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Motivation: machine-learning for automated theorem proving?

Why Machine-Learning?

... Digital era means most of information (in science, industries, even
art!) is stored/handled in electronic form.

... Computer-generated data may not make much sense to human
users; or in fact, other computers!

The volumes of data make it infeasible to be processed and
interpreted manually.

... the only hope is, our machine-learning algorithms become fast and
clever enough to do that dirty (pre-processing) work for us!
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Motivation: machine-learning for automated theorem proving?

So, why should we (logicians) care?
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Motivation: machine-learning for automated theorem proving?

The answer is...
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Motivation: machine-learning for automated theorem proving?

No matter what your personal choice is, . . .

... increasingly, theorems [be it mathematics or software/hardware
verification] are proven IN automated provers.

Manual handling of various proofs, strategies, libraries, becomes
difficult.

... team-development is hard, especially that ITPs are sensitive to
notation;

... comparison of proofs and proof similarities across libraries or even
within one big library are hard;
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Motivation: machine-learning for automated theorem proving?

Main applications in Automated Theorem Proving:

Where can we use ML?
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Motivation: machine-learning for automated theorem proving?

ML in other areas of (Computer) Science:

Where data is abundant, and needs quick automated classification:

robotics (from space rovers to small apps in domestic appliences,
cars...);

image processing;

natural language processing;

web search;

computer network analysis;

Medical diagnostics;

etc, etc, ...

In all these areas, ML is a common tool-of-the-trade, additional to the
primary research specialisation.
Will this practice come to Automated theorem proving?
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Motivation: machine-learning for automated theorem proving?

Automated reasoning does NOT need ML applications:

...where AR does not need help

verification (unlike in
Medical diagnosis)

language parsing (unlike in
NLP)

... where we do not trust them

new theoretical
break-throughs (formulation
of new theorems);

giving semantics to data (cf.
Deep learning).
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Motivation: machine-learning for automated theorem proving?

So,...

where do we both need ML-tools and trust them?

finding common proof-patterns in proofs across various scripts,
libraries, users, notations;

providing proof-hints, especially in (industrial) cases where routine
similar cases are frequent, and proof development is distributed across
several programmers.
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Automation of interactive proofs: role of interfaces...
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Automation of interactive proofs: role of interfaces...

Interfacing-1:

Computer
Proofs

Automated Interactive

�� ��
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Automation of interactive proofs: role of interfaces...

Interfacing-1:

Computer
Proofs

Automated Interactive

reduced
expressivity

reduced
automation

�� ��

�� ��

Katya and Jonathan (Edinburgh) Machine Learning for Proof General 4 December 2012 13 / 47



Automation of interactive proofs: role of interfaces...

Solution? – Interfacing

Computer
Proofs

Automated InteractiveInterfacing

ww ''
// //oo oo

ITP environment allows the user to “call” ATP for generating solutions.
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Automation of interactive proofs: role of interfaces...

Solution? – Interfacing. Example

Computer
Proofs

SAT/SMT Isabelle/HOLSledgehammer

ww ''
// //oo oo

A note: forward interfacing is easier than backwards interfacing.
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Automation of interactive proofs: role of interfaces...

Less familiar alternative:

Computer
Proofs

Automated
Proofs

machine-learningInterfacing

ww
// //oo oo

Benefits: learning “proof heuristics”, speed up in computations.
Some success: e.g. work by Stephan Shulz, Joseph Urban.
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Automation of interactive proofs: role of interfaces...

Less familiar alternative:

Computer
Proofs

Machine-learning Interactive
Proofs

Interfacing

''
// //oo oo

Benefits: helping users to handle big proof developments and libraries.
Some attempts: Alan Bundy and Hazel Duncan, current AI4FM project
(Edinburgh and Newcastle).
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Automation of interactive proofs: role of interfaces...

Why machine-learning interactive proofs is harder?

The richer language reduces the chance of finding regularities and
proof patterns by data-mining the syntax alone. Moreover, in ITPs,
one and the same goal may have a range of different proofs, whereas
different goals can be proven by the same sequence of tactics.

