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1 Introduction

This Documents is a Manual supporting the project Machine-learning coal-
gebraic automated proofs. Several experiments on pattern-recognition of
proof-patterns are given here.

We provide a method to convert automatically produced proof-trees into
feature vectors that contain essential proof characteristics. We sampled hun-
dreds of examples of such feature vectors and used them as inputs to neural
networks and SVMs with kernel functions. We tested whether they allow to
detect essential proof patterns that determine meta-properties of proofs given
by Problems 1-5, and Figures 13, 55, 59 below.

Statistical machine learning has a variety of methods to ensure the qual-
ity of the obtained experimental results, including analysis of sufficiently big
and representative training sets, testing same data sets using various tools of
pattern-recognition (neural networks, SVMs), and repeating the tests with vary-
ing parameters.

We followed all such good practices as follows: we used data sets of various
sizes - from 120 to 400 examples of coinductive trees for various experiments; we
sampled trees produced for several distinct logic programs – such as ListNat

and Stream above. These programs were chosen to challenge the pattern classifi-
cation tools, as they define dependent data types, and thus derivations involved
structures of various kinds, and moreover, their intricate mixtures. We believe
these experiments are important for proving the concepts for the future imple-
mentation of the techniques in dependently-typed interactive provers. Finally,
we repeated all experiments using three-layer neural networks of various sizes,
and compared the results with those given by the SVMs with kernel functions.

Note that we deliberately did not tune the learning functions used in pattern
recognition [4, 10] to our symbolic data; and this makes our approach different
from e.g. [7, 30, 39, 40]. The advantage is that we can see the power of the
feature selection method, rather than the statistical learning function. Our
proof representation method is generic and will allow for any future extensions,
e.g. by employing new learning functions [39, 40]. In fact, the reader can repeat
all our experiments using the data sets we share in [27]; using any arbitrary
pattern-recognition tool.
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All our experiments involving neural networks were made in MATLAB Neu-
ral Network Toolbox (pattern-recognition package), with a standard three-layer
feed-forward network, with sigmoid hidden and output neurons. The network
was trained with scaled conjugate gradient back-propagation. Such networks can
classify vectors arbitrarily well, given enough neurons in the hidden layer, we
tested their performance on 40, 50, 60, 70, 90 hidden neurons for all experiments.
All experiments involving SVMs were performed in MATLAB Bioinformatics
toolbox, SVM package with Gaussian Radial Basis kernel.

In the next following sections, we refresh definitions of coinductive trees
and coinductive derivations; then we define the feature-vector encoding for the
coinductive proof trees. Next, we give some background information on pattern-
recognition in Neural networks and SVMs. We conclude by listing all the proofs
that contributed to the feature-vector library [27].

2 Motivation and related work

Can automated proofs yield statistical pattern-recognition? — is the general
question we raise in this project. This question subsumes several research ques-
tions:

1. What can we consider to be a pattern in an automated proof (Section 3)?

2. To what extent common practices of statistical pattern-recognition can be
extrapolated to proof-pattern recognition (Section 4)?

3. Which properties of proofs can we recognise by statistical analysis of proof
patterns (Section 6)?

4. How can such applications be applied within automated reasoning field
(Section 7).

Statistical pattern recognition is a vibrant area within machine learning
[4, 10]; it studies methods that automatically compute classifiers (or classifying
functions), on the basis of already given examples. The most powerful methods
comprise the family of non-linear classifiers, such as Neural networks, Support
Vector machines (SVMs) and Kernels. We will experiment with these.

Common applications of pattern-recognition are detection of patterns in
(CCTV) images (computer vision), sorting objects into classes, detecting
anomalies in cells or populations, and similar tasks. The data are represented
by the means of numeric vectors, each element represents a chosen feature of
the objects the tool classifies; characteristic combinations of certain features are
then called patterns; they determine the class of every given example in the
data set.

Formal proofs are developed in a formal language and within well-defined
logical theory. Following the rules of inference guarantees the correctness of such
proofs. A formal proof has a precise nature, that leaves no place for statistical or
probabilistic components. However, the process of searching for a correct proof
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may have statistical nature, e.g., involving trial-and-error “method”, reasoning
by analogy, or intuition [5, 21, 22, 23, 38, 39].

Interactive theorem provers (ITPs), such as HOL or Coq, require a pro-
grammer to tackle thousands of lemmas of variable sizes and complexities. The
process of proof construction in such languages can be guided by combining a
finite number of tactics. Some proofs may be composed of the same patterns
of tactics, and can be fully automated, and others may require programmer’s
intervention. In this case, manually found proof for one problematic lemma may
serve as a template for several other lemmas needing a manual proof. Discov-
ery of such proof tactics may be one area of application of statistical pattern
recognition; [32, 11].

Automated discovery of common proof-patterns using tools of statistical
machine learning such as neural networks could potentially provide the much-
sought automatisation for statistically similar proof-steps; as was argued e.g. in
[8, 9, 11, 13, 32, 39, 40].

As was classified in [8], applications of machine-learning assistants to mech-
anised proofs can be divided into symbolic (akin e.g. Inductive logic program-
ming), numeric (akin neural networks or Kernels), and hybrid. In this paper,
we focus on neural networks. The advantages of the numeric methods over
symbolic is tolerance to noise and uncertainty, as well as availability of powerful
learning functions. For example, the standard multi-layer perceptrons with er-
ror back-propagation algorithm are capable of approximating any function from
finite-dimensional vector space with arbitrary precision. In this case, it is not
the power of the learning paradigm, but the feature selection and representation
method that sets the limits.

In this paper, we are making a first step and investigate statistical machine-
learning methods for first-order proofs in logic programs. There are several
conceptual obstacles standing on the way of any such interdisciplinary study,
all arising from the choice of the features of automated proofs analysed by the
machine-learning tool. The features can be given by the truth values (boolean
[18] or fuzzy [44]); one can choose to encode first-order syntax directly [25, 32,
39, 40], or enumerate the tactics which are used in ITPs and statistically analyse
properties of their combinations [11]. We will briefly illustrate the effects of these
three choices on proof pattern recognition. Our running example is as follows.

Example 1 Let ListNat denote the logic program consisting of clauses
1. nat(0) ←
2. nat(s(x)) ← nat(x)

3. list(nil) ←
4. list(cons x y) ← nat(x), list(y)

Neural-symbolic integration [7] is one field that merges logic (programming)
and neural networks. Normally, this involves working with the Herbrand Base
— the set of all the ground instances of all the atoms appearing in the program;
and Herbrand models. The Herbrand base can be represented by vectors of the
atoms’ truth values that serve as network’s inputs [7, 18, 44]. This method allows
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to avoid working with the first-order syntax directly. In cases like the program
ListNat, however, the set of all ground instances would be infinite, and more
elaborate methods are needed to approximate infinite models by means of finite
ones [18, 30]. These methods do not adapt well to problems arising in proof-
search; e.g. cannot account for such algorithms as unification or resolution; see
[24]. For more on model-theoretic approach see [40].

For similar reasons, propositionalisation is often required when machine-
learning various logical structures, as e.g. in [7, 36, 43].

Another solution would be to enumerate the first-order syntax and imple-
ment proof-search in neural networks directly, [26, 40]. However, in such ap-
plications, statistical nature of learning often conflicts with logical soundness;
[26]. The related work on using analysis of formula occurrences in big libraries
of proofs [39] traces dependencies of different lemma statements in the library,
but does not analyse the patterns arising in proof search.

Another related work [11] on data-mining proofs takes combinations of tac-
tics in ITPs as a basis for statistical analysis in Markov Networks. However,
analysis of tactics on their own may not be sufficient for accurate results in
proof recognition:

Example 2 For ListNat and a goal G0 = list(cons(x, cons(y, z))),
SLD-resolution produces a sequence of subgoals: G1 =
nat(x),list(cons(y, z)), G2 = list(cons(y,z)), G3 = nat(y),list(z),
G4 = list(z), G5 = 2. If we consider applications of each of the clauses 1-4
as analogous to the tactics used in ITPs, and also add “tactic” 5 for 2, then
the proof steps above could be represented as a sequence of tactics 4,1,4,1,5.
However, we cannot statistically generalise this to future examples, as with
some frequency, the same sequence of “tactics” will fail, e.g. take the goal
G0 = list(cons(x,cons(y,x))).

The method we present here is designed to steer away from the problems
surveyed above. The solution comes in the guise of the coalgebraic methods
for proof representation [29, 28]; see also position paper [25]. It allows for
more subtle representation of proof patterns, that suits for statistical proof-
pattern classification. Coalgebraic methods occur in different areas of computer
science, and range from categorical semantics of programming languages [37,
29] and models of concurrent systems [33] to programming with infinite data-
structures in Type Theory [6, 3], or in Logic Programming [15, 28]. Most
coalgebraic methods pay attention to the issues of concurrency and infiniteness
of computations, which requires particular attention to repeating patterns.

Apart from the technical contribution, the paper’s novelty is in switching
the emphasis from the properties of learning functions [32, 39, 40] to the formal
analysis of what can be considered a proof pattern, irrespective of the learning
function one applies on the statistical level. In Section 2, we explain our ap-
proach to “proof patterns” in proofs; we show how this general idea is realised
by means of employing coinductive proof trees [29, 28]. In section 4, we repre-
sent proofs in terms of feature vectors. In Section 6, we apply and test these
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techniques on a range of proof-recognition tasks. Finally, Section 7 proposes
several implementation scenarios for the method.

3 Coinductive Trees

Definition 3 A signature Σ consists of a set of function symbols f, g, . . . each
equipped with a fixed arity. The arity of a function symbol is a natural number
indicating the number of its arguments. Nullary (0-ary) function symbols are
allowed: these are called constants. Terms and substitution are defined in a
standard way [31].

Given a countably infinite set V ar of variables, as follows.

Definition 4 the set Ter(Σ) of terms over Σ is defined inductively:

• x ∈ Ter(Σ) for every x ∈ V ar.

• If f is an n-ary function symbol (n ≥ 0) and t1, . . . , tn ∈ Ter(Σ), then
f(t1, . . . , tn) ∈ Ter(Σ).

Variables will be denoted x, y, z, sometimes with indices x1, x2, x3, . . .. Substi-
tution is the operation of filling in terms for variables.

Definition 5 A substitution is a map θ : Ter(Σ) → Ter(Σ) which satisfies
θ(f(t1, . . . , tn)) ≡ f(θ(t1), . . . , θ(tn)) for every n-ary function symbol f .

We define an alphabet to consist of a signature Σ, the set V ar, and a set
of predicate symbols P, P1, P2, . . ., each assigned an arity. Let P be a predicate
symbol of arity n and t1, . . . , tn be terms. Then P (t1, . . . , tn) is a formula
(also called an atomic formula or an atom). Complex formulae can be defined
using connectives and quantifiers, but we will work only with atoms here. The
first-order language L given by an alphabet consists of the set of all formulae
constructed from the symbols of the alphabet.

Given a substitution θ as in Definition 5, and an atom A, we write Aθ for
the atom given by applying the substitution θ to the variables appearing in
A. Moreover, given a substitution θ and a list of atoms (A1, ..., Ak), we write
(A1, ..., Ak)θ for the simultaneous substitution of θ in each Am.

Definition 6 Given a first-order language L, a logic program consists of a
finite set of clauses of the form A ← A1, . . . , An, where A,A1, . . . , An( n ≥ 0)
are atoms. The atom A is called the head of a clause, and A1, . . . , An is called
its body. Clauses with empty bodies are called unit clauses.

A goal is given by ← B1, . . . Bn, where B1, . . . Bn( n ≥ 0) are atoms.
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Example 7 Let ListNat denote the logic program consisting of clauses

1.nat(0) ←
2.nat(s(x)) ← nat(x)

3.list(nil) ←
4.list(cons x y) ← nat(x), list(y)

The program involves variables x and y, function symbols 0, s, nil and
cons, and predicate symbols nat and list, with the choice of notation designed
to make the intended meaning of the program clear.

The algorithm of SLD-resolution [31] is a sequential proof-search algorithm.
It takes a goal G, typically written as ← B1, . . . , Bn, where the list of Bi’s is
again understood to mean a conjunction of atomic formulae, typically containing
free variables, and constructs a proof for an instantiation of G from substitution
instances of the clauses in P [31]. The algorithm uses Horn-clause logic, with
variable substitution determined universally to make a selected atom in G agree
with the head of a clause in P , then proceeding inductively.

In what follows, we propose coinductive trees [28] as a suitable formalism for
proof-pattern recognition. In their general structure, coinductive trees resemble
the and-or trees used in concurrent logic programming [14]; thus, one proof tree
exhibits all the possible options in the proof search for the given goal.

We will assume familiarity with the first-order logic programming [31]. The
definitions of the signature Σ, the alphabet A, the first-order language L, and
a first-order logic program P are standard, see also Appendix A.

Definition 8 Let P be a logic program and G =← A be an atomic goal. The
coinductive tree for A is a tree T satisfying the following properties.

• A is the root of T .

• Each node in T is either an and-node or an or-node: Each or-node is
given by •. Each and-node is an atom.

• For every and-node A′ occurring in T , there exist exactly m > 0 distinct
clauses C1, . . . , Cm in P (a clause Ci has the form Bi ← Bi1, . . . , B

i
ni

,
for some ni), such that A′ = B1θ1 = ... = Bmθm, for some substitu-
tions θ1, . . . , θm, then A′ has exactly m children given by or-nodes, such
that, for every i ∈ m, the ith or-node has n children given by and-nodes
Bi1θi, . . . , B

i
ni
θi.

Compared to SLD-trees or and-or trees, the definition of the coinductive
tree restricts unification to term matching, i.e., the unifying substitution θ is
applied only to one atom, e.g. A1 = A2θ, whereas traditionally mgus satisfy
A1θ = A2θ. The term-matching algorithm is parallelisable, in contrast to the
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li(c(x, c(y, z)))

nat(x) li(c(y, z))

nat(y) li(z)

→
li(c(s(w), c(s(w), nil)))

nat(s(w))

nat(w)

li(c(s(w), nil)

nat(s(w))

nat(w)

li(nil)

2

→

li(c(s(0), c(s(0), nil)))

nat(s(0))

nat(0)

2

li(c(s(0), nil)

nat(s(0))

nat(0)

2

li(nil)

2

Figure 1: Two derivation steps by coinductive derivation trees, for the program ListNat.
We abbreviate cons by c and list by li in this figure. The symbol 2 signifies “success”. The
last tree is a success tree (Def. 9) which implies that the whole sequence of derivation steps
above is successful.

unification algorithm, which is inherently sequential [12]. Concurrency is gen-
erally important for implementation in vector-based statistical tools. In the
setting of proof pattern-recognition, the main effect of using term matching is
that it delays variable identification, which, in its turn, allows to “preserve”
certain proof structures during the proof search. This “laziness” of coinductive
proof trees makes them convenient for dealing with programs defining infinite
data structures: See also [28] for more details.

Definition 8 introduced coinductive trees, below are formal explanations of
how they can be used to build derivations.

The notion of a successful proof is captured by the definition of success
subtrees [28], they correspond to refutations in SLD-resolution.

Definition 9 Let P be a logic program, A be a goal, and T be the coinductive
derivation tree determined by P and A. A subtree T ′ of T is called a success
subtree of T if it satisfies the following conditions:

• the root of T ′ is the root of T ;
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• if an and-node belongs to T ′, and the node has k children in T given by
or-nodes, only one of these or-nodes belongs to T ′.

• if an or-node belongs to T ′, then all its children given by and-nodes in T
belong to T ′.

• all the leaves of T ′ are and-nodes represented by 2.

Definition 10 Let P be a logic program and G =← A be an atomic goal. The
coinductive forest F for A is a set of all coinductive derivation trees for A.
We say that the forest has depth n if the deepest tree in F has length n. A
coinductive forest F has breadth k if at most k distinct variables appear in all
and-nodes of all of its trees together.

