i < n \\ 0 < i < n}} M^{i} - M^{i+1} =$$

$$M^{0} - M^{1} + M^{1} - M^{2} + \ldots + M^{n-1} - M^{n}$$

Lemma

Let M be a nilpotent matrix, then

$$(1-M) imes \sum_{0 \le i < n} M^i = 1$$

where *n* is such that $M^n = 0$

Proof

$$(1 - M) \times \sum_{\substack{0 \le i < n \\ 0 \le i < n}} M^{i} =$$

$$\sum_{\substack{0 \le i < n \\ 0 \le i < n}} M^{i} - M^{i+1} =$$

$$M^{0} - M^{2} + M^{2} - M^{2} + \dots + M^{n-1} - M^{n}$$

37 / 47
Suggestions provided by ML4PG

Lemma

Let M be a nilpotent matrix, then

$$(1-M) imes \sum_{0 \le i < n} M^i = 1$$

where *n* is such that $M^n = 0$

Proof

$$\begin{array}{rcl} (1-M) \times \sum\limits_{\substack{0 \leq i < n \\ M^i - M^{i+1} \end{array}} M^i &= \\ M^0 - M^n = M^0 = 1 \end{array}$$

Suggestions provided by ML4PG

Lemma

Let M be a nilpotent matrix, then

$$(1-M) imes \sum_{0 \le i < n} M^i = 1$$

where *n* is such that $M^n = 0$

Proof

$$\begin{array}{rcl} (1-M) \times \sum\limits_{\substack{0 \leq i < n \\ M^i - M^{i+1} \end{array}} M^i &= \\ \sum\limits_{\substack{0 \leq i < n \\ M^0 - M^n = M^0 = 1 \end{array}} M^0 = 1 \end{array}$$

Lemma (Another ML4PG suggestion)

Let M be a nilpotent matrix, then there exists N such that N imes (1 - M) = 1

Katya and Jonathan (Edinburgh)

Machine Learning for Proof General

The COQEAL library

M. Dénès and A. Mörtberg and V. Siles. A refinement-based approach to computational algebra in Coq. In: Proceedings Interactive Theorem Proving 2012 (ITP 2012). Lecture Notes in Computer Science 7406, 83–98. 2012.

M. Dénès and A. Mörtberg and V. Siles. A refinement-based approach to computational algebra in Coq. In: Proceedings Interactive Theorem Proving 2012 (ITP 2012). Lecture Notes in Computer Science 7406, 83–98. 2012.

A methodology, based on the notion of refinement to formalise efficient algorithms of Computer Algebra systems:

M. Dénès and A. Mörtberg and V. Siles. A refinement-based approach to computational algebra in Coq. In: Proceedings Interactive Theorem Proving 2012 (ITP 2012). Lecture Notes in Computer Science 7406, 83–98. 2012.

A methodology, based on the notion of refinement to formalise efficient algorithms of Computer Algebra systems:

Define the algorithm relying on rich dependent types

M. Dénès and A. Mörtberg and V. Siles. A refinement-based approach to computational algebra in Coq. In: Proceedings Interactive Theorem Proving 2012 (ITP 2012). Lecture Notes in Computer Science 7406, 83–98. 2012.

A methodology, based on the notion of refinement to formalise efficient algorithms of Computer Algebra systems:

- Define the algorithm relying on rich dependent types
- 2 Refine it to an efficient version described on high-level data structures

M. Dénès and A. Mörtberg and V. Siles. A refinement-based approach to computational algebra in Coq. In: Proceedings Interactive Theorem Proving 2012 (ITP 2012). Lecture Notes in Computer Science 7406, 83–98. 2012.

A methodology, based on the notion of refinement to formalise efficient algorithms of Computer Algebra systems:

- Define the algorithm relying on rich dependent types
- 2 Refine it to an efficient version described on high-level data structures
- Implement it on data structures closer to machine representations

M. Dénès and A. Mörtberg and V. Siles. A refinement-based approach to computational algebra in Coq. In: Proceedings Interactive Theorem Proving 2012 (ITP 2012). Lecture Notes in Computer Science 7406, 83–98. 2012.