The notions of a proof may be regarded from different perspectives in
ITPs: it may be seen as a transition between the subgoals, a
combination of applied tactics, or — more traditionally – a proof-tree
showing the overall proof strategy.

Demo...
n∑
1

i =
n(n + 1)

2
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Automation of interactive proofs: role of interfaces...

Our solution?

Machine-learning tools for ITPs need to be interactive themsleves:

they should guide the user.

– start with new user interface:

... new machine-learning extension of Proof General (itself an interface for
a variety of ITPs).

Note: – similarly –

– huge role user interfaces play in Machine-learning community: MATLAB,
WEKA, – are famous interfaces to run a range of statistical algorithms.
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Automation of interactive proofs: role of interfaces...

Our solution: Interfacing Interfaces:

Interactive
Proofs

ML Interface ITP InterfaceInterfacing

''

// //oo oo
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Automation of interactive proofs: role of interfaces...

Our solution: Interfacing Interfaces:

Interactive
Proofs

ML Interface

Range of statistical
algorithms

ITP Interface

Range of
H.-O. languages

Interfacing

''

// //oo oo

�� ��

Katya and Jonathan (Edinburgh) Machine Learning for Proof General 4 December 2012 21 / 47



Automation of interactive proofs: role of interfaces...

Our solution: ML4PG:

Interactive
Proofs

Matlab, Weka Proof GeneralML4PG

''

// //oo oo
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Automation of interactive proofs: role of interfaces...

Our solution: ML4PG:

Interactive
Proofs

Matlab, Weka

Clustering:
k-means, Gaussian

Proof General

Coq
SSReflect

ML4PG

''

// //oo oo

�� ��
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ML4PG: machine-learning for proof general

Outline

1 Motivation: machine-learning for automated theorem proving?

2 Automation of interactive proofs: role of interfaces...

3 ML4PG: machine-learning for proof general

4 Amazing Examples
The bigop library
The CoqEAL library
Formalisation of the Java Virtual Machine

5 Further work
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ML4PG: machine-learning for proof general

Overall architecture of ML4PG

user
Proof General

ML4PG

ML engines

. . .

Proof engines

. . .

Interaction with ML4PG:

User interacts with Proof General as usual,

User gets stuck in a proof,

User configures ML4PG,

User calls for a statistical hint,

ML4PG informs the user of arising proof patterns.
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ML4PG: machine-learning for proof general

The most clever part... Feature extraction in ML4PG

Problem:

statistical ML tools expect, as input, a fixed number of features
describing all objects to be classified;

in higher-order proofs, we cannot fix a finite number of goal shapes or
proofs configurations to describe all possible proofs;

we gather statistics based on a fixed number of implicit proof
parameters – proof traces.
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ML4PG: machine-learning for proof general

Solution: Proof Trace Method...

...gathers statistics on the basis of:

ways the user treats the goal – i.e. which tactics he applies

simple parameters such as top symbol, types of arguments, number of
generated subgoals...

the relative transformation of these parameters within several
proof-steps.

An “ordinary miracle”:

Neither of the parameters: tactic sequence, goal shape, or argument
types is sufficient on its own for drawing conclusions about significant
proof patterns;

For one proof step, the collection of these parameters is insufficient
for meaningful proof-pattern recognition;

Collection of these features over several proof steps – a proof trace –
gives amazing results.
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ML4PG: machine-learning for proof general

ML4PG approach to proof-clustering

We have integrated Proof General with a variety of clustering algorithms:

Unsupervised machine learning technique:
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Engines: Matlab, Weka, Octave, R, . . .

Algorithms: K-means, Gaussian Mixture models, simple Expectation

Maximisation, . . .
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ML4PG: machine-learning for proof general

ML4PG approach to proof-clustering

Clustering algorithms:

Problem:

Results of one run may differ from another, for one data set.

Solution:

Certain clusters are found repeatedly in different runs.
Certain clusters have higher “similarity” value than others (0.5 is our
threshold).
Those clusters are the most reliable.