We define a goal to be a pair < A, T >, where A is an atom, and T is the
coinduction tree determined by A, as in Definition 8, in which we restrict the
choice of substitutions θ1, . . . θm to the most general unifiers only, in which case
T is uniquely determined by A.

We can go further and introduce a new derivation algorithm that allows
proof search using coinduction trees. We modify the definition of a goal by
taking it to be a pair < A, T >, where A is an atom, and T is the coinduction
tree determined by A. , as in Definition 8, in which we restrict the choice of
substitutions θ1, . . . θm to the most general unifiers only, in which case T is
uniquely determined by A.

Definition 11 Let G be a goal given by an atom ← A and the coinductive
tree T induced by A, and let C be a clause H ← B1, . . . , Bn. Then goal G′

is coinductively derived from G and C using mgu θ if the following conditions
hold:

• A′ is a leaf atom, called the selected atom, in T .

• θ is an mgu of A′ and H.

• G′ is given by the atom ← Aθ and the coinduction tree T ′ determined by Aθ.

A coinductive refutation of P ∪ {G} is a finite coinductive derivation of
P ∪ {G} such that its last goal contains a success subtree.

Definition 12 A coinductive derivation of P ∪ {G} consists of a sequence of
goals G = G0, G1, . . . called coinductive resolvents and a sequence θ1, θ2, . . .
of mgus such that each Gi+1 is derived from Gi using θi+1. A coinductive
refutation of P ∪ {G} is a finite coinductive derivation of P ∪ {G} such that
its last goal contains a success subtree. If Gn contains a success subtree, we say
that the refutation has length n.

Programs like Stream or ListNat always give rise to finite coinductive trees.
This applies equally to any potentially infinite data defined using constructors,
such as scons in Stream or cons and nil in ListNat. If a logic program
P defines data in a guarded manner (cf. [3]), we call it a well-founded Logic
Program. So one may view infinite coinductive trees as indicating “bad” cases,
in which (co)recursion is not guarded by constructors.
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stream(x)

θ1→
stream(scons(z, y))

bit(z) stream(y)

θ2→ . . .
θ3→

stream(scons(0, scons(y1, z1)))

bit(0)

2

stream(scons(y1, z1))

bit(y1) stream(z1)

Figure 2: Coinductive derivation of length 3 for the goal G = stream(x) and the program
Stream, with θ1 = x/scons(z, y) and θ2 = z/0, θ3 = y/scons(y1, z1).

Example 13 The following program Stream defines the infinite stream of
binary bits. The program will induce infinite derivations if the SLD-resolution
algorithms is applied, but only finite coinductive proof trees, see Figure 2.

bit(0) ←
bit(1) ←

stream(scons (x,y)) ← bit(x), stream(y)

Compare this coinductive program with the inductive program LN from Example 7.

Coinductive derivations resemble tree rewriting. For every coinductive tree,
there can be several transitions to a new goal, and these transitions can be
made concurrently. See Figures 1 and 2 for examples of coinductive deriva-
tions; and [28] or Appendix B for formal definitions. Coinductive derivations
are proven to be sound and complete relative to the coalgebraic semantics of
logic programming, [29]. In this paper, we will not focus on their theoreti-
cal or computational properties, but we will instead use them as a convenient
representation for proof-pattern recognition purposes.

In both sequential and coinductive examples of derivations, one notices ap-
parent regularities in the structures of the proofs. In the next section, we will
develop a method to machine-learn them.

For all the running examples we use in this paper, there will be only one
coinductive tree for every goal. However, this will not be the case for programs
containing clauses in which not all the variables appearing in the body appear
in the head.

Example 14 Figure 2 shows a coinductive derivation of length 3 for the goal
G = stream(x) and the program Stream from Example 13.

Derivation steps by coinductive trees preserve some basic proof patterns
– such as e.g. branching depending on the predicate in the goal and term
structure. We now want to base our pattern recognition method on the structure
of coinductive trees.

In particular, the new method must capture the tree structure and patterns
arising in these trees, e.g. dependencies between the structure of terms, types
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of predicates, and influence of such relations on the structure of the trees. It
involves more intricate data in the process of pattern recognition. yet we achieve
the same goal of proof analysis as was attempted in [11]. How should we define
a proof-pattern in the general setting? – is the question for the next section. We
deliberately avoid giving a formal definition of a proof pattern. In line with the
state-of-the art machine-learning applications, we wish the statistical tools to
learn what they are; and this makes this method different from e.g. inductive
logic programming perspective on learning.

4 Proof Feature Selection

In this section, we approach proof-pattern recognition from the statistical
machine-learning perspective. Problem specification in pattern-recognition
comprises defining the set of features of objects and a set of classes into which
the examples are classified. Every example is represented as a numeric vector
of features. A set of such vectors forms a training set for the chosen machine-
learning tool. After training, combinations of features will determine the class
of every new example. E.g., given a training set comprising a 100 of images of
cells, the features may be the size, colour, or shape of the cells, measured nu-
merically. Two classes work well when one detects anomalies: one class stands
for “normal” sample, and one for “abnormal”. However, the number of classes
may grow. For example, there can be five kinds of cells we classify all samples
into.

Often, one feature alone does not distinguish the class, but a combination
of certain features – does; and such combinations of features are known as
patterns. This observation is particularly true for analysis of proof patterns. It
is usually a combination of factors that determines every proof step: there is a
connection between such proof features as: rules of inference, unifiers, structures
of predicates and terms in the current goal. Note that “feature” is a conceptually
weaker notion than “pattern”: features are some apparent properties of objects,
that may not determine object’s class. Patterns, on the contrary, are possibly
hidden but conceptual properties that allow robust classification. Usually, the
regular pattern that allows the classification is not known prior to learning.

We represent coinductive trees as feature vectors. Several ways of represent-
ing graphs as matrices are known from the literature: e.g., incidence matrix and
adjacency matrix. However, these traditional methods obscure some patterns
found in the coinductive trees. However, see [39] for adjacency matrix encod-
ing of logic formulae represented as trees. For us, it is important to choose
those features that capture dependencies between the predicates, the structures
if terms, and the regularities in the tree structures. We propose a new method
as follows.

For a given logic program P , a goal G, and the coinductive tree T built for
G, we convert coinductive trees into vectors following the four steps below.

1. Numerical encoding of the signature Σ. Define a one-to-one function
J . K that assigns a numerical value to each function symbol in G, including
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nullary functions. Assign −1 to any variable occurring in T . Gödel numbering
is one of the classical ways to show that first-order language can be enumerated.
But in our case, the signature of each given program is restricted, and we use
a simplified version of enumeration for convenience. In the method we present,
the choice of the function J . K is not crucial for proof classification, and may
depend on implementation strategies, see also Section 7.

Example 15 For program ListNat, one encoding we used was JOK = 6, JSK = 5,
JconsK = 2, JnilK = 3, JxK = JyK = JzK = −1.

2. Numerical encoding of terms. Complex terms are encoded by simple
concatenation of the values of the function symbols and variables. If a term
t = (f(x1, . . . xn)) contains variables x1, . . . xn, the numeric values Jx1K . . . JxnK
are negative. In this case, the positive values |Jx1K| . . . |JxnK| are concatenated,
but the value of the whole term is assigned a negative value.

So, Jf(x1, . . . , xn)K = −JfK :: |Jx1K| :: . . . :: |JxnK|. And Jf(t1, . . . , tn)K =
JfK :: Jt1K :: . . . :: JtnK, if t1, . . . tn do not contain variables.

Example 16 Jcons(x,cons(y,x))K = −21211.

3. Matrix representation of the coinductive trees. For a given coin-
ductive tree T and goal G, we build a matrix M for T as follows. The number
of columns of M is equal to n+ 2, where n is the number of distinct predicates
appearing in the program P . The number of rows is equal to the number m of
distinct terms appearing in the nodes of T . We order all such terms according to
their relative positions in G. We agree on some arbitrary ordering of all distinct
predicates appearing in T , including additionally • and 2 to the tail of such
list. As coinductive trees we work with are well-founded, the two orderings can
be maintained e.g. as finite lists.

The entries of M are computed as follows. For the ith predicate R, and the
jth term t, the ijth matrix entry is JtK if R(t) is a node of T , and 0 otherwise.
For the n+ 1 column and the jth term t, if every node containing Q(t) for some
Q ∈ P has exactly k children given by or-nodes, then the (n+ 1)jth entry in M
is equal to k; if the parameter k for Q(t) differs in different branches of the tree,
then the (n+ 1)jth entry is −1; and it is 0 otherwise. For the n+ 2 column and
the jth term t, if all children of the node Q(t), for some Q ∈ P are given by
or-nodes, such that all these or-nodes have children nodes 2, then (n + 2)jth
entry is 1; if some but not all such nodes are 2, then the then (n+ 2)jth entry
is −1; and it is 0 otherwise. See Figure 3 and Algorithm 1.

4. Vector representation. The matrix M is then flattened into a vector,
so that the columns of the given matrix are concatenated into a single vector.

Example 17 The matrix M1 above will be given by V1 =
[−21211,−211, 0, 0,−1, 0, 0,−1,−1, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0].

If a hundred of various coinductive proof trees are taken as examples for
some proof-pattern recognition task, then there will be a hundred of vectors
akin the one shown above stored in a matrix; and this matrix forms an input to
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Algorithm 1 Feature extraction: proof trees to matrices

Require: T – finite coinductive tree.
n = number of distinct predicates in T .
m = number of distinct terms appearing in the nodes of T .
Construct a (n+ 2)×m matrix M , as follows:
for i = 1, . . . n do

for j = 1, . . . ,m do
if Pi(t

′, . . . , tj , . . . , t
′′) is a node of T then

Mij = JtjK
else Mij = 0
end if

end for
end for
for i = n+ 1 do

for j = 1, . . . ,m do
if every node containing tj has branching factor k then

Mij = k
else if nodes containing tj have different branching factors then

Mij = −1
else Mij = 0
end if

end for
end for
for i = n+ 2 do

for j = 1, . . . ,m do
if all nodes containing tj have children given by 2 then

Mij = 1
else if some nodes containing tj have children given by 2, and some

- containing other formulas then
Mij = −1

else Mij = 0
end if

end for
end for

return M .
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Matrix M1 list nat • 2

cons(x, cons(y, z)) - 21211 0 2 0
cons(y, z)) - 211 0 2 0

x 0 -1 0 0
y 0 -1 0 0
z -1 0 0 0

Matrix M2 list nat • 2

cons(s0, cons(s0, nil)) 256263 0 2 0
cons(s0, nil)) 2563 0 2 0

s0 0 56 1 0
0 0 6 1 1

nil 3 0 1 1

Figure 3: Matrices M1 and M2 encode the left-most and right-most trees in Figure 1.

Figure 4: Input editing in pattern-recognition tool in MATLAB.

the chosen pattern-recognition tool (neural networks or SVM), see Figure 4 for
a screenshot of one of the data bases used in the paper and available at [27].

Every entry in the matrix is a feature in terms of pattern-recognition; cor-
relation of various features is detected by the pattern-classifier. Every feature
vector v of length k defines a point in a k-dimensional space; and given a set
of such vectors, the pattern-recognition task is akin fitting a function given a
number of such points.

Proposition 18 (Properties of the vector encoding) For every coinduc-
tive tree T built for a goal G and a logic program P , the following statements
hold:

1. T can be encoded as a feature vector V with the following properties:

If n distinct predicates and m distinct terms are contained in nodes of T ,
then the matrix M will have the size (n+ 2)×m.
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2. For a given matrix M , there may exist more than one corresponding coin-
ductive tree T ; i.e., the mapping from the set T of coinductive trees to the
set M of the corresponding matrices is not bijective.

3. If there exist two distinct formulae F1 and F2 whose coinductive trees are
encoded by matrices M1 and M2 such that M1 ≡M2, then F1 and F2 differ
only in variables, however, F1 and F2 are not necessarily α-equivalent.

Proof.

1. By construction above.

2. Consider the conductive trees for the two α-equivalent goals
list(cons(x,cons(y,z))) and list(cons(y,cons(z,x))); they will be
represented by same matrices, see M1 in Table 3.

3. Proof trees that are not α-equivalent can be represented by same
matrices, e.g. stream(scons (x, scons(y, scons (x, z))))

and stream(scons(x, scons(x, scons (y, z)))). However,
the matrices will reflect the more substantial differences in such
terms, e.g. those involving typing issues, e.g, the matrix for
stream(scons(x, scons(y, scons (z, x)))) (the ill-typed goal)
will be different from the two matrices above, although the numerical
encoding of the terms is the same.

The matrices for list(cons(s0,cons(s0,nil))) (Table 3) and
list(cons(s0,cons(0,nil))) will be very similar, showing the differ-
ence only in term encoding, but not in other patterns.

We sacrificed bijectivity of the matrix encoding for a reason: it actually al-
lows to capture some important proof patterns better: e.g., it helps to identify
any proof patterns related to variables, convenient for handling α−equivalent
terms and terms that are not α-equivalent but computationally similar. The
feature vectors enable to trace inter-dependencies of terms and predicates with
proof branching, typing, and ultimate success. The formulae and derivations
that are identical up to variable substitution will receive identical matrix en-
coding, due to the uniform representation of variables. Identified proof trees
as above are indeed closely related in terms of proof patterns involved, as we
better explain in the next section. At the same time, the matrices are powerful
enough to capture the patterns that identify ill-typed terms. E.g., for a goal
list(cons(x,cons(y,x))), the matrix will have non-zero values in both “nat”
and “list” columns, which will be similar to all ill-typed goals.

5 Classification and Pattern-Recognition Prob-
lems

Linear regression is the problem of fitting a linear function to a set of input-
output pairs given by a set of training examples, in which the input and output
features are numeric.
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Suppose the input features are X1, . . . , Xn. A linear function of these fea-
tures is a function of the form:

f(X1, . . . , Xn) = w0,+w1 ×X1 + . . .+ wn ×Xn,

where w0, . . . wn are weights.
Suppose a set E of examples exists, where each example e ∈ E has values

val(e,Xi) for feature Xi and has an observed value val(e, Y ). The predicted
value is

pval(e, Y ) = w0,+w1 × val(e,X1) + . . .+ wn × val(e,Xn)

Computing an error: Sum of squared errors (”sum-of-squares”):

Error(w̄) =
∑
e∈E

(val(e, Y )− pval(e, Y ))2

The next algorithm is one of the most commonly used for classification:
Gradient Descent.

1: Procedure LinearLearner(X,Y,E,η)
2: Inputs:

3: X: set of input features, X = {X − 1, . . . , Xn}
4: Y: target feature

5: E: set of examples from which to learn

6: η: - learning rate.

7: Output: parameters w0, . . . , wn.
8: Local w0, . . . , wn - real numbers

9: pval(e, Y ) = w0,+w1 × val(e,X1) + . . .+ wn × val(e,Xn)
10: initialise w0, . . . , wn randomly

11: repeat

12: for each example e in E do δ := val(e, Y )− pval(e, Y )
13: for each i ∈ [0, n] do

14: wi = wi + η × δ × val(e,Xi)
15: until termination

16: return w0, . . . , wn.
Classification In classification tasks, there are normally two values — 0 and

1, so linear function is not well suited.
For classification, one uses squashed linear function of the form

f(X1, . . . , Xn) = G(w0,+w1X1 + . . .+ wnXn)

where G is an activation function from reals numbers to [0, 1].
Example - a step function

S(x) = 1 if x ≥ 0 and S(x) = 0 if x ≤ 0

• ... was used in Perceptron [Rosenblatt, 1958] - one of the first methods
for learning.
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Figure 5: Sigmoid activation function.

Figure 6: XOR is not linearly separable.

• Disadvantage: not differentiable.