A methodology, based on the notion of refinement to formalise efficient algorithms of Computer Algebra systems:

- Define the algorithm relying on rich dependent types
- 2 Refine it to an efficient version described on high-level data structures
- Implement it on data structures closer to machine representations

Problem

Decipher the key results which can help us to solve our concrete problems

Suppose that we have defined a fast algorithm to compute the inverse of triangular matrices over a field called fast_invmx

Suppose that we have defined a fast algorithm to compute the inverse of triangular matrices over a field called fast_invmx

Problems:

• Prove the equivalence with the invmx algorithm of SSReflect

Suppose that we have defined a fast algorithm to compute the inverse of triangular matrices over a field called fast_invmx

Problems:

- Prove the equivalence with the invmx algorithm of SSReflect
- Executability of the algorithm

Suppose that we have defined a fast algorithm to compute the inverse of triangular matrices over a field called fast_invmx

Problems:

- Prove the equivalence with the invmx algorithm of SSReflect
- Executability of the algorithm

Suppose that we have defined a fast algorithm to compute the inverse of triangular matrices over a field called fast_invmx

Problems:

- Prove the equivalence with the invmx algorithm of SSReflect
- Executability of the algorithm

- Clustering with matrix library of SSReflect and CoqEAL library (~ 1000)
- 10 suggestions
- Instead of proving:

```
Lemma fast_invmxE : forall m (M : 'M[R]_m), lower1 M ->
fast_invmx M = invmx M.
```

Suppose that we have defined a fast algorithm to compute the inverse of triangular matrices over a field called fast_invmx

Problems:

- Prove the equivalence with the invmx algorithm of SSReflect
- Executability of the algorithm

- Clustering with matrix library of SSReflect and CoqEAL library (~ 1000)
- 10 suggestions
- Prove:

```
Lemma fast_invmxE : forall m (M : 'M[R]_m), lower1 M ->
    M *m fast_invmx M = 1%:M.
```

```
• Key suggestion:
Lemma invmx_is_uniq : forall m (M1 M2 : 'M[R]_m), M1 *m M2 = 1%:M ->
M2 = invmx M1.
```

Suppose that we have defined a fast algorithm to compute the inverse of triangular matrices over a field called fast_invmx

Problems:

- Prove the equivalence with the invmx algorithm of SSReflect
- Executability of the algorithm

- CoqEAL suggestion: refine the algorithm to work with sequences instead of matrices
- Clustering with CoqEAL library (~ 700)
- 7 suggestions all of them related to the refinement from matrices to sequences

Formalisation of the JVM: example suggested by J Moore

Java Virtual Machine (JVM) is a stack-based abstract machine which can execute Java bytecode

Formalisation of the JVM: example suggested by J Moore

Java Virtual Machine (JVM) is a stack-based abstract machine which can execute Java bytecode

Goal

- $\bullet\,$ Model a subset of the JVM in ${\rm Coq},$ defining an interpreter for JVM programs
- \bullet Verify the correctness of JVM programs within Coq

Formalisation of the JVM: example suggested by J Moore

Java Virtual Machine (JVM) is a stack-based abstract machine which can execute Java bytecode

Goal

- Model a subset of the JVM in COQ, defining an interpreter for JVM programs
- \bullet Verify the correctness of JVM programs within Coq

This work is inspired by:

H. Liu and J S. Moore. Executable JVM model for analytical reasoning: a study. Journal Science of Computer Programming - Special issue on advances in interpreters, virtual machines and emulators (IVME'03), 57(3):253–274, 2003.

```
Java code:
```

```
static int factorial(int n)
{
    int a = 1;
    while (n != 0){
        a = a * n;
        n = n-1;
        }
    return a;
}
```

Bytecode:

- 0 : *iconst* 1
- 1 : *istore* 1
- 2 : *iload* 0
- 3 : *ifeq* 13
- 4 : *iload* 1
- 5 : iload 0
- 6 : *imul*
- 7 : istore 1
- 8 : *iload* 0
- 9 : *iconst* 1
- 10 : *isub*
- 11 : *istore* 0
- 12 : goto 2
- 13 : iload 1
- 14 : ireturn

Bytecode:

0	:	iconst 1
1	:	istore 1
2	:	iload 0
3	:	ifeq 13
4	:	iload 1
5	:	iload 0
6	:	imul
7	:	istore 1
8	:	iload 0
9	:	iconst 1
10	:	isub
11	:	istore 0
12	:	goto 2
13	:	iload 1
14	:	ireturn

JVM model:

counter: 0

stack:

Bytecode:

0	:	iconst 1
1	:	istore 1
2	:	iload 0
3	:	ifeq 13
4	:	iload 1
5	:	iload 0
6	:	imul
7	:	istore 1
8	:	iload 0
9	:	iconst 1
10	:	isub
11	:	istore 0
12	:	goto 2
13	:	iload 1
14	:	ireturn