We have extended Matlab and Weka programs to obtain the most
frequent clusters.
This means the ML4PG user does not have to analyse the statistics
manually!!!
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ML4PG: machine-learning for proof general

Benefits of this approach:

ML4PG statistical tool can be switched on/off on user’s demand;

ML4PG does not assume any knowledge of machine-learning
interfaces from the user;

modular: allows the user to make choices regarding approach to levels
of proofs and particular statistical algorithms;

tolerant to mixing and matching different proof libraries and different
notation used in proofs across different users.

easily extendable: in our case – from Coq to SSReflect.

Most amazingly...

it really works!!!!
Demo...
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ML4PG: machine-learning for proof general

Demo: ML4PG options and various clusters

n∑
1

i =
n(n + 1)

2

n∑
1

i2 =
n(n + 1)(2n + 1)

6
,

n∑
1

i3 =
n4 + 2n3 + n2

4
,

n∑
1

(2i − 1) = n2,

n∑
1

(2i − 1)2 =
4n3 − n

3
,

n∑
1

(2i − 1)3 = 2n4 − n2.
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Amazing Examples
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Amazing Examples The bigop library

The bigop library

SSReflect library about indexed big “operations”

Examples:

∑
0≤i<2n|odd i

i = n2,
∏

0≤i≤n
i = n!,

⋃
i∈I

f (i), . . .

Applications:

Definition of matrix multiplication
Binomials
Union of sets
. . .
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Amazing Examples The bigop library

Application of ML4PG: Inverse of nilpotent matrices

Definition

Let M be a square matrix, M is nilpotent if it exists an n such that Mn = 0

Lemma

Let M be a nilpotent matrix, then

(1 −M) ×
∑

0≤i<n

M i = 1

where n is such that Mn = 0

Lemma inverse_I_minus_M_big (M : ’M_m) : (exists n, M^n = 0) ->

(1 - M) *m (\sum_(0<=i<n) M^i) = 1.
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Amazing Examples The bigop library

Suggestions provided by ML4PG

Theorem (Fundamental Lemma of Persistent Homology)

βj,k
i : N× N× N→ Z

βk,l
n − βk,m

n =
∑

1≤i≤k

∑
l<j≤m

(βj,p−1
n − βj,p

n )− (βj−1,p−1
n − βj−1,p

n )

Proof
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Amazing Examples The bigop library

Suggestions provided by ML4PG

Lemma
If g : N→ Z, then ∑

0≤i≤k

(g(i + 1)− g(i)) = g(k + 1)− g(0)

Proof
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0≤i≤k

(g(i + 1)− g(i)) = g(k + 1)− g(0)
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Amazing Examples The bigop library

Suggestions provided by ML4PG

Lemma
Let M be a nilpotent matrix, then

(1−M)×
∑

0≤i<n

M i = 1

where n is such that Mn = 0

Proof

Lemma (Another ML4PG suggestion)

Let M be a nilpotent matrix, then there exists N such that N × (1−M) = 1
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Amazing Examples The CoqEAL library

The CoqEAL library

M. Dénès and A. Mörtberg and V. Siles. A refinement-based approach to computational
algebra in Coq. In: Proceedings Interactive Theorem Proving 2012 (ITP 2012). Lecture
Notes in Computer Science 7406, 83–98. 2012.

A methodology, based on the notion of refinement to formalise efficient
algorithms of Computer Algebra systems:

1 Define the algorithm relying on rich dependent types

2 Refine it to an efficient version described on high-level data structures

3 Implement it on data structures closer to machine representations

Problem

Decipher the key results which can help us to solve our concrete problems
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Problem

Decipher the key results which can help us to solve our concrete problems
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Amazing Examples The CoqEAL library

Fast inverse for triangular matrices

Suppose that we have defined a fast algorithm to compute the inverse of triangular matrices

over a field called fast_invmx

Problems:

Prove the equivalence with the invmx algorithm of SSReflect

Executability of the algorithm

Suggestions:
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Amazing Examples The CoqEAL library

Fast inverse for triangular matrices

Suppose that we have defined a fast algorithm to compute the inverse of triangular matrices

over a field called fast_invmx

Problems:

Prove the equivalence with the invmx algorithm of SSReflect

Executability of the algorithm

Suggestions:

Clustering with matrix library of SSReflect and CoqEAL library (˜ 1000)