If the function is differentiable, we can use gradient descent to update the
weights:

For the sigmoid function, the derivative is f ′(x) = f(x)× (1− f(x)).
We use this to change line 14 in the algorithm LinearLearner to

wi := wi + η × δ × pvalω(e, Y )× [1− pvalω(e, Y )]× val(e,Xi).

Problems with linear classifiers: Not all functions yield linear classifi-
cation; the classical example is that Boolean function XOR could not be learned
using this method; see Figure 6. In such cases, we say the function/problem is
not linearly separable.

Neural networks can solve this!

• Multi-layered networks are like cascaded squashed linear functions.

• Each of the hidden neurons is a squashed linear function of its inputs.

• Output neurons can be linear (for regression) or sigmoid (for classification)
functions.

• Learning by neural networks — is adjustment of the weights such that the
prediction error is minimized.
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Apart from Neural Networks, another example of Non-linear classifiers are
Support Vector machines (SVMs), with various Kernel functions, such as e.g.
Gaussian.

5.1 Neural Networks

In this section, we give formal definitions of neural networks.
We follow the definitions of a connectionist neural network given in [20],

see also [7] and [18]. This basic definition is no different from the analogous
definition of a neural network accepted in Neurocomputing [17, 16].

A connectionist network is a directed graph. A unit k in this graph is
characterised, at time t, by its input vector (vi1(t), . . . vin(t)), its potential pk(t),
its threshold Θk, and its value vk(t). Note that in general, all vi, pi and Θi, as
well as all other parameters of a neural network can be performed by different
types of data, the most common of which are real numbers, rational numbers
[20], fuzzy (real) numbers [35], complex numbers, numbers with floating point,
and some others, see [17] for more details.

Units are connected via a set of directed and weighted connections. If there is
a connection from unit j to unit k, then wkj denotes the weight associated with
this connection, and ik(t) = wkjvj(t) is the input received by k from j at time
t. In each update, the potential and value of a unit are computed with respect
to an activation and an output function respectively. Most units considered in
this thesis compute their potential as the weighted sum of their inputs minus
their threshold:

pk(t) =

 nk∑
j=1

wkjvj(t)

−Θk.

The units are updated synchronously, time becomes t+∆t, and the output value
for k, vk(t + ∆t), is calculated from pk(t) by means of a given output function
F , that is, vk(t + ∆t) = F (pk(t)). For example, the output function used in
[19] is the binary threshold function H, that is, vk(t + ∆t) = H(pk(t)), where
H(pk(t)) = 1 if pk(t) > 0 and 0 otherwise. Units of this type are called binary
threshold units.

A unit is said to be a linear unit if its output function is the identity and
its threshold Θ is 0. A unit is said to be a sigmoidal or squashing unit if its
output function φ is non-decreasing and is such that limt→∞ (φ(pk(t))) = 1 and
limt→−∞ (φ(pk(t))) = 0. Such functions are called squashing functions.

Example 19 Consider two units, j and k, having thresholds Θj, Θk, potentials
pj, pk and values vj, vk. The weight of the connection between units j and k is
denoted wkj. Then the following graph shows a simple neural network consisting
of j and k. The neural network receives input signals v′, v′′, v′′′ and sends an
output signal vk.
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We will mainly consider connectionist networks where the units can be or-
ganised in layers. A layer is a vector of units. An n-layer network F consists
of the input layer, n − 2 hidden layers, and the output layer, where n ≥ 2.
Each unit occurring in the i-th layer is connected to each unit occurring in the
(i + 1)-st layer, 1 ≤ i < n. Neural networks consisting of layers are sometimes
called associative neural networks [17].

The primary classification of associative neural networks is into feedforward
and recurrent classes. In feedforward neural network connections between units
do not form a directed cycle. In recurrent neural networks, on the contrary,
connections between units form a directed cycle.

In many neural networks input units can receive only single inputs that
arrive from the outside world. They typically have no function other than to
distribute the signals to other layers of the neural networks. Such units are
called fanout units.

There are interesting and useful results concerning the optimal number of
layers needed for computations, and we will briefly outline them in the next
subsection.

Example 20 A typical three-layer neural network can have the following archi-
tecture:

−0.5Output unit

OO

Hidden Layer −0.5

1

−1.5

−1

−2.5

1

−3.5

−1

· · · · · ·

· · ·

.5−k

−1

Input Layer · · · · · ·︸ ︷︷ ︸
k units

Weights = 1

It is common to distribute various learning laws and techniques of neurocom-
puting into three major groups: Supervised Learning, Unsupervised Learning
and Reinforcement Learning. Supervised error-correction leraning is the form
of learning commonly used in Pattern Recognition.
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5.1.1 Error-Correction Learning

We will use the algorithm of error-correction learning to simulate the process of
unification described in the previous section.

Error-correction learning is one of the algorithms among the paradigms
which advocate supervised learning. Supervised learning is the most popular
type of learning implemented in artificial neural networks, and we give a brief
sketch of error-correction algorithm in this subsection; see, for example, [16] for
further details.

Let dk(t) denote some desired response for unit k at time t. Let the corre-
sponding value of the actual response be denoted by vk(t). The response vk(t)
is produced by a stimulus (vector) vj(t) applied to the input of the network
in which the unit k is embedded. The input vector vk(t) and desired response
dk(t) for unit k constitute a particular example presented to the network at
time t. It is assumed that this example and all other examples presented to
the network are generated by an environment. We define an error signal as the
difference between the desired response dk(t) and the actual response vk(t) by
ek(t) = dk(t)− vk(t).

The error-correction learning rule is the adjustment ∆wkj(t) made to the
weight wkj at time n and is given by

∆wkj(t) = ηek(t)vj(t),

where η is a positive constant that determines the rate of learning.
Finally, the formula wkj(t + 1) = wkj(t) + ∆wkj(t) is used to compute the

updated value wkj(t + 1) of the weight wkj . We use formulae defining vk and
pk as in Section 5.1.

Example 21 The neural network from Example 19 can be transformed into an
error-correction learning neural network as follows. We introduce the desired
response value dk into the unit k, and the error signal ek computed using dk
must be sent to the connection between j and k to adjust wkj.

v′

&&

pj wkj + ∆wkj

��

ek

v′′ // Θj // Θk, dk //ek, vk

ss

v′′′

88

j wkj k

5.1.2 Pattern-recognition in Neural Networks

Statistical pattern recognition is a vibrant area withing machine learning [4, 10];
it studies methods that automatically compute classifiers (or classifying func-
tions), on the basis of already given examples. Once the classifier is “learned”
from examples, it can be used to classify new examples. The most powerful
methods comprise the family of non-linear classifiers, such as Neural networks,
Support Vector machines (SVMs) and Kernels. We will experiment with these.
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Common applications of pattern-recognition are detection of patterns in
(CCTV) images (computer vision), sorting objects into classes, detecting
anomalies in cells or populations, and similar tasks. The data are represented
by the means of numeric vectors, each element represents a chosen feature of
the objects the tool classifies; characteristic combinations of certain features are
then called patterns; they can be statistically detected and they determine the
class of every given example in the data set. E.g., if (some hundreds of ) samples
of flowers are classified into several sorts, one can form feature vectors where
one element holds information about the height of the stem, another element –
about the colour of the bud, etc.

For pattern-recognition purposes, the error-correction learning rule is taken,
and namely, the backpropagation learning.

Given:

• values for parameters

• values for inputs

• set of examples

The Neural network needs to:

• predict a value for each target feature

• that is, adjust parameters (=weights)

Back-propagation learning is gradient descent search through the parameter
space to minimize the sum-of-squares error, see Figure 7.

Gradient descent search:

• uses back-propagation

• repeats evaluation

• minimises the error - by iterating through all of the examples.

For pattern-recognition purposes, it is customary to use neural networks of
the following structure: the neural network should have the input layer, of the
size that corresponds to the size of the feature vectors to be given as inputs. It
should have the hidden layer that may contain an arbitrary number of neurons,
determined empirically. Finally, it has an output layer, with the number of
neurons corresponding to the number of classes into which the examples are
classified. See Figure 8, for the graphical structure of such networks; and Figure
9 for how such network is used in MATLAB pattern-recognition tool.
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Figure 7: Back-propagation algorithm
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Figure 8: The abstractly represented standard neural network used for classifica-
tion of objects into two classes. The size of the lower – input – level corresponds
to the size of the feature space, and the two neurons in the output layer represent
the two classes. The size of the intermediate (or middle) layer may vary, and
can influence the precision in classification. Functions f , g, h are any activation
functions, such as threshold functions, or as we used for classification, sigmoid
function.
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Figure 9: Neural network akin Figure 8 in MATLAB pattern-recognition tool.
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5.2 Support Vector Machine (SVM)

Support Vector Machine (SVM) is one of the major tools which used to perform
the experiments in this thesis. In this chapter we give a brief summary of
the Support Vector Machine theory and its application in the area of pattern
recognition and machine learning. We will briefly outline the mathematical
foundation of support vector machines for binary classification, then we will
present an overview of the different approaches used for multi-class problems.

The Support Vector Machine (SVM) is a great machine learning tool based
on firm statistical and mathematical foundations relating to generalization and
optimization theory. It bids a powerful technique for many aspects of data
mining including classification, regression, and novelty detection. Vapnik was
the first researcher who suggested SVM in the early 1970’s but it began to gain
popularity in the mid-1990’s. SVM is based on Vapnik’s statistical learning
theory and decreases at the intersection of kernel methods and maximum margin
classifiers [41, 1, 2]. Support vector machines have been positively used to solve
many real world problems such as face detection, intrusion detection, hand
writing recognition, information extraction, and others.

Support Vector Machine is an attractive technique because of its high gener-
alization capability and its ability to handle high-dimensional input data. The
main advantages of SVM are that does not suffer from the local minima problem
compared to neural network or decision trees, and also it has fewer learning pa-
rameters to select which produces stable and reproducible results. That’s mean;
if we train two SVMs on the same data with the same learning parameters then
they produce the same results independent of the optimization algorithm the
use. However, SVM suffers from slow training particularly with non-linear ker-
nel and with large input data size. Support Vector Machine is mainly binary
classifiers but it has the ability to solve multi-class problems by merging several
binary machines in order to produce the final classification results. However,
training one SVM to classify all classes require much more complex optimization
algorithms and more time for training phase which is much slower compare to
binary classifiers.

The following sections will explain the SVM mathematical foundation for
the binary classification case and the different approaches which applied for
multi-classification.

5.2.1 Binary Support Vector Classifications

Binary classification is the process of classifying the members of a given set
of objects into two groups on the basis of whether they have some property or
not. Many applications used binary classification tasks used which the answer to
some question is either yes or no for instance product quality control, automated
medical diagnosis, face detection, intrusion detection, or finding matches to
specific class of objects.

The mathematical background of Support Vector Machines and the funda-
mental Vapnik-Chervonenkis dimension (VC Dimension) is explained in more
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details in the literature covering the statistical learning theory [41, 1, 2, 42, 34]
and many other sources. This section introduces the mathematical foundation
of SVMs in the linearly separable and non-linearly separable cases. One of the
attractive features of support vector machines is the geometric intuition of its
principles where one may the mathematical interpretation to simpler geometric
analogies.

5.2.2 Linearly Separable Case

In the linearly separable case, there exists one or more hyperplanes that may
separate the two classes represented by the training data with 100 % accuracy.
Figure 3(a) shows many separating hyperplanes (in the case of a two-dimensional
input the hyperplanes is simply a line). The key question is how to find the
optimal hyperplane that would maximize the accuracy on the test data. The
native solution is to maximize the gap or margin separating the positive and the
negative examples in the training data. That’s mean; the optimal hyperplane
is then the one that consistently splits the margin between the two classes as
shown in Figure 3(b).

Figure 10: SVM Linearly Separable Case, Source:(Shigeo Abe 2005).

In Figure 3(b), the data points which are closest to the separating hyper-
plane are named support vectors. In mathematical expressions, the problem is
to find f(x) = (wTxi + b) with maximal margin, such as:

wTxi + b = 1 for data points that are support vectors

wTxi + b > 1 for other data points

Supposing a linearly separable dataset, the task of learning coefficients α
and b of support vector machine f(x) = (wTxi + b) decreases to solving the
following constrained optimization problem:
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find w and b that minimize: 1/2||w||2

subject to: yi(w
Txi + b) ≥ 1, ∀i

Note that minimizing the inverse of the weights vector is equivalent to max-
imizing f(x).

This optimization problem can be solved by using the Lagrangian function
defined as:

L(w, b, α) = 1
2 (wTw)−

∑N
i=1 αi[yi(w

Txi + b)− 1], such that αi ≥ 0, ∀i

Where α1, α2, ..., αN are Lagrange multipliers and α = [α1, α2, ..., αN ]T .
The support vectors are those data points xi with αi > 0, i.e., the data

points within each class that are the closest to the separation margin.
Solving for the necessary optimization conditions results in:

w =
∑N
i=1 αiyixi

where w =
∑N
i=1 αiyi = 0

By replacing w =
∑N
i=1 αiyixi into the Lagrangian function and by using∑N

i=1 αiyi = 0 as a new constraint, the original optimization problem can be
rewritten as its equivalent dual problem as follows:

Find α that maximizes
∑
i αi −

1
2

∑
i

∑
j αiαjyiyjx

T
i xj

subject to
∑N
i=1 αiyi = 0, αi ≥ 0, ∀i

The optimization problem is therefore a convex quadratic programming
problem which has global minimum. This characteristic is a major advantage of
support vector machines as compared to neural networks or decision trees. The
optimization problem can be solved in O(N3) time, where N is the number of
input data points.

5.2.3 Non-Linearly Separable case

In the non-linearly separable case, it is not potential to discover a linear hyper-
plane that separates all positive and negative examples. The solution for this
case is the margin maximization approach which may be relaxed by allowing
some data points to fall on the wrong side of the margin, i.e., to allow a degree of
error in the separation. Slack Variables ξi are introduced to represent the error
degree for each input data point. Figure (4) shows the non-linearly separable
case where data points may fall into one of three options:

1. Points falling outside the margin that are correctly classified,with ξi = 0.

2. Points falling inside the margin that are correctly classified,with 0 < ξi <
1.
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Figure 11: SVM Non-Linearly Separable Case, Source:(Shigeo Abe 2005.)

3. Points falling outside the margin and are incorrectly classified,with ξi = 1.

If all slack variables have a value of zero, the data is linearly separable. For
the non-linearly separable case, some slack variables have nonzero values. In
this case, the optimization should be used to maximize the margin while and at
the same time minimizing the points with ξi 6= 0., i.e., to minimize the margin
error.

In other word, the optimization goal in mathematical terms becomes:

find w and b that minimize: 1/2||w||2 + C
∑
i ξ

2
i

subject to: yi(w
Txi + b) ≥ 1− ξi, ξi ≥ 0, ∀i

Where C is an user defined parameters to enforce that all slack variables are
close to zero as much as possible. Finding the most appropriate choice for C
will depend on the input data set in use.

As in the linearly separable problem, this optimization problem can be con-
verted to its dual problem:

find w that maximizes:
∑
i αi −

1
2

∑
i

∑
j αiαjyiyjx

T
i xj

subject to:
∑N
i=1 αiyi = 0, 0 ≤ αi ≤ C, ∀i

In order to solve the non-linearly separable case, SVM presents the use of
mapping function φ : RM −→ F to translate the non-linear input space into a
higher dimension feature space where the data is linearly separable. Figure(5)
shows an example of the effect of mapping the nonlinear input space into higher
dimension linear feature space.

The dual problem is solved in feature space where its aim becomes to:

find α that maximize
∑
i αi −

1
2

∑
i

∑
j αiαjyiyjφ(xi)

Tφ(xj)

subject to
∑N
i=1 αiyi = 0, 0 ≤ αi ≤ C, ∀i

The resulting SVM is of the form: f(x) = wTφ(xi) + b =∑N
i=1 αiyiφ(xi)

Tφ(x) + b.
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Figure 12: SVM Mapping to Higher Dimension Feature Space, Source:(Shigeo
Abe 2005.)