JVM model:

counter: 1

stac	:k:			
1				

Bytecode:

0	:	iconst 1
1	:	istore 1
2	:	iload 0
3	:	ifeq 13
4	:	iload 1
5	:	iload 0
6	:	imul
7	:	istore 1
8	:	iload 0
9	:	iconst 1
10	:	isub
11	:	istore 0
12	:	goto 2
13	:	iload 1
14	:	ireturn

JVM model:

counter: 2

sta	acł	C		

loca	al va	aria	ab	les:
-	1			

|--|

Bytecode:

0	:	iconst 1
1	:	istore 1
2	:	iload 0
3	:	ifeq 13
4	:	iload 1
5	:	iload 0
6	:	imul
7	:	istore 1
8	:	iload 0
9	:	iconst 1
10	:	isub
11	:	istore 0
12	:	goto 2
13	:	iload 1
14	:	ireturn

JVM model:

counter: 3

stack:

5 1

Bytecode:

0	:	iconst 1
1	:	istore 1
2	:	iload 0
3	:	ifeq 13
4	:	iload 1
5	:	iload 0
6	:	imul
7	:	istore 1
8	:	iload 0
9	:	iconst 1
10	:	isub
11	:	istore 0
12	:	goto 2
13	:	iload 1
14	:	ireturn

JVM model:

counter: 4

stack:

loca	al va	ari	ab	les:	
E	1				

|--|

Bytecode:

0	:	iconst 1
1	:	istore 1
2	:	iload 0
3	:	ifeq 13
4	:	iload 1
5	:	iload 0
6	:	imul
7	:	istore 1
8	:	iload 0
9	:	iconst 1
10	:	isub
11	:	istore 0
12	:	goto 2
13	:	iload 1
14	:	ireturn

JVM model:

counter: 5

stack:				
1				

5 1

Bytecode:

0	:	iconst 1
1	:	istore 1
2	:	iload 0
3	:	ifeq 13
4	:	iload 1
5	:	iload 0
6	:	imul
7	:	istore 1
8	:	iload 0
9	:	iconst 1
10	:	isub
11	:	istore 0
12	:	goto 2
13	:	iload 1
14	:	ireturn

JVM model:

counter: 6

stack:				
5	1			

5 1

Bytecode:

0	:	iconst 1
1	:	istore 1
2	:	iload 0
3	:	ifeq 13
4	:	iload 1
5	:	iload 0
6	:	imul
7	:	istore 1
8	:	iload 0
9	:	iconst 1
10	:	isub
11	:	istore 0
12	:	goto 2
13	:	iload 1
14	:	ireturn

JVM model:

counter: 7

stack:

5 1

Bytecode:

0	:	iconst 1
1	:	istore 1
2	:	iload 0
3	:	ifeq 13
4	:	iload 1
5	:	iload 0
6	:	imul
7	:	istore 1
8	:	iload 0
9	:	iconst 1
10	:	isub
11	:	istore 0
12	:	goto 2
13	:	iload 1
14	:	ireturn

JVM model:

counter: 8

sta	acł	C		

5 5		
-----	--	--

Bytecode:

0	:	iconst 1
1	:	istore 1
2	:	iload 0
3	:	ifeq 13
4	:	iload 1
5	:	iload 0
6	:	imul
7	:	istore 1
8	:	iload 0
9	:	iconst 1
10	:	isub
11	:	istore 0
12	:	goto 2
13	:	iload 1
14	:	ireturn

JVM model:

counter: 9

stack:

5

5 5	
-----	--

Bytecode:

0	:	iconst 1
1	:	istore 1
2	:	iload 0
3	:	ifeq 13
4	:	iload 1
5	:	iload 0
6	:	imul
7	:	istore 1
8	:	iload 0
9	:	iconst 1
10	:	isub
11	:	istore 0
12	:	goto 2
13	:	iload 1
14	:	ireturn

JVM model:

counter: 10

stad	:k:		
1	5		

5 5		
-----	--	--

Bytecode:

0	:	iconst 1
1	:	istore 1
2	:	iload 0
3	:	ifeq 13
4	:	iload 1
5	:	iload 0
6	:	imul
7	:	istore 1
8	:	iload 0
9	:	iconst 1
10	:	isub
11	:	istore 0
12	:	goto 2
13	:	iload 1
14	:	ireturn

JVM model:

counter: 11

stad	:k:			
4				

5 5

Bytecode:

0	:	iconst 1
1	:	istore 1
2	:	iload 0
3	:	ifeq 13
4	:	iload 1
5	:	iload 0
6	:	imul
7	:	istore 1
8	:	iload 0
9	:	iconst 1
10	:	isub
11	:	istore 0
12	:	goto 2
13	:	iload 1
14	:	ireturn

JVM model:

counter: 12

sta	acł	C		

local	varia	nles.
locui	varia	JICJ.