10 suggestions

Instead of proving:

Lemma fast_invmxE : forall m (M : ’M[R]_m), lower1 M ->

fast_invmx M = invmx M.
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Amazing Examples The CoqEAL library

Fast inverse for triangular matrices

Suppose that we have defined a fast algorithm to compute the inverse of triangular matrices

over a field called fast_invmx

Problems:

Prove the equivalence with the invmx algorithm of SSReflect

Executability of the algorithm

Suggestions:

Clustering with matrix library of SSReflect and CoqEAL library (˜ 1000)

10 suggestions

Prove:

Lemma fast_invmxE : forall m (M : ’M[R]_m), lower1 M ->

M *m fast_invmx M = 1%:M.

Key suggestion:

Lemma invmx_is_uniq : forall m (M1 M2 : ’M[R]_m), M1 *m M2 = 1%:M ->

M2 = invmx M1.
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Amazing Examples The CoqEAL library

Fast inverse for triangular matrices

Suppose that we have defined a fast algorithm to compute the inverse of triangular matrices

over a field called fast_invmx

Problems:

Prove the equivalence with the invmx algorithm of SSReflect

Executability of the algorithm

Suggestions:

CoqEAL suggestion: refine the algorithm to work with sequences instead of matrices

Clustering with CoqEAL library (˜ 700)

7 suggestions all of them related to the refinement from matrices to sequences
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Amazing Examples Formalisation of the Java Virtual Machine

Formalisation of the JVM: example suggested by J Moore

Java Virtual Machine (JVM) is a stack-based abstract machine which can
execute Java bytecode

Goal

Model a subset of the JVM in Coq, defining an interpreter for JVM
programs

Verify the correctness of JVM programs within Coq

This work is inspired by:

H. Liu and J S. Moore. Executable JVM model for analytical reasoning: a study. Journal
Science of Computer Programming - Special issue on advances in interpreters, virtual
machines and emulators (IVME’03), 57(3):253–274, 2003.
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Formalisation of the JVM: example suggested by J Moore

Java Virtual Machine (JVM) is a stack-based abstract machine which can
execute Java bytecode

Goal

Model a subset of the JVM in Coq, defining an interpreter for JVM
programs

Verify the correctness of JVM programs within Coq

This work is inspired by:

H. Liu and J S. Moore. Executable JVM model for analytical reasoning: a study. Journal
Science of Computer Programming - Special issue on advances in interpreters, virtual
machines and emulators (IVME’03), 57(3):253–274, 2003.
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Amazing Examples Formalisation of the Java Virtual Machine

An example: computing 5!

Java code:

static int factorial(int n)

{

int a = 1;

while (n != 0){

a = a * n;

n = n-1;

}

return a;

}
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Amazing Examples Formalisation of the Java Virtual Machine

An example: computing 5!

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn
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An example: computing 5!

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
0

stack:
. . .

local variables:
5 . . .
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An example: computing 5!

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
1

stack:
1 . . .

local variables:
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An example: computing 5!

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
2

stack:
. . .

local variables:
5 1 . . .
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An example: computing 5!

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
3

stack:
5 . . .

local variables:
5 1 . . .
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An example: computing 5!

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
4

stack:
. . .

local variables:
5 1 . . .
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An example: computing 5!

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
5

stack:
1 . . .

local variables:
5 1 . . .
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An example: computing 5!

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
6

stack:
5 1 . . .

local variables:
5 1 . . .
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An example: computing 5!

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
7

stack:
5 . . .

local variables:
5 1 . . .
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An example: computing 5!

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
8

stack:
. . .

local variables:
5 5 . . .
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An example: computing 5!

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
9

stack:
5 . . .

local variables:
5 5 . . .
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An example: computing 5!

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
10

stack:
1 5 . . .

local variables:
5 5 . . .
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An example: computing 5!

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
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stack:
4 . . .

local variables:
5 5 . . .
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An example: computing 5!

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
12

stack:
. . .

local variables:
4 5 . . .
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An example: computing 5!

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
2

stack:
. . .

local variables:
4 5 . . .
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An example: computing 5!

Bytecode:

. . . JVM model:
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Amazing Examples Formalisation of the Java Virtual Machine

An example: computing 5!