5.2.4 The Kernel Trick

Mapping the input space into a higher dimension feature space transforms the
nonlinear classification problem into a linear one that is more likely to be solved.
However, the problem is more likely to face the curse of dimensionality. The ker-
nel trick allows the computation of the vector product φ(xi)

Tφ(xj) in the lower
dimension input space. From Mercer’s theorem, there is a class of mappings
φ such that φ(x)Tφ(y) = K(x, y), where K is a corresponding kernel function.
Being able to compute the vector products in the lower dimension input space
while solving the classification problem in the linearly separable feature space
is a major advantage of SVMs using a kernel function. The dual problem then
becomes to:

find α that maximize
∑
i αi −

1
2

∑
i

∑
j αiαjyiyjK(xi, xj)

subject to
∑N
i=1 αiyi = 0, 0 ≤ αi ≤ C, ∀i

The resulting SVM takes the form: f(x) = wTφ(xi) + b =∑N
i=1 αiyiK(xi, x) + b
The most common kernel function can be classified as follow:

• Linear kernel function (identity Kernel): K(x, y) = (xT y)

• Polynomial kernel function with degree d: K(x, y) = (γxT y + r)d, γ > 0

• Radial basis kernel function (RBF): K(x, y) = exp(−γ||x− y||2),γ > 0

• Sigmoid kernel function: K(x, y) = tanh(γxT y + r)

Here, γ, r, and d are kernel parameters.
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5.2.5 Experiments on Proof-Pattern Recognition by Support Vector
Machines

This section explains the main experiments procedures which performed using
SVM. Many users of SVM apply the basic procedures now which are transform-
ing the data to the format of an SVM package, randomly try a few kernels and
parameters, and test. In our experiments, we have used the following proce-
dures:

• We transform the data format of an SVM package.

• We considered the RBF kernel function K(x, y) = exp(−γ||x− y||2).

• We used the cross validation to find the best parameters C and γ.

• We used the the best parameter C and γ to train the data set.

• We tested the data.

All experiments including SVM were performed in Matlab by using Bioin-
formatics toolbox. We have used SVMCLASSIFY function to train an SVM
model over training examples and SVMTRAIN function to test an SVM model
over testing examples. In addition, we also have used CROSSVALIND function
to set up cross validation function and CLASSPERF to evaluate the classifier
performance. There is documentation available online in MathWorks website
which explains how you can use these functions in more details.

We used data set with size of 400 examples of coinductive derivation tree
for various experiments. All examples represent four different problems; we
used these examples for train, test and validate the select SVM model. In
addition, we applied two different cross validation methods which are K-Fold
Cross Validation and Leave-One-Out Cross Validation. The main reason to
apply two different approaches to validate the model is that most of problems
have more positive examples than negative examples. As a result, we found out
that Leave-One-Out Cross Validation method is more appropriate to validate
SVM models for these problems than K-Fold Cross Validation. We will briefly
present the main idea of two Cross Validation methods in following subsections:

5.3 K-Fold Cross Validation method

In this method, the original data set is randomly divided into k sub data sets.
Single sub data set is taken out of the k sub data set as validation data for
testing the selected model, and the remaining (k− 1) sub data sets are used for
training the model. The cross validation procedure is then repeated k times,
with each of the k sub data sets used exactly once as validation data. The
k result from the folds then can be averaged or combined to produce a single
estimation. The advantage of the method over repeated random sub data set
is that all observations are used for both training and validation, and also each
observation is used for validation exactly once. We used the following code to
train, test and validate data set for Problem 1.
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cvFolds = crossvalind(’Kfold’, ’Target_P5’, 10); %# get indices of 10-fold CV

cp = classperf(Target_P5); %# init performance tracker

for i = 1:10 %# for each fold

testIdx = (cvFolds == i); %# get indices of test instances

trainIdx = ~testIdx; %# get indices training instances

%# train an SVM model over training instances

svmModel = svmtrain(Input_P5(trainIdx,:), Target_P5(trainIdx), ...

’Showplot’,false, ’Method’,’QP’, ...

’Kernel_Function’,’rbf’, ’RBF_Sigma’,1);

%# test using test instances

pred = svmclassify(svmModel, Input_P5(testIdx,:), ’Showplot’,false);

%# evaluate and update performance object

cp = classperf(cp, pred, testIdx);

end

%# get accuracy

cp.CorrectRate

ans =

0.79333

6 Machine-learning proof patterns

Here, we test generality, accuracy, and robustness of the method of proof-tree
feature representation on a range of classification tasks and implementation
scenarios.

For the experiments of this section, we used data sets of various sizes - from
120 to 400 examples of coinductive trees for various experiments; we sampled
trees produced for several distinct logic programs – such as ListNat and Stream

above, see [27]. Finally, we repeated all experiments using three-layer neural
networks of various sizes, and compared the results with those given by the
SVMs with kernel functions.

Note that we deliberately did not tune the learning functions in neural net-
works to fit our symbolic data; but see e.g. [8, 39, 40].

Problem 1 (Classification of well-formed and ill-formed proofs)
Given a set of examples of well-formed and ill-formed coinductive trees, classify
any new example of a coinductive tree in either of the two classes.

Figures 1, 2, 38, 44 show well-formed trees. Trees that do not conform to
Definition 8 are ill-formed, see the numerous figures below for examples.
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Neural Net - ListNat Neural net - Stream SVM - Stream

Problem 1 76.4% 84.3 % 89 %
Problem 2.1 92.3% 99.1 % 88 %

Problem 2 Extended 96.3%
Problem 2.2 n/a 90.6 % 88%
Problem 3 99 % n/a n/a

Problem 3 Extended 86 % n/a n/a
Problem 4 n/a 85.7 % 90%
Problem 5 82.4 % 82.4% n/a

Figure 13: Summary of the best-average results of classification of coinductive proof trees
for the classification problems of Section 6, performed in neural networks and SVMs.

list(cons(x, cons(y, z)))

nat(x)list(cons(y, z))

nat(y) list(z)

list(cons(x, cons(y, z)))

nat(x)

2

list(cons(y, z))

nat(y)

2

list(z)

2

Figure 14: Well-formed and well-typed (left) and ill-formed (right) coinductive
trees, well-formed trees are generated by the algorithm of Definition 8.

This task is one of the most difficult for pattern-recognition, due to a wide
range of possible erroneous proofs compared to the correct ones. For experi-
ments on this problem, we used a set of 117 examples of well-formed and ill-
formed trees for ListNat, and 400 examples for Stream, the results are sum-
marised in Figure 13. The samples of goals for forming the coinductive trees
are given in Figures 26 and 27 - 28; and the sample trees are given in Figures 14
- 21. Some of these examples are quite challenging, and we deliberately chose
them to possess a variety of structures and pattern, see Figures with example
trees provided in this section.

The accuracy of classification for ListNat reached as high as 88.2% of accu-
rate classifications, and on average it was 76.4% of accuracy for the best choice
of the size of the hidden layer (50 neurons). The accuracy of classification for
Stream was slightly higher, due to a bigger data set provided, but also due to
a more regular structure of derivations. The best average was 84.3 % for ten
re-training cycles.

We have also tried to perform similar test for Stream in SVM, which gave
an average accuracy result of 89%. but the best test climbed as high as 100%
accuracy.

A more interesting task in practical terms is recognition of various proof-
families among well-formed proofs, as this is something that may help to opti-
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list(cons(x, cons(y, x)))

nat(x)list(cons(y, x))

nat(y) list(x)

list(cons(x, cons(y, x)))

nat(x)

2

list(cons(y, x))

nat(y)

2

list(x)

2

Figure 15: Well-formed and ill-typed (left) and ill-formed (right) coinductive
trees; well-formed trees are generated by the algorithm of Definition 8.

nat(s(s(s(s(O)))))

nat(s(s(s(O)))

nat(s(s(O)))

nat(s(O))

nat(O)

2

nat(s(s(s(s(O)))))

nat(s(s(s(O)))

nat(s(s(O)))

Figure 16: Well-formed and well-typed (left) and ill-formed (right) coinductive
trees; well-formed trees are generated by the algorithm of Definition 8.
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list(cons(s(O), cons(s(O), nil)))

nat(s(O))

nat(O)

2

list(cons(s(O), nil))

nat(s(O))

nat(O)

2

list(nil)

2

list(cons(s(O), cons(s(O), nil)))

nat(s(0)) list(cons(s(O), nil))

nat(s(O))

nat(O)

list(nil)

Figure 17: Well-formed and well-typed (left) and ill-formed (right) coinductive
trees; well-formed trees are generated by the algorithm of Definition 8.

list(cons(s(z), cons(s(z), s(z))))

nat(s(z))

nat(z)

list(cons(s(z), s(z)))

nat(s(z))

nat(z)

list(s(z))

list(cons(s(z), cons(s(z), s(z))))

nat(s(z))

nat(z)

2

list(cons(s(z), s(z)))

nat(s(z))

nat(z)

2

list(s(z))

2

Figure 18: Well-formed and ill-typed (left) and ill-formed (right) coinductive
trees; well-formed trees are generated by the algorithm of Definition 8.
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nat(cons(s(O), cons(s(O), nil))) list(cons(s(O), cons(s(O), nil)))

nat(s(0))

nat(O)

list(cons(s(O), nil))

nat(s(O))

nat(O)

list(nil)

Figure 19: Well-formed and ill-typed (left) and ill-formed (right) coinductive
trees; well-formed trees are generated by the algorithm of Definition 8.

list(cons(s(nil), cons(O, nil)))

nat(s(nil))

nat(nil)

list(cons(O, nil))

nat(O)

2

list(nil)

2

list(cons(s(O), cons(s(O), x)))

nat(s(0))

nat(O)

list(cons(s(O), x))

nat(s(O))

nat(O)

list(x)

Figure 20: Well-formed and ill-typed (left) and ill-formed (right) coinductive
trees; well-formed trees are generated by the algorithm of Definition 8.

nat(s(nil(S(S))))

nat(nilSS)

nat(s(nil(S(S))))

nat(nilSS)

2

Figure 21: Well-formed and ill-typed (left) and ill-formed (right) coinductive
trees; well-formed trees are generated by the algorithm of Definition 8.
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stream(scons(x, scons(y, z)))

bit(x) stream(scons(y, z))

bit(x) stream(z)

stream(scons(x, scons(y, z)))

bit(x)

2

stream(scons(y, z))

bit(y)

2

stream(x)

Figure 22: Well-formed and well-typed (left) and ill-formed (right) coinductive
trees. Note that as opposed to proof-patterns in ListNat well-formed and well-
typed proof-trees for Stream will always have the right-most branch incomplete.

stream(scons(x, scons(y, 1)))

bit(x) stream(scons(y, 1))

bit(y) stream(1)

stream(scons(x, scons(y, 1)))

bit(x)

2

stream(scons(y, 1))

bit(y)

2

stream(1)

2

Figure 23: Well-formed and ill-typed (left) and ill-formed (right) coinductive
trees.

stream(scons(1, scons(0, x)))

bit(1)

2

stream(scons(0, x))

bit(0)

2

stream(x)

stream(scons(1, scons(0, x)))

bit(1) stream(scons(0, x))

bit(0) stream(x)

Figure 24: Well-formed and well-typed (left) and ill-formed (right) coinductive
trees.
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stream(scons(x, scons(x, 0)))

bit(x) stream(cons(x, 0))

bit(x) stream(0)

stream(scons(x, scons(x, 0)))

bit(x)

2

stream(scons(x, 0))

bit(x)

2

sream(0)

2

Figure 25: Well-formed and ill-typed (left) and ill-formed (right) coinductive
trees.

Derivation goals derivation goals

list(cons(x,y)) list(cons(Sx, cons(nil, nil)))
list(cons(sO, cons (SO, nil))) list(cons(Sx, cons(y,nil)))

list(cons(x, cons(y,z)) list(cons(x, cons(S0,S0))
list(cons(nil,SO)) nat(SSSSO)

list(cons(S(nil), cons(O, nil))) nat(SSSSnil)
list(cons(SO,cons(O,nil))) nat(SSO)

nat(SSSSx) nat(S(nil(SS)))

Figure 26: The table contains some of the goals which were used to generate coinductive
proof trees (cf. Definition 8) for the Problem 1; program ListNat. The examples of well-
formed and ill-formed coinductive trees for such goals are given in this section. There are 137
examples like the above used for the experiments in Figure 13; the data set is also available
at [27].

mize proof-search.

Problem 2 (Discovery of proof families) Given a set of positive and nega-
tive examples of well-formed coinductive trees belonging to a proof family, clas-
sify any new example of a coinductive tree, whether it belongs to the given family.

Definition 22 Given a logic program P , and an atomic formula A, we say that
a tree T belongs to the family of coinductive trees determined by A, if

• T is a coinductive tree with root A′ and

• there is a substitution θ such that Aθ = A′.

Example 23 The three trees in Figure 1 belong to the family of proofs deter-
mined by list(cons(x,cons(y,z))).

Determining whether a given tree belongs to a certain proof family has prac-
tical applications. For Figure 1, knowing that the right-hand tree belongs to the
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Goals/Positive Examples Goals/Positive Examples

1.stream(x) 51.stream(scons(z,scons(z,z)))
2.stream(0) 52.stream(scons(x,scons(z,z)))
3.stream(1) 53.stream(scons(0,scons(z,z)))
4.stream(scons(x,y)) 54.stream(scons(x,scons(x,0)))
5.stream(scons(1,x)) 55.stream(scons(0,scons(y,z)))
6.stream(scons(0,x)) 56.stream(scons(x,scons(z,0)))
7.stream(scons(x,1)) 57.stream(scons(x,scons(1,z)))
8.stream(scons(x,0)) 58.stream(scons(1,scons(z,z)))
9.stream(scons(0,0)) 59.stream(scons(1,scons(y,z)))
10.stream(scons(1,1)) 60.stream(scons(1,scons(1,z)))
11.stream(scons(0,1)) 61.stream(scons(1,scons(y,y)))
12.stream(scons(1,0)) 62.stream(scons(x,scons(1,x)))
13.stream(scons(x,scons(y,z))) 63.stream(scons(x,scons(x,1)))
14.stream(scons(0,scons(z,y))) 64.bit(scons(0,scons(1,x)))
15.stream(scons(x,scons(0,y))) 65.bit(scons(1,scons(1,x)))
16.stream(scons(x,scons(y,0))) 66.bit(scons(0,scons(0,x)))
17.stream(scons(1,scons(y,z))) 67.bit(scons(1,scons(0,x)))
18.stream(scons(x,scons(1,z))) 68.bit(scons(x,scons(x,x)))
19.stream(scons(x,scons(y,1))) 69.bit(scons(x,scons(0,x)))
20.stream(scons(1,scons(1,1))) 70.bit(scons(0,scons(0,x)))
21.stream(scons(0,scons(0,0))) 71.bit(scons(x,scons(y,z)))
22.stream(scons(x,scons(1,1))) 72.bit(scons(x,scons(x,y)))
23.stream(scons(x,scons(0,0))) 73.bit(scons(y,scons(y,y)))
24.stream(scons(x,scons(1,0))) 74.bit(scons(z,scons(z,z)))
25.stream(scons(x,scons(0,1))) 75.bit(scons(x,scons(x,0)))
26.stream(scons(1,scons(1,scons(x,1))) 76.bit(scons(0,scons(z,z)))
27.stream(y) 77.bit(scons(x,scons(0,z)))
28.stream(z) 78.bit(scons(x,scons(y,0)))
29.stream(scons(x,scons(x,x))) 79.bit(scons(x,scons(1,z)))
30.stream(scons(y,scons(y,y))) 80.bit(scons(1,scons(y,z)))
31.stream(scons(z,scons(z,z))) 81.bit(scons(1,scons(1,z)))
32.stream(scons(x,scons(y,0))) 82.bit(scons(1,scons(z,z)))
33.stream(scons(x,scons(y,1))) 83.bit(scons(x,scons(1,x)))
34.stream(scons(1,scons(x,1))) 84.bit(scons(x,scons(y,1)))
35.stream(scons(1,scons(0,1))) 85.stream(0)
36.stream(scons(0,scons(1,1))) 86.stream(scons(0,scons(0,0)))
37.stream(scons(1,scons(0,0))) 87.stream(scons(1,scons(1,1)))
38.stream(scons(x,scons(x,scons(y,y))) 88.stream(scons(0,scons(1,0)))
39.stream(scons(x,scons(x,scons(x,0))) 89.stream(scons(0,scons(0,1)))
40.stream(scons(x,scons(x,scons(0,y))) 90.stream(scons(1,scons(0,0)))
41.stream(scons(1,scons(1,scons(0,y))) 91.stream(scons(1,scons(1,0)))
42.stream(scons(0,scons(0,scons(1,1))) 92.stream(scons(1,scons(0,1)))
43.stream(scons(0,scons(1,scons(y,y))) 93.stream(scons(0,scons(1,1)))
44.stream(scons(0,scons(1,y))) 94.bit(scons(0,scons(0,0)))
45.stream(scons(1,scons(1,y))) 95.bit(scons(1,scons(1,1)))
46.stream(scons(0,scons(0,y))) 96.bit(scons(0,scons(1,0)))
47.stream(scons(1,scons(0,y))) 97.bit(scons(1,scons(0,0)))
48.stream(scons(x,scons(x,x))) 98.bit(scons(1,scons(1,0)))
49.stream(scons(x,scons(0,x))) 99.bit(scons(1,scons(0,1)))
50.stream(scons(y,scons(y,y))) 100.bit(scons(0,scons(1,1)))