4 5

Bytecode:

0	:	iconst 1			
1	:	istore 1			
2	:	iload 0			
3	:	ifeq 13			
4	:	iload 1			
5	:	iload 0			
6	:	imul			
7	:	istore 1			
8	:	iload 0			
9	:	iconst 1			
10	:	isub			
11	:	istore 0			
12	:	goto 2			
13	:	iload 1			
14	:	ireturn			

JVM model:

counter: 2

sta	acł	C			

local	variah	les.
locui	variab	

4 5

Bytecode:

. . .

JVM model:

. . .

Bytecode:

0	:	iconst 1
1	:	istore 1
2	:	iload 0
3	:	ifeq 13
4	:	iload 1
5	:	iload 0
6	:	imul
7	:	istore 1
8	:	iload 0
9	:	iconst 1
10	:	isub
11	:	istore 0
12	:	goto 2
13	:	iload 1
14	:	ireturn

JVM model:

counter: 13

stad	:k:		
0			

0	120			
---	-----	--	--	--
An example: computing 5!

Bytecode:

0	:	iconst 1			
1	:	istore 1			
2	:	iload 0			
3	:	ifeq 13			
4	:	iload 1			
5	:	iload 0			
6	:	imul			
7	:	istore 1			
8	:	iload 0			
9	:	iconst 1			
10	:	isub			
11	:	istore 0			
12	:	goto 2			
13	:	iload 1			
14	:	ireturn			

JVM model:

counter: 14

stack:						
120						•

local variables:

0	120		
---	-----	--	--

An example: computing 5!

Bytecode:

0	:	iconst 1		
1	:	istore 1		
2	:	iload 0		
3	:	ifeq 13		
4	:	iload 1		
5	:	iload 0		
6	:	imul		
7	:	istore 1		
8	:	iload 0		
9	:	iconst 1		
10	:	isub		
11	:	istore 0		
12	:	goto 2		
13	:	iload 1		
14	:	ireturn		

JVM model:

counter: 15

stack:						
120						•

local variables:

0	120		
---	-----	--	--

Goal (Factorial case)

 $\forall n \in \mathbb{N}$, running the bytecode associated with the factorial program with n as input produces a state which contains n! on top of the stack

Goal (Factorial case)

 $\forall n \in \mathbb{N}$, running the bytecode associated with the factorial program with n as input produces a state which contains n! on top of the stack

Methodology:

Definition theta_fact (n : nat) := n'!.

Write the specification of the function

Goal (Factorial case)

 $\forall n \in \mathbb{N}$, running the bytecode associated with the factorial program with n as input produces a state which contains n! on top of the stack

- Write the specification of the function
- Write the algorithm (tail recursive function)

```
Fixpoint helper_fact (n a : nat) :=
match n with
| 0 => a
| S p => helper_fact p (n * a)
end.
```

```
Definition fn_fact (n : nat) :=
    helper_fact n 1.
```

Goal (Factorial case)

 $\forall n \in \mathbb{N}$, running the bytecode associated with the factorial program with n as input produces a state which contains n! on top of the stack

Methodology:

- Write the specification of the function
- Write the algorithm (tail recursive function)
- Prove that the algorithm satisfies the specification

Lemma fn_fact_is_theta n : fn_fact n =
 theta_fact n.

Goal (Factorial case)

 $\forall n \in \mathbb{N}$, running the bytecode associated with the factorial program with *n* as input produces a state which contains *n*! on top of the stack

Definition pi_fact := Methodology: [::(ICONST,1%Z); Write the specification of the function (ISTORE,1%Z); (ILOAD, 0%Z); Write the algorithm (tail recursive) (IFEQ, 10%Z); function) (ILOAD, 1%Z); Prove that the algorithm satisfies the (ILOAD.0%Z): specification (IMUL, 0%Z); Write the JVM program (ISTORE, 1%Z): (ILOAD, 0%Z): (ICONST, 1%Z); (ISUB, 0%Z): (ISTORE, 0%Z); (GOTO, (-10)%Z); (ILOAD, 1%Z); (HALT, 0%Z)].