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
13

stack:
0 . . .

local variables:
0 120 . . .
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Amazing Examples Formalisation of the Java Virtual Machine

An example: computing 5!

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
14

stack:
120 . . .

local variables:
0 120 . . .
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Amazing Examples Formalisation of the Java Virtual Machine

An example: computing 5!

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
15

stack:
120 . . .

local variables:
0 120 . . .
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Amazing Examples Formalisation of the Java Virtual Machine

Formalisation of Java bytecode in Coq

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack

Methodology:

1 Write the specification of the function

2 Write the algorithm (tail recursive
function)

3 Prove that the algorithm satisfies the
specification

4 Write the JVM program

5 Define the function that schedules the
program

6 Prove that the code implements the
algorithm

7 Prove total correctness
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Formalisation of Java bytecode in Coq

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack

Methodology:

1 Write the specification of the function

2 Write the algorithm (tail recursive
function)

3 Prove that the algorithm satisfies the
specification

4 Write the JVM program

5 Define the function that schedules the
program

6 Prove that the code implements the
algorithm

7 Prove total correctness

Definition theta_fact (n : nat) := n‘!.
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Amazing Examples Formalisation of the Java Virtual Machine

Formalisation of Java bytecode in Coq

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack

Methodology:

1 Write the specification of the function

2 Write the algorithm (tail recursive
function)

3 Prove that the algorithm satisfies the
specification

4 Write the JVM program

5 Define the function that schedules the
program

6 Prove that the code implements the
algorithm

7 Prove total correctness

Fixpoint helper_fact (n a : nat) :=

match n with

| 0 => a

| S p => helper_fact p (n * a)

end.

Definition fn_fact (n : nat) :=

helper_fact n 1.
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Amazing Examples Formalisation of the Java Virtual Machine

Formalisation of Java bytecode in Coq

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack

Methodology:

1 Write the specification of the function

2 Write the algorithm (tail recursive
function)

3 Prove that the algorithm satisfies the
specification

4 Write the JVM program

5 Define the function that schedules the
program

6 Prove that the code implements the
algorithm

7 Prove total correctness

Lemma fn_fact_is_theta n : fn_fact n =

theta_fact n.

Katya and Jonathan (Edinburgh) Machine Learning for Proof General 4 December 2012 42 / 47



Amazing Examples Formalisation of the Java Virtual Machine

Formalisation of Java bytecode in Coq

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack

Methodology:

1 Write the specification of the function

2 Write the algorithm (tail recursive
function)

3 Prove that the algorithm satisfies the
specification

4 Write the JVM program

5 Define the function that schedules the
program

6 Prove that the code implements the
algorithm

7 Prove total correctness

Definition pi_fact :=

[::(ICONST,1%Z);

(ISTORE,1%Z);

(ILOAD,0%Z);

(IFEQ,10%Z);

(ILOAD,1%Z);

(ILOAD,0%Z);

(IMUL, 0%Z);

(ISTORE, 1%Z);

(ILOAD, 0%Z);

(ICONST, 1%Z);

(ISUB, 0%Z);

(ISTORE, 0%Z);

(GOTO, (-10)%Z);

(ILOAD, 1%Z);

(HALT, 0%Z)].
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Amazing Examples Formalisation of the Java Virtual Machine

Formalisation of Java bytecode in Coq

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack

Methodology:

1 Write the specification of the function

2 Write the algorithm (tail recursive
function)

3 Prove that the algorithm satisfies the
specification

4 Write the JVM program

5 Define the function that schedules the
program

6 Prove that the code implements the
algorithm

7 Prove total correctness

Fixpoint loop_sched_fact (n : nat) :=

match n with

| 0 => nseq 3 0

| S p => nseq 11 0 ++ loop_sched_fact p

end.