Figure 27: The table contains the goals which were used to generate coinductive proof trees
(cf. Definition 8) for the Problem 1; program Stream. The examples of well-formed and ill-
formed coinductive trees for such goals are given in this section. The data set is also available
at [27].
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Goals/Positive Examples Goals/Positive Examples

101.stream(1) 151.stream(scons(0,scons(1,scons(1,1)))
102.stream(scons(0,z)) 152.stream(scons(1,scons(0,scons(1,1)))
103.stream(scons(z,z)) 153.stream(scons(1,scons(1,scons(0,1)))
104.stream(scons(y,1)) 154.stream(scons(1,scons(1,scons(1,0)))
105.stream(scons(1,x)) 155.stream(scons(1,scons(0,scons(0,0)))
106.stream(scons(0,y)) 156.stream(scons(0,scons(1,scons(0,0)))
107.stream(scons(1,1)) 157.stream(scons(0,scons(0,scons(1,0)))
108.stream(scons(0,0)) 158.stream(scons(0,scons(0,scons(0,1)))
109.stream(scons(1,0)) 159.stream(scons(0,scons(0,scons(1,1)))
110.stream(scons(0,1)) 160.stream(scons(1,scons(1,scons(0,0)))
111.stream(scons(0,1)) 161.stream(scons(1,scons(0,scons(0,1)))
112.bit(scons(0,x)) 162.stream(scons(0,scons(1,scons(1,0)))
113.bit(scons(1,x)) 163.stream(scons(x,scons(1,0)))
114.bit(scons(x,x)) 164.stream(scons(x,scons(0,1)))
115.bit(scons(y,y)) 165.stream(scons(1,scons(1,scons(y,1)))
116.bit(scons(z,z)) 166.stream(y)
117.bit(scons(y,1)) 167.stream(z)
118.bit(scons(z,0)) 168.stream(scons(x,scons(x,x)))
119.bit(scons(1,1)) 169.stream(scons(y,scons(y,y)))
120.bit(scons(0,0)) 170.stream(scons(z,scons(z,z)))
121.bit(scons(1,0)) 171.stream(scons(x,scons(y,0)))
122.bit(scons(0,1)) 172.stream(scons(x,scons(y,1)))
123.stream(y) 173.stream(scons(1,scons(y,1)))
124.stream(scons(0,scons(0,scons(0,z))) 174.stream(scons(1,scons(0,1)))
125.stream(scons(1,scons(1,scons(1,z))) 175.stream(scons(0,scons(1,1)))
126.stream(scons(1,scons(1,scons(0,z))) 176.stream(scons(1,scons(0,0)))
127.stream(scons(1,scons(0,scons(1,z))) 177.stream(scons(x,scons(x,scons(x,x)))
128.stream(scons(0,scons(1,scons(1,z))) 178.stream(scons(y,scons(y,scons(y,0)))
129.stream(scons(1,scons(0,scons(0,z))) 179.stream(scons(x,scons(x,scons(0,z)))
130.stream(scons(0,scons(1,scons(0,z))) 180.stream(scons(1,scons(1,scons(0,z)))
131.stream(scons(0,scons(0,scons(1,z))) 181.stream(scons(0,scons(0,scons(1,1)))
132.stream(scons(x,scons(0,scons(0,z))) 182.stream(scons(0,scons(1,scons(z,z)))
133.stream(scons(x,scons(1,scons(1,0))) 183.stream(scons(0,scons(0,scons(0,z)))
134.stream(scons(x,scons(1,scons(1,0))) 184.stream(scons(1,scons(1,scons(1,z)))
135.stream(scons(x,scons(0,scons(1,0))) 185.stream(scons(1,scons(1,scons(0,z)))
136.stream(scons(x,scons(1,scons(1,1))) 186.stream(scons(1,scons(0,scons(1,z)))
137.stream(scons(x,scons(0,scons(0,0))) 187.stream(scons(0,scons(1,scons(1,z)))
138.stream(scons(x,scons(1,scons(0,0))) 188.stream(scons(1,scons(0,scons(0,z)))
139.stream(scons(x,scons(0,scons(1,1))) 189.stream(scons(0,scons(1,scons(0,z)))
140.stream(scons(0,scons(y,scons(0,1))) 190.stream(scons(0,scons(0,scons(1,z)))
141.stream(scons(1,scons(y,scons(1,0))) 191.stream(scons(x,scons(0,scons(0,1)))
142.stream(scons(1,scons(y,scons(0,1))) 192.stream(scons(x,scons(1,scons(1,0)))
143.stream(scons(0,scons(y,scons(1,0))) 193.stream(scons(x,scons(1,scons(0,1)))
144.stream(scons(1,scons(y,scons(1,1))) 194.stream(scons(x,scons(0,scons(1,0)))
145.stream(scons(0,scons(y,scons(0,0))) 195.stream(scons(x,scons(1,scons(0,1)))
146.stream(scons(1,scons(y,scons(0,0))) 196.stream(scons(x,scons(1,scons(1,1)))
147.stream(scons(0,scons(y,scons(1,0))) 197.stream(scons(x,scons(1,scons(0,0)))
148.stream(scons(0,scons(y,scons(1,1))) 198.stream(scons(x,scons(0,scons(1,1)))
149.stream(scons(1,scons(1,scons(1,1))) 199.stream(scons(0,scons(1,scons(0,1)))
150.stream(scons(0,scons(0,scons(0,0))) 200.stream(scons(1,scons(y,scons(1,0)))

Figure 28: The table contains the goals which were used to generate coinductive proof trees
(cf. Definition 8) for the Problem 1; program Stream. The examples of well-formed and ill-
formed coinductive trees for such goals are given in this section. The data set is also available
at [27].
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same family as the left-hand-side tree would save the intermediate derivation
step. Note that unlike [39], it’s not the shape of a formula, but proof patterns it
induces that influences the classification. Moreover, according to Definition 11,
determining such intermediate trees requires unification algorithm, which does
not yield parallelisation [12].

For the program ListNat, we used neural networks of different sizes, and
60 examples (the original set) and 255 examples (the extended set) of
trees classified as we used positive and negative examples of proofs belonging
the proof family of list(cons(x,cons(y,z))), cf. Figures 1 and 38, for the
glimpse of how the example trees may look, and Figures 29 – 29 ; and [27] for
the full list of the goals used to generate such trees. The accuracy of the pattern
recognition for the smaller set showed the best average of 92.3%; and 96.3% for
the extended set. For the program Stream, we tested two families of proofs, in-
duced by stream(scons(x,scons(y,z))) and stream(scons(x,scons(x,x)))

(cf. Problems 2.1 and 2.2 in Figures 36 – 37 and 33 – 35). Some of the coin-
ductive trees from the former family also belong to the latter family, but not
conversely, which made them interesting candidates for the experiments. We
significantly increased the number of training examples to 193 and 143 for the
two experiments. The results in Neural networks and SVMs were very robust,
see Table 13.

Problem 3 (Discovery of potentially successful proofs) Given a set of
positive and negative examples of well-formed coinductive trees belonging to a
success family, classify any new example of a coinductive tree accordingly.

Definition 22 conveys the idea of coinductive derivations, but it may not
exactly capture the common intuition of what a proof is. E.g., a coinductive tree
for list(cons(x,cons(y,x)))) will belong to the same proof-family as trees
of Figure 1, however, the formula will never be proven, even if the coinductive
tree induces several further derivations steps, such as shown in Figure 38.

We used 60 (the original set) and 255 (the extended set) exam-
ples of various trees, belonging or not belonging to the success family of
list(cons(x,cons(y,z)))) ; see Figures 40 – 43. The average accuracy was
99% and 86 % for the small and extended sets of examples respectively.

Definition 24 We say that a proof-family F is a success family if, for all
T ∈ F , T generates a proof-family that contains a success subtree (cf. Definition
9).

Proposition 25 Given a coinductive tree T , there exists a success family F
such that T ∈ F if and only if T has a successful derivation.

This problem has solutions only for inductive definitions and corresponding
coinductive trees. Therefore, we tested it only for ListNat. We used neural-
network pattern-recognition tool to recognise trees from the success family of

39



Goals/positive examples Goals/negative examples

10. list(cons(x, cons (y,z)) 1. nat(ssss0)
11. list(cons(0, cons (y,nil)) 2. nat(ssssnil)
12. list(cons(0, cons (0,nil)) 3. nat(s s (cons(0,nil)))
13. list(cons(x, cons (y,nil)) 4. nat(ssssx)
14. list(cons(x, cons (0,nil)) 5. nat(s nil sss)
15. list(cons(x, cons (0,y)) 6. nat(cons(x, cons(y,z)))
16. list(cons(0, cons (y,z)) 7. nat(cons(x,y))
17. list(cons(0, cons (0,y)) 8. nat(nil)

18. list(cons(x, cons (s0,nil)) 9. nat(x)
19. list(cons(0, cons (s0,nil)) 50 list(cons(0,nil))
20. list(cons(s0, cons (x,nil)) 51. list(cons(x,nil))
21. list(cons(s0, cons (0,nil)) 52. list(cons(nil,x))
22. list(cons(s0, cons (s0,nil)) 53. list(cons(x,0))
23. list(cons(x, cons (s0,y)) 54. list(cons(nil,0))
24. list(cons(0, cons (s0,x)) 55. list(x)
25. list(cons(s0, cons (x,y)) 56. list(nil)
26. list(cons(s0, cons (0,y)) 57. list(0)

27. list(cons(s0, cons (s0,nil)) 61. nat(s(s(s(s(s(0))))))
28. list(cons(x,cons(nil,y))) 62. nat(s(s(s(s(s(x))))))

29. list(cons(x,cons(nil,nil))) 63. nat(s(s(s(0))))
30. list(cons(nil,cons(x,nil))) 64. nat(s(s(0)))

31. list(cons(nil,cons(nil,nil))) 65. nat(s(0))
32. list(cons(x,cons(y,0))) 66. nat(0)
33. list(cons(0,cons(y,0)))
34. list(cons(0,cons(0,0)))
35. list(cons(x,cons(0,0)))

36. list(cons(x,cons(nil,0)))
37. list(cons(0,cons(nil,x)))
38. list(cons(0,cons(nil,0)))

39. list(cons(0,cons(nil,nil)))
40. list(cons(nil,cons(0,nil)))
41. list(cons(nil,cons(x,y)))
42. list(cons(nil,cons(0,x)))
43. list(cons(nil,cons(x,0)))
44. list(cons(nil,cons(0,0)))

45. list(cons(nil,cons(nil,x)))
46. list(cons(nil,cons(x,nil)))
47. list(cons(nil,cons(nil,0)))

58. list(cons(x,cons(y,x)))
59. list(cons(x,cons(x,x)))
60. list(cons(x,cons(y,y)))

Figure 29: The table contains the goals which were used to generate examples coinductive
proof trees (cf. Definition 8) for the pattern-recognition Problem 2; program ListNat; and
proof0family of list(x,cons(y,z)). This is the original (smaller) data set; it is also available
at [27].
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90. list(cons(x,cons(x,cons(x,y)))) 61. nat(s(s(s(s(s(0))))))
91. list(cons(x,cons(y,cons(y,z)))) 62. nat(s(s(s(s(s(x))))))

92. list(cons(x,cons(x,cons(x, cons(x,y))))) 63. nat(s(s(s(0))))
93. list(cons(x,cons(x,cons(y,z)))) 64. nat(s(s(0)))
94. list(cons(x,cons(x,cons(x,x)))) 65. nat(s(0))

95. list(cons(x,cons(x,cons(x, cons(x,x))))) 66. nat(0)
96. list(cons(x,cons(x,cons(x,cons(x, cons(x,x)))))) 67. nat(x(s(s(s(s(0))))))

118. list(cons(s(x)),cons(x,y)) 68. nat(s(s(s(s(s(nil))))))
98. list(cons(x,cons(x,cons(y,cons(x,y))))) 69. nat(s(s(s(nil))))
99. list(cons(x,cons(y,cons(x,cons(x,y))))) 70. nat(s(s(nil)))

100. list(cons(y,cons(x,cons(x,z)))) 71. nat(s(nil))
101. list(cons(0,cons(x,cons(x,y)))) 72. nat(s(s(s(s(s(x))))))
102. list(cons(x,cons(0,cons(x,y)))) 73. nat(s(s(s(0))))
103. list(cons(0,cons(0,cons(x,y)))) 74. nat(s(s(x)))
104. list(cons(0,cons(0,cons(0,y)))) 75. nat(s(x))

105. list(cons(0,cons(0,cons(0,nil)))) 76. nat(s(x(s(s(s(x))))))
106. list(cons(s(0),cons(x,z))) 77. nat(s(x(s(s(s(0))))))
107. list(cons(x,cons(s(0),y))) 78. nat(s(s(x(s(s(x))))))

108. list(cons(s(0),cons(x,nil))) 79. nat(s(s(x(s(s(0))))))
109. list(cons(x,cons(s(0),nil))) 80. nat(s(0(s(s(s(0))))))

110. list(cons(x,cons(x,cons(x,nil)))) 81. nat(s(s(0(s(s(0))))))
111. list(cons(x,cons(x,cons(x,cons(x,nil))))) 82. nat(0(s(s(s(s(0))))))

112. list(cons(x,cons(y,cons(x,nil)))) 83. nat(s(s(s(0(s(0))))))
113. list(cons(x,cons(0,cons(x,nil)))) 84. nat(s(s(s(s(0(0))))))
114. list(cons(0,cons(0,cons(x,nil)))) 85. nat(s(s(s(s))))
115. list(cons(0,cons(0,cons(0,nil)))) 86. nat(s(s(s(0(0(0))))))

119. list(cons(s(x)),cons(x,nil)) 87. nat(s(s(0(0(0(0))))))
120. list(cons(x),cons(s(x),y)) 88. nat(s(s(0(s(s(x))))))

121. list(cons(s(x)),cons(s(x),y)) 89. nat(s(s(0(s(x)))))
122. list(cons(x),cons(s(x),nil)) 97. list(cons(x,x))

123. list(cons(s(x),cons(s(x),nil))) 116. list(cons(s(s(0)),nil))
124. list(cons(s(x),cons(s(x),cons(s(x),y)))) 117. list(cons(s(s(x)),nil))