Goal (Factorial case)

 $\forall n \in \mathbb{N}$, running the bytecode associated with the factorial program with *n* as input produces a state which contains *n*! on top of the stack

- Write the specification of the function
- Write the algorithm (tail recursive function)
- Prove that the algorithm satisfies the specification
- Write the JVM program
- Define the function that schedules the program

```
Fixpoint loop_sched_fact (n : nat) :=
match n with
| 0 => nseq 3 0
| S p => nseq 11 0 ++ loop_sched_fact p
end.
```

```
Definition sched_fact (n : nat) :=
    nseq 2 0 ++ loop_sched_fact n.
```

Goal (Factorial case)

 $\forall n \in \mathbb{N}$, running the bytecode associated with the factorial program with n as input produces a state which contains n! on top of the stack

- Write the specification of the function
- Write the algorithm (tail recursive function)
- Prove that the algorithm satisfies the specification
- Write the JVM program
- Define the function that schedules the program
- Prove that the code implements the algorithm

```
Lemma program_is_fn_fact n :
  run (sched_fact n) (make_state 0 [::n]
      [::] pi_fact) =
  (make_state 14 [::0;fn_fact n ] (push
      (fn_fact n ) [::]) pi_fact).
```

Goal (Factorial case)

 $\forall n \in \mathbb{N}$, running the bytecode associated with the factorial program with *n* as input produces a state which contains *n*! on top of the stack

- Write the specification of the function
- Write the algorithm (tail recursive function)

- Write the JVM program
- Define the function that schedules the program
- Prove that the code implements the algorithm
- Prove total correctness

```
Theorem total_correctness_fact n sf :
  sf = run (sched_fact n) (make_state 0
      [::n] [::] pi_fact) ->
  next_inst sf = (HALT,0%Z) /\
  top (stack sf) = (n'!).
```

- Write the specification of the function
- Write the algorithm (tail recursive function)
- OProve that the algorithm satisfies the specification
- Write the JVM program
- Oefine the function that schedules the program
- O Prove that the code implements the algorithm
- Prove total correctness

Methodology:

- Write the specification of the function
- Write the algorithm (tail recursive function)
- Prove that the algorithm satisfies the specification
- Write the JVM program
- Optime the function that schedules the program
- O Prove that the code implements the algorithm
- Prove total correctness

Suggestions for fn_fact_is_theta:

fn_expt_is_theta, fn_mult_is_theta, fn_power_is_theta

Methodology:

- Write the specification of the function
- Write the algorithm (tail recursive function)
- OProve that the algorithm satisfies the specification
- Write the JVM program
- Optime the function that schedules the program
- Prove that the code implements the algorithm
- Prove total correctness

Suggestions for program_is_fn_fact: program_is_fn_expt, program_is_fn_mult, program_is_fn_power

Methodology:

- Write the specification of the function
- Write the algorithm (tail recursive function)
- Prove that the algorithm satisfies the specification
- Write the JVM program
- Optime the function that schedules the program
- O Prove that the code implements the algorithm
- Prove total correctness

Suggestions for total_correctness_fact: total_correctness_expt, total_correctness_mult, total_correctness_power

Table of Contents

- Motivation: machine-learning for automated theorem proving?
- 2 Automation of interactive proofs: role of interfaces...
- 3 ML4PG: machine-learning for proof general
 - 4 Amazing Examples
- 5 Further work

Further work

 not only trace successful proofs, but also failed and discarded derivation steps;

Further work

- not only trace successful proofs, but also failed and discarded derivation steps;
- increase the number of Interactive Theorem Provers and Machine Learning engines;

Further work

- not only trace successful proofs, but also failed and discarded derivation steps;
- increase the number of Interactive Theorem Provers and Machine Learning engines;
- replace local environment with a client-server framework.

"Dundee Fellowship" positions

- University of Dundee is about to announce positions of Dundee Fellows;
- 5-year research fellowship position, becoming a permanent lectureship at the end; starts at 8 point scale;
- Computational was selected as one of a few "named" areas;
- competition will be across several school and departments;
- if you know potential winner please let me know.

Machine Learning for Proof General: Interfacing Interfaces (Funded by EPSRC First Grant Scheme)

Katya Komendantskaya and Jonathan Heras

University of Edinburgh

4 December 2012