Definition sched_fact (n : nat) :=

nseq 2 0 ++ loop_sched_fact n.
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Amazing Examples Formalisation of the Java Virtual Machine

Formalisation of Java bytecode in Coq

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack

Methodology:

1 Write the specification of the function

2 Write the algorithm (tail recursive
function)

3 Prove that the algorithm satisfies the
specification

4 Write the JVM program

5 Define the function that schedules the
program

6 Prove that the code implements the
algorithm

7 Prove total correctness

Lemma program_is_fn_fact n :

run (sched_fact n) (make_state 0 [::n]

[::] pi_fact) =

(make_state 14 [::0;fn_fact n ] (push

(fn_fact n ) [::]) pi_fact).
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Amazing Examples Formalisation of the Java Virtual Machine

Formalisation of Java bytecode in Coq

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack

Methodology:

1 Write the specification of the function

2 Write the algorithm (tail recursive
function)

3 Prove that the algorithm satisfies the
specification

4 Write the JVM program

5 Define the function that schedules the
program

6 Prove that the code implements the
algorithm

7 Prove total correctness

Theorem total_correctness_fact n sf :

sf = run (sched_fact n) (make_state 0

[::n] [::] pi_fact) ->

next_inst sf = (HALT,0%Z) /\

top (stack sf) = (n‘!).
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Amazing Examples Formalisation of the Java Virtual Machine

Where is our tool useful?

Methodology:

1 Write the specification of the function

2 Write the algorithm (tail recursive function)

3 Prove that the algorithm satisfies the specification

4 Write the JVM program

5 Define the function that schedules the program

6 Prove that the code implements the algorithm

7 Prove total correctness
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Amazing Examples Formalisation of the Java Virtual Machine

Where is our tool useful?

Methodology:

1 Write the specification of the function

2 Write the algorithm (tail recursive function)

3 Prove that the algorithm satisfies the specification

4 Write the JVM program

5 Define the function that schedules the program

6 Prove that the code implements the algorithm

7 Prove total correctness

Suggestions for fn_fact_is_theta:
fn_expt_is_theta, fn_mult_is_theta, fn_power_is_theta
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Where is our tool useful?

Methodology:

1 Write the specification of the function

2 Write the algorithm (tail recursive function)

3 Prove that the algorithm satisfies the specification

4 Write the JVM program

5 Define the function that schedules the program

6 Prove that the code implements the algorithm

7 Prove total correctness

Suggestions for program_is_fn_fact:
program_is_fn_expt, program_is_fn_mult, program_is_fn_power
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Amazing Examples Formalisation of the Java Virtual Machine

Where is our tool useful?

Methodology:

1 Write the specification of the function

2 Write the algorithm (tail recursive function)

3 Prove that the algorithm satisfies the specification

4 Write the JVM program

5 Define the function that schedules the program

6 Prove that the code implements the algorithm

7 Prove total correctness

Suggestions for total_correctness_fact:
total_correctness_expt, total_correctness_mult,
total_correctness_power
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Further work
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Further work

Further work

not only trace successful proofs, but also failed and discarded
derivation steps;

increase the number of Interactive Theorem Provers and Machine
Learning engines;

replace local environment with a client-server framework.

Katya and Jonathan (Edinburgh) Machine Learning for Proof General 4 December 2012 45 / 47



Further work

Further work

not only trace successful proofs, but also failed and discarded
derivation steps;

increase the number of Interactive Theorem Provers and Machine
Learning engines;

replace local environment with a client-server framework.

Katya and Jonathan (Edinburgh) Machine Learning for Proof General 4 December 2012 45 / 47



Further work

Further work

not only trace successful proofs, but also failed and discarded
derivation steps;

increase the number of Interactive Theorem Provers and Machine
Learning engines;

replace local environment with a client-server framework.

Katya and Jonathan (Edinburgh) Machine Learning for Proof General 4 December 2012 45 / 47



Further work

“Dundee Fellowship” positions

University of Dundee is about to announce positions of Dundee
Fellows;

5-year research fellowship position, becoming a permanent lectureship
at the end; starts at 8 point scale;

Computational was selected as one of a few “named” areas;

competition will be across several school and departments;

if you know potential winner – please let me know.
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Thank you for your attention Questions?

Machine Learning for Proof General: Interfacing
Interfaces

(Funded by EPSRC First Grant Scheme)

Katya Komendantskaya and Jonathan Heras

University of Edinburgh

4 December 2012
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