125. list(cons(s(x),cons(s(x),cons(s(x),nil)))) 97. list(cons(x,x))
126. list(cons(s(x),cons(x,cons(x,y)))) 181. list(s(s(0)),nil)

127. list(cons(s(x),cons(x,cons(x,nil)))) 182. list(s(s(x)),nil)
128. list(cons(x,cons(s(x),cons(x,y)))) 228. list(s(s(s(0))),nil)

129. list(cons(x,cons(s(x),cons(x,nil)))) 229. list(s(s(s(x))),nil)
130. list(cons(x,cons(x,cons(s(x),y)))) 230. list(s(s(s(0))),x)

131. list(cons(x,cons(x,cons(s(x),nil)))) 231. list(s(s(s(x))),y)
132. list(cons(s(0),cons(x,y))) 232. list(s(s(s(x))),x)
133. list(cons(s(0),cons(0,y)))) 233. list(s(s(x)),x)
134. list(cons(s(0),cons(x,nil))) 234. list(s(s(s(s(x)))),s(x))
135. list(cons(s(0),cons(0,nil)))) 235. list(s(s(s(s(x)))),s(s(x)))

136. list(cons(s(0),cons(s(x),y)))) 236. list(s(s(s(s(x)))),s(s(s(x))))
137. list(cons(0,cons(s(0),y)))) 237. list(s(s(s(s(x)))),s(s(s(s(x)))))

138. list(cons(0,cons(s(x),nil)))) 238. list(x,s(s(s(s(x)))))
139. list(cons(0,cons(s(0),nil)))) 253. list(s(s(x)),s(s(s(s(x)))))

140. list(cons(s(0),cons(s(y),y)))) 254. list(s(s(s(x))),s(s(s(s(x)))))

Figure 30: The table contains the goals which were used to generate the extended set of
examples of coinductive proof trees (cf. Definition 8) for the pattern-recognition Problem 2;
program ListNat; and proof-family of list(x,cons(y,z)). The the data set is also available
at [27].
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141. list(cons(s(0),cons(s(0),y))))
142. list(cons(s(0),cons(x,nil))))

143. list(cons(s(0),cons(s(0),nil))))
144. list(cons(s(0),cons(s(0),cons(s(0),y))))

145. list(cons(s(0),cons(s(0),cons(s(0),nil))))
146. list(cons(s(0),cons(0,cons(0,y))))

147. list(cons(s(0),cons(0,cons(0,nil))))
148. list(cons(0,cons(s(0),cons(0,y))))

149. list(cons(0,cons(s(0),cons(0,nil))))
150. list(cons(0,cons(0,cons(s(0),y))))

151. list(cons(0,cons(0,cons(s(0),nil))))
152. list(cons(y,cons(x,cons(x,nil))))

153. list(cons(nil,cons(y,cons(x,nil))))
154. list(cons(nil,cons(nil,cons(x,nil))))

155. list(cons(nil,cons(nil,cons(nil,nil))))
156. list(cons(nil,cons(nil,cons(nil,cons(nil,nil)))))

157. list(cons(nil,cons(nil,cons(nil,cons(nil,cons(nil,nil))))))
158. list(cons(nil,cons(x,cons(x,y))))
159. list(cons(nil,cons(x,cons(y,x))))
160. list(cons(x,cons(nil,cons(y,x))))
161. list(cons(x,cons(nil,cons(x,y))))

162. list(cons(x,cons(nil,cons(x,cons(x,x)))))
163. list(cons(x,cons(nil,cons(x,x))))

164. list(cons(s(0),cons(s(0),cons(s(0),s(0)))))
165. list(cons(s(0),cons(0,cons(0,s(0)))))
166. list(cons(nil,cons(0,cons(0,s(0)))))
167. list(cons(nil,cons(s(0),cons(0,0))))

168. list(cons(nil,cons(s(0),cons(s(0),nil))))
169. list(cons(s(0),cons(nil,cons(s(0),nil))))
170. list(cons(s(0),cons(s(0),cons(nil,nil))))

171. list(cons(s(s(0)),cons(s(0),nil)))
172. list(cons(s(s(0)),cons(0,nil)))
173. list(cons(0,cons(s(s(0)),nil)))

174. list(cons(s(s(0)),cons(s(s(0)),nil)))
175. list(cons(s(0),cons(s(s(0)),nil)))
176. list(cons(s(s(0)),cons(s(0),x)))

177. list(cons(s(s(0)),cons(0,x)))
178. list(cons(0,cons(s(s(0)),x)))

179. list(cons(s(s(0)),cons(s(s(0)),x)))
180. list(cons(s(0),cons(s(s(0)),x)))

183. list(cons(s(s(x))),cons(s(s(x)),nil)))
184. list(cons(s(s(0)),cons(x,x)))
185. list(cons(x,cons(s(s(0)),x)))

186. list(cons(s(s(x)),cons(s(x),nil)))
187. list(cons(s(s(x)),cons(x,nil)))
188. list(cons(x,cons(s(s(x)),nil)))

189. list(cons(s(s(x)),cons(s(s(x)),nil)))
190. list(cons(s(x),cons(s(s(x)),nil)))
191. list(cons(s(s(x)),cons(s(x),y)))

192. list(cons(s(s(x)),cons(x,y)))
193. list(cons(x,cons(s(s(x)),y)))

195. list(cons(s(x),cons(s(s(x)),y)))

Figure 31: The table contains the goals which were used to generate the extended set of
examples of coinductive proof trees (cf. Definition 8) for the pattern-recognition Problem 2;
program ListNat; and proof-family of list(x,cons(y,z)). The the data set is also available
at [27].
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196. list(cons(s(s(x)),cons(s(x),x)))
197. list(cons(s(s(x)),cons(x,x)))
198. list(cons(x,cons(s(s(x)),x)))

199. list(cons(s(s(x)),cons(s(s(x)),x)))
200. list(cons(s(x),cons(s(s(x)),x)))

201. list(cons(s(s(s(x))),cons(s(s(s(x))),x)))
202. list(cons(s(s(x)),cons(s(x),x)))
203. list(cons(s(s(x)),cons(x,s(x))))
204. list(cons(x,cons(s(s(x)),s(x))))

205. list(cons(s(s(x)),cons(s(s(x)),s(x))))
206. list(cons(s(x),cons(s(s(x)),s(x))))

207. list(cons(s(s(x)),cons(s(x),s(s(x)))))
208. list(cons(s(s(x)),cons(x,s(s(x)))))
209. list(cons(x,cons(s(s(x)),s(s(x)))))

210. list(cons(s(s(x)),cons(s(s(x)),s(s(x)))))
211. list(cons(s(x),cons(s(s(x)),s(s(x)))))

212. list(cons(s(s(s(x))),cons(s(s(s(x))),s(s(s(x))))))
213. list(cons(s(s(s(x))),cons(s(s(x)),s(s(s(x))))))
214. list(cons(s(s(s(x))),cons(s(s(s(x))),s(s(x)))))
215. list(cons(s(s(x)),cons(s(s(s(x))),s(s(s(x))))))

216. list(cons(s(s(s(x))),cons(s(s(s(x))),x)))
217. list(cons(x,cons(s(s(s(x))),s(s(s(x))))))
218. list(cons(s(s(s(x))),cons(x,s(s(s(x))))))

219. list(cons(s(s(s(x))),cons(s(s(s(x))),s(x))))
220. list(cons(s(s(s(x))),cons(s(x),s(s(s(x))))))
221. list(cons(s(x),cons(s(s(s(x))),s(s(s(x))))))
222. list(cons(s(s(s(x))),cons(s(s(s(x))),s(x))))

223. list(cons(s(s(s(x))),cons(s(x),x)))
224. list(cons(s(s(s(x))),cons(s(x),s(x))))

225. list(cons(s(x),cons(s(s(s(x))),x)))
226. list(cons(s(s(s(x))),cons(s(s(x)),x)))
227. list(cons(s(s(x)),cons(s(s(s(x))),x)))

239. list(cons(0,cons(0, cons(0,0))))
240. list(cons(0,cons(0, cons(0, cons(0,0)))))

241. list(cons(0,cons(0, cons(0, cons(0,cons(0,0))))))
242. list(cons(0,cons(x, cons(x,x))))
243. list(cons(0,cons(x, cons(y,x))))
244. list(cons(0,cons(x, cons(y,y))))
245. list(cons(x,cons(0, cons(y,y))))
246. list(cons(y,cons(0, cons(x,y))))
247. list(cons(x,cons(0, cons(x,x))))
248. list(cons(0,cons(x, cons(x,0))))
249. list(cons(0,cons(x, cons(y,0))))
250. list(cons(x,cons(x, cons(y,0))))
251. list(cons(x,cons(y, cons(0,0))))
252. list(cons(x,cons(0, cons(0,0))))

255. list(cons(0,cons(x, cons(x,cons(x,x)))))

Figure 32: The table contains the goals which were used to generate the extended set of
examples of coinductive proof trees (cf. Definition 8) for the pattern-recognition Problem 2;
program ListNat; and proof-family of list(x,cons(y,z)). The the data set is also available
at [27].
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13.stream(scons(x,scons(y,z))) 1.stream(x)
14.stream(scons(0,scons(y,z))) 2.stream(0)
15.stream(scons(x,scons(0,z))) 3.stream(1)
16.stream(scons(x,scons(y,0))) 4.stream(scons(x,y))
17.stream(scons(1,scons(y,z))) 5.stream(scons(1,y)
18.stream(scons(x,scons(1,z))) 6.stream(scons(0,y))
19.stream(scons(x,scons(y,1))) 7.stream(scons(x,1))
20.stream(scons(1,scons(1,1))) 8.stream(scons(x,0))
21.stream(scons(0,scons(0,0))) 9.stream(scons(0,0)))
22.stream(scons(x,scons(1,1))) 10.stream(scons(1,1)))
23.stream(scons(x,scons(0,0))) 11.stream(scons(0,1))
24.stream(scons(x,scons(1,0))) 12.stream(scons(1,0))
25.stream(scons(x,scons(0,1))) 27.stream(y)
26.stream(scons(1,(scons(1,scons(z,1))) 28.stream(scons(x,x))
30.stream(scons(x,(scons(x,x))) 29.stream(scons(y,y))
31.stream(scons(y,(scons(y,y))) 136.stream(y)
32.stream(scons(z,(scons(z,z))) 137.bit(scons(0,1))
33.stream(scons(x,(scons(x,0))) 138.stream(z)
34.stream(scons(x,(scons(x,1))) 139.bit(scons(y,1)).
35.stream(scons(1,(scons(x,1))) 69.stream(1)
36.stream(scons(1,(scons(0,1))) 70.stream(scons(x,x))
37.stream(scons(0,(scons(0,1))) 71.stream(scons(x,1))
38.stream(scons(0,(scons(1,1))) 72.stream(scons(x,0))
39.stream(scons(1,(scons(0,0))) 73.stream(scons(1,1))
40.stream(scons(x,scons(x,scons(y,z)))) 74.stream(scons(0,0))
41.stream(scons(x,scons(x,scons(y,0)))) 75.stream(scons(1,0))
42.stream(scons(x,scons(x,scons(0,x)))) 76.stream(scons(0,1))
43.stream(scons(1,scons(1,scons(0,x)))) 77.bit(scons(0,x)
44.stream(scons(0,scons(0,scons(1,1)))) 78.bit(scons(1,x))
45.stream(scons(0,scons(1,scons(y,y)))) 79.bit(scons(x,y))
46.stream(scons(0,scons(1,y))) 80.bit(scons(x,x))
47.stream(scons(1,scons(1,y))) 81.bit(scons(y,x))
48.stream(scons(0,scons(0,y))) 82.bit(scons(y,1))
48.stream(scons(1,scons(0,y))) 83.bit(scons(0,scons(1,x)))
49.stream(scons(1,scons(1,y))) 84.bit(scons(1,scons(1,x)))
50.stream(scons(x,scons(0,x))) 85.bit(scons(0,scons(0,x)))
51.stream(scons(x,scons(z,z))) 86.bit(scons(1,scons(0,x)))
52.stream(scons(0,scons(z,z)) 87.bit(scons(x,scons(x,x)))
53.stream(scons(x,scons(x,0))) 88.bit(scons(x,scons(0,x)))
54.stream(scons(0,scons(y,z))) 89.bit(scons(0,scons(0,x)))
55.stream(scons(x,scons(z,0))) 90.bit(scons(x,scons(y,z)))
56.stream(scons(x,scons(z,0))) 91.bit(scons(x,scons(x,y)))
57.stream(scons(x,scons(1,z))) 92.bit(scons(y,scons(y,y)))
58.stream(scons(1,scons(y,z))) 93.bit(scons(z,scons(z,z)))
59.stream(scons(1,scons(1,z))) 94.bit(scons(x,scons(x,0)))
95.stream(scons(0,scons(0,scons(0,0)))) 114.bit(scons(0,scons(0,0)))
96.stream(scons(0,scons(1,scons(1,1)))) 115.bit(scons(1,scons(1,1)))
97.stream(scons(1,scons(0,scons(1,1)))) 116.bit(scons(0,scons(1,0)))
98.stream(scons(1,scons(1,scons(0,1)))) 117.bit(scons(1,scons(0,0)))

Figure 33: The table contains some of the goals which were used to generate examples of
coinductive proof trees (cf. Definition 8) for the pattern-recognition Problem 2.1; for program
Stream; and proof-family induced by stream(scons(x,scons(y,z))) . The the data set is also
available at [27].
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99.stream(scons(1,scons(1,scons(1,0)))) 118.bit(scons(1,scons(1,0)))
100.stream(scons(1,scons(0,scons(0,0)))) 119.bit(scons(1,scons(0,1)))
101.stream(scons(0,scons(1,scons(0,0)))) 120.bit(scons(0,scons(1,1)))
102.stream(scons(0,scons(0,scons(1,0)))) 127.stream(scons(0,z))
103.stream(scons(0,scons(0,scons(0,1)))) 128.stream(scons(z,z))
104.stream(scons(0,scons(0,scons(1,1)))) 129.bit(scons(0,x))
105.stream(scons(1,scons(1,scons(0,0)))) 130.bit(scons(1,x))
106.stream(scons(1,scons(0,scons(0,1)))) 131.stream(scons(0,y))
107.stream(scons(0,scons(1,scons(1,1)))) 132.bit(scons(x,x))
109.stream(scons(1,scons(x,scons(1,1)))) 133.bit(scons(y,y))
110.stream(scons(0,scons(x,scons(0,0)))) 134.bit(scons(z,z))
111.stream(scons(1,scons(x,scons(0,0)))) 135.bit(scons(z,z))
112.stream(scons(0,scons(x,scons(1,1))))
113.stream(scons(1,scons(1,scons(1,1))))
121.stream(scons(1,scons(1,y)))
122.stream(scons(0,scons(0,y)))
123.stream(scons(1,scons(0,y)))
124.stream(scons(x,scons(x,x)))
125.stream(scons(x,scons(0,x)))
126.stream(scons(y,scons(y,y)))
140.stream(scons(0,scons(0,scons(0,z)))
141.stream(scons(1,scons(1,scons(1,z)))
142.stream(scons(1,scons(1,scons(0,z)))
143.stream(scons(1,scons(0,scons(1,z)))
144.stream(scons(0,scons(1,scons(1,z)))
145.stream(scons(1,scons(0,scons(0,z)))
146.stream(scons(0,scons(1,scons(0,z)))
147.stream(scons(0,scons(0,scons(1,z)))
148.stream(scons(x,scons(0,scons(0,z)))
149.stream(scons(x,scons(1,scons(1,0)))
150.stream(scons(x,scons(1,scons(1,0)))
151.stream(scons(x,scons(0,scons(1,0)))
152.stream(scons(x,scons(1,scons(1,1)))
153.stream(scons(x,scons(0,scons(0,0)))
154.stream(scons(x,scons(1,scons(0,0)))
155.stream(scons(x,scons(0,scons(1,1)))
156.stream(scons(0,scons(y,scons(0,1)))
157.stream(scons(1,scons(y,scons(1,0)))
158.stream(scons(1,scons(y,scons(0,1)))
159.stream(scons(0,scons(y,scons(1,0)))
160.stream(scons(1,scons(y,scons(1,1)))
161.stream(scons(0,scons(y,scons(0,0)))
162.stream(scons(1,scons(y,scons(0,0)))
163.stream(scons(0,scons(y,scons(1,0)))
164.stream(scons(0,scons(y,scons(1,1)))
165.stream(scons(1,scons(1,scons(1,1)))
166.stream(scons(0,scons(0,scons(0,0)))
167.stream(scons(1,scons(0,1)))
168.stream(scons(0,scons(1,1)))

Figure 34: The table contains some of the goals which were used to generate examples of
coinductive proof trees (cf. Definition 8) for the pattern-recognition Problem 2.1; for program
Stream; and proof-family induced by stream(scons(x,scons(y,z))). The the data set is also
available at [27].
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169.stream(scons(1,scons(0,0)))
170.stream(scons(x,scons(x,scons(x,x)))
171.stream(scons(y,scons(y,scons(y,0)))
172.stream(scons(x,scons(x,scons(0,z)))
173.stream(scons(1,scons(1,scons(0,z)))
174.stream(scons(0,scons(0,scons(1,1)))
175.stream(scons(0,scons(1,scons(z,z)))
176.stream(scons(0,scons(0,scons(0,z)))
177.stream(scons(1,scons(1,scons(1,z)))
178.stream(scons(1,scons(1,scons(0,z)))
179.stream(scons(1,scons(0,scons(1,z)))
180.stream(scons(0,scons(1,scons(1,z)))
181.stream(scons(1,scons(0,scons(0,z)))
182.stream(scons(0,scons(1,scons(0,z)))
183.stream(scons(0,scons(0,scons(1,z)))
184.stream(scons(x,scons(0,scons(0,1)))
185.stream(scons(x,scons(1,scons(1,0)))
186.stream(scons(x,scons(1,scons(0,1)))
187.stream(scons(x,scons(0,scons(1,0)))
188.stream(scons(x,scons(1,scons(0,1)))
189.stream(scons(x,scons(1,scons(1,1)))
190.stream(scons(x,scons(1,scons(0,0)))
191.stream(scons(x,scons(0,scons(1,1)))
192.stream(scons(0,scons(1,scons(0,1)))
193.stream(scons(1,scons(y,scons(1,0)))

Figure 35: The table contains some of the goals which were used to generate examples of
coinductive proof trees (cf. Definition 8) for the pattern-recognition Problem 2.1; for program
Stream; and proof-family induced by stream(scons(x,scons(y,z))). The the data set is also
available at [27].
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Positive Examples Negative Examples

1.stream(scons(scons(x,x),scons(scons(x,x),scons(x,x)))) 37.stream(scons(0,scons(1,z)))
2.stream(scons(scons(0,0),scons(scons(0,0),scons(0,0)))) 38.stream(scons(1,scons(1,z)))
3.stream(scons(scons(1,1),scons(scons(1,1),scons(1,1)))) 39.stream(scons(0,scons(0,z)))
4.stream(scons(scons(y,y),scons(scons(y,y),scons(y,y)))) 40.stream(scons(1,scons(0,z)))
5.stream(scons(scons(z,z),scons(scons(z,z),scons(z,z)))) 42.stream(scons(0,scons(1,z)))
6.stream(scons(scons(x,scons(x,x))),scons(scons(x,scons(x,x))),scons(x,scons(x,x)))) 43.stream(scons(x,scons(y,z)))
7.stream(scons(scons(1,0),scons(scons(1,0),scons(1,0)))) 44.stream(scons(x,scons(x,z)))
8.stream(scons(scons(0,1),scons(scons(0,1),scons(0,1)))) 45.stream(scons(x,scons(y,z)))
9.stream(scons(scons(1,x),scons(scons(1,x),scons(1,x)))) 46.stream(scons(x,scons(z,z)))
10.stream(scons(scons(x,1),scons(scons(x,1),scons(x,1)))) 47.stream(scons(0,scons(y,z)))
11.stream(scons(scons(0,x),scons(scons(0,x),scons(0,x)))) 48.stream(scons(x,scons(y,z)))
12.stream(scons(scons(x,0),scons(scons(x,0),scons(x,0)))) 49.stream(scons(x,scons(0,z)))
13.stream(scons(scons(0,scons(0,0))),scons(scons(0,scons(0,0))),scons(0,scons(0,0)))) 50.stream(scons(x,scons(y,0)))
14.stream(scons(scons(0,scons(x,x))),scons(scons(0,scons(x,x))),scons(0,scons(x,x)))) 51.stream(scons(x,scons(1,z)))
15.stream(scons(scons(1,scons(x,x))),scons(scons(1,scons(x,x))),scons(1,scons(x,x)))) 52.stream(scons(1,scons(y,z)))
16.stream(scons(scons(x,scons(0,x))),scons(scons(x,scons(0,x))),scons(x,scons(0,x)))) 53.stream(scons(1,scons(1,z)))
17.stream(scons(scons(x,scons(1,x))),scons(scons(x,scons(1,x))),scons(x,scons(1,x)))) 54.stream(scons(1,scons(z,z)))
18.stream(scons(scons(x,scons(0,x))),scons(scons(x,scons(0,x))),scons(x,scons(0,x)))) 55.stream(scons(x,scons(1,x)))
19.stream(scons(scons(x,scons(x,1))),scons(scons(x,scons(x,1))),scons(x,scons(x,1)))) 56.stream(scons(x,scons(x,1)))
20.stream(scons(scons(0,scons(0,x))),scons(scons(0,scons(0,x))),scons(0,scons(0,x)))) 57.bit(scons(0,scons(1,z)))
21.stream(scons(scons(1,scons(1,x))),scons(scons(1,scons(1,x))),scons(1,scons(1,x)))) 58.bit(scons(1,scons(1,z)))
22.stream(scons(scons(0,scons(x,0))),scons(scons(0,scons(x,0))),scons(0,scons(x,0)))) 59.bit(scons(0,scons(0,z)))
23.stream(scons(scons(1,scons(x,1))),scons(scons(1,scons(x,1))),scons(1,scons(x,1)))) 60.bit(scons(1,scons(0,z)))
24.stream(scons(scons(x,scons(1,1))),scons(scons(x,scons(1,1))),scons(x,scons(1,1)))) 61.bit(scons(x,scons(y,z)))
25.stream(scons(scons(x,scons(0,0))),scons(scons(x,scons(0,0))),scons(x,scons(0,0)))) 62.bit(scons(x,scons(0,y)))
26.stream(scons(scons(0,scons(1,1))),scons(scons(0,scons(1,1))),scons(0,scons(1,1)))) 63.bit(scons(x,scons(x,z)))
27.stream(scons(scons(1,scons(0,0))),scons(scons(1,scons(0,0))),scons(1,scons(0,0)))) 64.bit(scons(x,scons(z,z)))
28.stream(scons(scons(0,scons(0,1))),scons(scons(0,scons(0,1))),scons(0,scons(0,1)))) 65.bit(scons(x,scons(y,y)))
29.stream(scons(scons(0,scons(1,0))),scons(scons(0,scons(1,0))),scons(0,scons(1,0)))) 66.bit(scons(x,scons(y,x)))
30.stream(scons(scons(1,scons(0,1))),scons(scons(1,scons(0,1))),scons(1,scons(0,1)))) 67.bit(scons(x,scons(x,0)))
31.stream(scons(scons(0,scons(1,0))),scons(scons(0,scons(1,0))),scons(0,scons(1,0)))) 68.bit(scons(0,scons(z,z)))
32.stream(scons(scons(1,scons(1,0))),scons(scons(1,scons(1,0))),scons(1,scons(1,0)))) 69.bit(scons(0,scons(1,z)))
33.stream(scons(x,scons(x,x))) 70.bit(scons(x,scons(y,0)))
34.stream(scons(y,scons(y,y))) 71.bit(scons(x,scons(1,z)))
35.stream(scons(1,scons(1,1))) 72.bit(scons(1,scons(x,z)))
36.stream(scons(0,scons(0,0))) 73.bit(scons(1,scons(1,x)))
41.stream(scons(z,scons(z,z))) 74.bit(scons(1,scons(y,z)))
77.stream(scons(1,1)) 75.bit(scons(x,scons(1,x)))
78.stream(scons(0,0)) 76.bit(scons(x,scons(y,1)))

79.stream(0)
80.stream((scons(0,scons(1,0))))
81.stream((scons(0,scons(0,1))))
82.stream((scons(1,scons(0,0))))
83.stream((scons(1,scons(1,0))))
84.stream((scons(1,scons(0,1))))
85.stream((scons(0,scons(1,1))))
86.bit(scons(0,scons(0,0))
87.bit(scons(1,scons(1,1)))
88.bit(scons(0,scons(1,0)))
89.bit(scons(0,scons(0,1)))
90.bit(scons(1,scons(0,0))))
91.bit(scons(1,scons(1,0)))

Figure 36: The table contains some of the goals which were used to generate examples of
coinductive proof trees (cf. Definition 8) for the pattern-recognition Problem 2.2; for program
Stream; and proof-family induced by stream(scons(x,scons(x,x))). The the data set is also
available at [27]. 47



Positive Examples Negative Examples

92.bit(scons(0,scons(0,1)))
93.bit(scons(0,scons(1,1)))
94.stream(1)
95.stream(scons(0,x))
96.stream(scons(1,x))
97.stream(scons(x,y))
98.stream(scons(x,x))
99.stream(scons(x,1))
100.stream(scons(x,0))
101.stream(scons(1,0))
102.stream(scons(0,1)
105.bit(scons(0,z))
106.bit(scons(1,z))
107.bit(scons(z,z)).
108.bit(scons(x,x))
109.bit(scons(y,y))
110.bit(scons(x,1))
111.bit(scons(x,0))
112.bit(scons(1,1))
113.bit(scons(0,0))
114.bit(scons(1,0))
115.bit(scons(0,1))
116.stream(z)
117.stream(scons(0,scons(0,scons(0,x)))
118.stream(scons(1,scons(1,scons(1,x)))
119.stream(scons(1,scons(1,scons(0,x)))
120.stream(scons(1,scons(0,scons(1,x)))
121.stream(scons(0,scons(0,scons(0,x)))
122.stream(scons(0,scons(1,scons(1,x)))
123.stream(scons(1,scons(0,scons(0,x)))
124.stream(scons(0,scons(0,scons(0,x)))
125.stream(scons(x,scons(0,scons(0,1)))
126.stream(scons(x,scons(1,scons(0,1)))
127.stream(scons(x,scons(0,scons(1,0)))
128.stream(scons(x,scons(0,scons(1,0)))
129.stream(scons(x,scons(1,scons(1,1)))
130.stream(scons(x,scons(0,scons(0,0)))
140.stream(scons(scons(x,scons(x,x)),scons(scons(x,x),scons(x,x))))
141.stream(scons(scons(x,x)),scons(scons(1,1),scons(1,1))))
142.stream(scons(scons(1,1)),scons(scons(x,(x,x)),scons(x,(x,x))))
143.stream(scons(scons(0,0)),scons(scons(0,0),scons(1,1))))

Figure 37: The table contains some of the goals which were used to generate examples of
coinductive proof trees (cf. Definition 8) for the pattern-recognition Problem 2.2; for program
Stream; and proof-family induced by stream(scons(x,scons(x,x))). The the data set is also
available at [27].
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list(c(x, c(y, x)))

nat(x) list(c(y, x))

nat(y) list(x)

→
list(c(0, c(y, 0)))

nat(0)

2

list(c(y, 0)

nat(y) list(0)

→
list(c(0, c(0, 0)))

nat(0)

2

list(c(0, 0)

nat(0)

2

list(0)

Figure 38: The unsuccessful derivation and ill-typed proof family for the program ListNat
and the goal list(cons(x,cons(x,x))). We abbreviate cons by c.

list(cons(s(O), nil)))

nat(s(O))

nat(O)

2

list(nil)

2

list(nil)

2

nat(cons(x, cons(y, x)))

Figure 39: Well-formed trees (right) that do not belong to the family on the
left.

list(cons(x,cons(y,z))), that is, trees like the ones given in Figure 38 were
negative examples for the training purposes, and trees akin Figure 1 were given
as positive examples. Bearing in mind subtlety of the notion of a success family,
the accuracy of classification was astonishing, cf. Figure 13.

Problem 4 (Discovery of ill-typed proofs in a proof family) Given a
set of positive and negative examples of ill-typed coinductive trees belonging
to a given proof family, classify any new example, whether it is ill-typed or
well-typed.

When it comes to coinductive logic programs like Stream, detection of suc-
cess families is impossible, see Figures 2 and 44. In such cases, detection of
well-typed and ill-typed proofs within a proof family will be an alternative to
determining success families. Figures 38 and 44 show ill-typed members of the
proof families induced by the trees from Figure 1 and 2. Definition 26 below
emulates the notion of ill-typing suitable for the (co-)inductive logic programs
used in this paper. It may have to be re-adjusted for different kinds of programs
in the future, but we found the current definition fit for our purposes.

Definition 26 Given a goal G, a program P , and a coinductive tree t for G
and P , we say that T (or G) is ill-typed if there is a term t ∈ G, and there are
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Goals/positive examples Goals/negative examples

10. list(cons(x, cons (y,z)) 1. nat(ssss0)
11. list(cons(0, cons (y,nil)) 2. nat(ssssnil)
12. list(cons(0, cons (0,nil)) 3. nat(s s (cons(0,nil)))
13. list(cons(x, cons (y,nil)) 4. nat(ssssx)
14. list(cons(x, cons (0,nil)) 5. nat(s nil sss)
15. list(cons(x, cons (0,y)) 6. nat(cons(x, cons(y,z)))
16. list(cons(0, cons (y,z)) 7. nat(cons(x,y))
17. list(cons(0, cons (0,y)) 8. nat(nil)

18. list(cons(x, cons (s0,nil)) 9. nat(x)
19. list(cons(0, cons (s0,nil)) 50 list(cons(0,nil))
20. list(cons(s0, cons (x,nil)) 51. list(cons(x,nil))
21. list(cons(s0, cons (0,nil)) 52. list(cons(nil,x))
22. list(cons(s0, cons (s0,nil)) 53. list(cons(x,0))
23. list(cons(x, cons (s0,y)) 54. list(cons(nil,0))
24. list(cons(0, cons (s0,x)) 55. list(x)
25. list(cons(s0, cons (x,y)) 56. list(nil)
26. list(cons(s0, cons (0,y)) 57. list(0)

27. list(cons(s0, cons (s0,nil))
33. list(cons(0,cons(y,0)))

29. list(cons(x,cons(nil,nil)))
34. list(cons(0,cons(0,0)))
35. list(cons(x,cons(0,0)))

30. list(cons(nil,cons(x,nil)))
36. list(cons(x,cons(nil,0)))
37. list(cons(0,cons(nil,x)))

31. list(cons(nil,cons(nil,nil)))
38. list(cons(0,cons(nil,0)))

39. list(cons(0,cons(nil,nil)))
28. list(cons(x,cons(nil,y)))

40. list(cons(nil,cons(0,nil)))
41. list(cons(nil,cons(x,y)))
32. list(cons(x,cons(y,0)))

42. list(cons(nil,cons(0,x)))
43. list(cons(nil,cons(x,0)))
44. list(cons(nil,cons(0,0)))

45. list(cons(nil,cons(nil,x)))
46. list(cons(nil,cons(x,nil)))
47. list(cons(nil,cons(nil,0)))

58. list(cons(x,cons(y,x)))
59. list(cons(x,cons(x,x)))
60. list(cons(x,cons(y,y)))

Figure 40: The table contains the goals which were used to generate examples coinductive
proof trees (cf. Definition 8) for the pattern-recognition Problem 3; program ListNat; and
success proof-family of list(x,cons(y,z)). This is the original (smaller) data set; it is
also available at [27].
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Goals/positive examples Goals/negative examples

90. list(cons(x,cons(x,cons(x,y)))) 61. nat(s(s(s(s(s(0))))))
91. list(cons(x,cons(y,cons(y,z)))) 62. nat(s(s(s(s(s(x))))))

92. list(cons(x,cons(x,cons(x, cons(x,y))))) 63. nat(s(s(s(0))))
93. list(cons(x,cons(x,cons(y,z)))) 64. nat(s(s(0)))
134. list(cons(s(0),cons(x,nil))) 65. nat(s(0))
135. list(cons(s(0),cons(0,nil)))) 66. nat(0)

136. list(cons(s(0),cons(s(x),y)))) 67. nat(x(s(s(s(s(0))))))
118. list(cons(s(x)),cons(x,y)) 68. nat(s(s(s(s(s(nil))))))
137. list(cons(0,cons(s(0),y)))) 69. nat(s(s(s(nil))))

138. list(cons(0,cons(s(x),nil)))) 70. nat(s(s(nil)))
100. list(cons(y,cons(x,cons(x,z)))) 71. nat(s(nil))
101. list(cons(0,cons(x,cons(x,y)))) 72. nat(s(s(s(s(s(x))))))
102. list(cons(x,cons(0,cons(x,y)))) 73. nat(s(s(s(0))))
103. list(cons(0,cons(0,cons(x,y)))) 74. nat(s(s(x)))
104. list(cons(0,cons(0,cons(0,y)))) 75. nat(s(x))

105. list(cons(0,cons(0,cons(0,nil)))) 76. nat(s(x(s(s(s(x))))))
106. list(cons(s(0),cons(x,z))) 77. nat(s(x(s(s(s(0))))))
107. list(cons(x,cons(s(0),y))) 78. nat(s(s(x(s(s(x))))))

108. list(cons(s(0),cons(x,nil))) 79. nat(s(s(x(s(s(0))))))
109. list(cons(x,cons(s(0),nil))) 80. nat(s(0(s(s(s(0))))))

110. list(cons(x,cons(x,cons(x,nil)))) 81. nat(s(s(0(s(s(0))))))
111. list(cons(x,cons(x,cons(x,cons(x,nil))))) 82. nat(0(s(s(s(s(0))))))

112. list(cons(x,cons(y,cons(x,nil)))) 83. nat(s(s(s(0(s(0))))))
113. list(cons(x,cons(0,cons(x,nil)))) 84. nat(s(s(s(s(0(0))))))
114. list(cons(0,cons(0,cons(x,nil)))) 85. nat(s(s(s(s))))
115. list(cons(0,cons(0,cons(0,nil)))) 86. nat(s(s(s(0(0(0))))))

119. list(cons(s(x)),cons(x,nil)) 87. nat(s(s(0(0(0(0))))))
120. list(cons(x),cons(s(x),y)) 88. nat(s(s(0(s(s(x))))))

121. list(cons(s(x)),cons(s(x),y)) 89. nat(s(s(0(s(x)))))
122. list(cons(x),cons(s(x),nil)) 97. list(cons(x,x))

123. list(cons(s(x),cons(s(x),nil))) 116. list(cons(s(s(0)),nil))
124. list(cons(s(x),cons(s(x),cons(s(x),y)))) 117. list(cons(s(s(x)),nil))

125. list(cons(s(x),cons(s(x),cons(s(x),nil)))) 97. list(cons(x,x))
126. list(cons(s(x),cons(x,cons(x,y)))) 181. list(s(s(0)),nil)

127. list(cons(s(x),cons(x,cons(x,nil)))) 182. list(s(s(x)),nil)
128. list(cons(x,cons(s(x),cons(x,y)))) 94. list(cons(x,cons(x,cons(x,x))))

129. list(cons(x,cons(s(x),cons(x,nil)))) 95. list(cons(x,cons(x,cons(x, cons(x,x)))))
130. list(cons(x,cons(x,cons(s(x),y)))) 96. list(cons(x,cons(x,cons(x,cons(x, cons(x,x))))))

131. list(cons(x,cons(x,cons(s(x),nil)))) 98. list(cons(x,cons(x,cons(y,cons(x,y)))))
132. list(cons(s(0),cons(x,y))) 99. list(cons(x,cons(y,cons(x,cons(x,y)))))
133. list(cons(s(0),cons(0,y)))) 140. list(cons(s(0),cons(s(y),y))))

139. list(cons(0,cons(s(0),nil)))) 228. list(s(s(s(0))),nil)
141. list(cons(s(0),cons(s(0),y)))) 229. list(s(s(s(x))),nil)
142. list(cons(s(0),cons(x,nil)))) 230. list(s(s(s(0))),x)

143. list(cons(s(0),cons(s(0),nil)))) 231. list(s(s(s(x))),y)
144. list(cons(s(0),cons(s(0),cons(s(0),y)))) 232. list(s(s(s(x))),x)

152. list(cons(y,cons(x,cons(x,nil)))) 233. list(s(s(x)),x)
145. list(cons(s(0),cons(s(0),cons(s(0),nil)))) 234. list(s(s(s(s(x)))),s(x))

146. list(cons(s(0),cons(0,cons(0,y)))) 235. list(s(s(s(s(x)))),s(s(x)))

Figure 41: The table contains the goals which were used to generate the extended set of
examples of coinductive proof trees (cf. Definition 8) for the pattern-recognition Problem 3;
program ListNat; and success proof-family of list(x,cons(y,z)). The the data set is also
available at [27].
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Goals/positive examples Goals/negative examples

147. list(cons(s(0),cons(0,cons(0,nil)))) 236. list(s(s(s(s(x)))),s(s(s(x))))
148. list(cons(0,cons(s(0),cons(0,y)))) 237. list(s(s(s(s(x)))),s(s(s(s(x)))))

149. list(cons(0,cons(s(0),cons(0,nil)))) 238. list(x,s(s(s(s(x)))))
150. list(cons(0,cons(0,cons(s(0),y)))) 253. list(s(s(x)),s(s(s(s(x)))))

151. list(cons(0,cons(0,cons(s(0),nil)))) 254. list(s(s(s(x))),s(s(s(s(x)))))
171. list(cons(s(s(0)),cons(s(0),nil))) 153. list(cons(nil,cons(y,cons(x,nil))))

172. list(cons(s(s(0)),cons(0,nil))) 154. list(cons(nil,cons(nil,cons(x,nil))))
173. list(cons(0,cons(s(s(0)),nil))) 155. list(cons(nil,cons(nil,cons(nil,nil))))

174. list(cons(s(s(0)),cons(s(s(0)),nil))) 156. list(cons(nil,cons(nil,cons(nil,cons(nil,nil)))))
175. list(cons(s(0),cons(s(s(0)),nil))) 157. list(cons(nil,cons(nil,cons(nil,cons(nil,cons(nil,nil))))))
176. list(cons(s(s(0)),cons(s(0),x))) 158. list(cons(nil,cons(x,cons(x,y))))

177. list(cons(s(s(0)),cons(0,x))) 159. list(cons(nil,cons(x,cons(y,x))))
178. list(cons(0,cons(s(s(0)),x))) 160. list(cons(x,cons(nil,cons(y,x))))

179. list(cons(s(s(0)),cons(s(s(0)),x))) 161. list(cons(x,cons(nil,cons(x,y))))
180. list(cons(s(0),cons(s(s(0)),x))) 162. list(cons(x,cons(nil,cons(x,cons(x,x)))))

186. list(cons(s(s(x)),cons(s(x),nil))) 163. list(cons(x,cons(nil,cons(x,x))))
187. list(cons(s(s(x)),cons(x,nil))) 164. list(cons(s(0),cons(s(0),cons(s(0),s(0)))))
188. list(cons(x,cons(s(s(x)),nil))) 165. list(cons(s(0),cons(0,cons(0,s(0)))))

189. list(cons(s(s(x)),cons(s(s(x)),nil))) 166. list(cons(nil,cons(0,cons(0,s(0)))))
190. list(cons(s(x),cons(s(s(x)),nil))) 167. list(cons(nil,cons(s(0),cons(0,0))))
191. list(cons(s(s(x)),cons(s(x),y))) 168. list(cons(nil,cons(s(0),cons(s(0),nil))))

192. list(cons(s(s(x)),cons(x,y))) 169. list(cons(s(0),cons(nil,cons(s(0),nil))))
193. list(cons(x,cons(s(s(x)),y))) 170. list(cons(s(0),cons(s(0),cons(nil,nil))))

195. list(cons(s(x),cons(s(s(x)),y))) 184. list(cons(s(s(0)),cons(x,x)))
183. list(cons(s(s(x))),cons(s(s(x)),nil))) 185. list(cons(x,cons(s(s(0)),x)))

250. list(cons(x,cons(x, cons(y,0)))) 196. list(cons(s(s(x)),cons(s(x),x)))
197. list(cons(s(s(x)),cons(x,x)))
198. list(cons(x,cons(s(s(x)),x)))

199. list(cons(s(s(x)),cons(s(s(x)),x)))
200. list(cons(s(x),cons(s(s(x)),x)))

201. list(cons(s(s(s(x))),cons(s(s(s(x))),x)))
202. list(cons(s(s(x)),cons(s(x),x)))
203. list(cons(s(s(x)),cons(x,s(x))))
204. list(cons(x,cons(s(s(x)),s(x))))

205. list(cons(s(s(x)),cons(s(s(x)),s(x))))
206. list(cons(s(x),cons(s(s(x)),s(x))))

207. list(cons(s(s(x)),cons(s(x),s(s(x)))))
208. list(cons(s(s(x)),cons(x,s(s(x)))))
209. list(cons(x,cons(s(s(x)),s(s(x)))))

210. list(cons(s(s(x)),cons(s(s(x)),s(s(x)))))
211. list(cons(s(x),cons(s(s(x)),s(s(x)))))

212. list(cons(s(s(s(x))),cons(s(s(s(x))),s(s(s(x))))))
213. list(cons(s(s(s(x))),cons(s(s(x)),s(s(s(x))))))
214. list(cons(s(s(s(x))),cons(s(s(s(x))),s(s(x)))))
215. list(cons(s(s(x)),cons(s(s(s(x))),s(s(s(x))))))

216. list(cons(s(s(s(x))),cons(s(s(s(x))),x)))
217. list(cons(x,cons(s(s(s(x))),s(s(s(x))))))
218. list(cons(s(s(s(x))),cons(x,s(s(s(x))))))

219. list(cons(s(s(s(x))),cons(s(s(s(x))),s(x))))

Figure 42: The table contains the goals which were used to generate the extended set of
examples of coinductive proof trees (cf. Definition 8) for the pattern-recognition Problem 3;
program ListNat; and success proof-family of list(x,cons(y,z)). The the data set is also
available at [27].

52



Goals/positive examples Goals/negative examples

220. list(cons(s(s(s(x))),cons(s(x),s(s(s(x))))))
221. list(cons(s(x),cons(s(s(s(x))),s(s(s(x))))))
222. list(cons(s(s(s(x))),cons(s(s(s(x))),s(x))))

223. list(cons(s(s(s(x))),cons(s(x),x)))
224. list(cons(s(s(s(x))),cons(s(x),s(x))))

225. list(cons(s(x),cons(s(s(s(x))),x)))
226. list(cons(s(s(s(x))),cons(s(s(x)),x)))
227. list(cons(s(s(x)),cons(s(s(s(x))),x)))

239. list(cons(0,cons(0, cons(0,0))))
240. list(cons(0,cons(0, cons(0, cons(0,0)))))

241. list(cons(0,cons(0, cons(0, cons(0,cons(0,0))))))
242. list(cons(0,cons(x, cons(x,x))))
243. list(cons(0,cons(x, cons(y,x))))
244. list(cons(0,cons(x, cons(y,y))))
245. list(cons(x,cons(0, cons(y,y))))
246. list(cons(y,cons(0, cons(x,y))))
247. list(cons(x,cons(0, cons(x,x))))
248. list(cons(0,cons(x, cons(x,0))))
249. list(cons(0,cons(x, cons(y,0))))
251. list(cons(x,cons(y, cons(0,0))))
252. list(cons(x,cons(0, cons(0,0))))

255. list(cons(0,cons(x, cons(x,cons(x,x)))))

Figure 43: The table contains the goals which were used to generate the extended set of
examples of coinductive proof trees (cf. Definition 8) for the pattern-recognition Problem 3;
program ListNat; and success proof-family of list(x,cons(y,z)). The the data set is also
available at [27].
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stream(x)

θ1→
stream(scons(y, y))

bit(y) stream(y)

θ2→
stream(scons(scons(z, z), scons(z, z)))

bit(scons(z, z)) stream(scons(z, z))

bit(z) stream(z)

. . .

Figure 44: Ill-typed derivation for the goal G = stream(x) and the program Stream.

two distinct predicates P and Q in T such that P (t) and Q(t) appear as nodes
in T .

All the training and testing examples were trees from the proof family of
stream(scons(x,cons(y,z))), marked as well-typed (cf. Figure 2) or ill-typed.
Figure 45 shows the data set that was used for the classification purposes. Again,
the results in Neural networks and SVMs are both very robust ranging between
86% - 90 %, and are summarised in Table 13.

The proof-search with coinductive trees (cf. Definition 11) can become very
expensive in presence of (co)recursion. This is why, using statistical proof-hints
akin the ones given by Problems 3 and 4, would reduce the number of the
redundant steps by up to 85 - 99 %. In derivations similar to Figures 1 and
2, knowing the proof family of the goal will allow to prune the search. In
derivations similar to Figure 38 and 44, it can help to avoid ill-formed steps.

Problem 5 (Discovery of ill-typed proofs) The problem is similar to
Problem 4, however, the restriction that all examples of proofs belong to the
same proof family is lifted, and so examples can represent a wider variety of
proofs.

We used 255 examples of trees for ListNat, see Figures 46 – 48; and 85
examples for Stream, see Figures 49 – 50. The success of classification for
ListNat and Stream was 82.4%; with extremely robust results through the
cycle. The task was more difficult for statistical pattern recognition: due to
presence of the two data types in each program – such as nat and list, the
well-typed proof trees had less regular shape, and sometimes the trees of similar
shape contributed to the opposite classes, see also the Manual [27].

The important conclusion of this section is that the proposed method indeed
captures the essential proof-patterns, allowing classification of proofs according
to a wide variety of meta-properties. The percentage of inaccuracies correlates
with the number of cases in which proofs with some regular structure do not fall
into the same class. This explains why experiments with proof families show
higher accuracy than Problems 1 and 5.
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Goals/Positive Examples Goals/Negative Examples

1.stream(scons(0,scons(1,scons(0,x)))) 26.stream(scons(0,scons(0,1))
2.stream(scons(1,scons(0,scons(1,x)))) 27.stream(scons(x,scons(y,scons(z,x))))
3.stream(scons(0,scons(0,scons(0,1)))) 28.stream(scons(x,scons(y,scons(z,x))))
4.stream(scons(1,scons(1,scons(1,x)))) 29.stream(scons(x,scons(x,scons(y,y))))
5.stream(scons(x,scons(1,scons(y,z)))) 30.stream(scons(x,scons(y,scons(0,x))))
6.stream(scons(x,scons(0,scons(y,z)))) 31.stream(scons(x,scons(y,scons(1,x))))
7.stream(scons(x,scons(1,scons(x,z)))) 32.stream(scons(x,scons(y,scons(0,0))))
8.stream(scons(x,scons(0,scons(x,z)))) 33.stream(scons(x,scons(y,scons(1,1))))
9.stream(scons(x,scons(1,scons(1,z)))) 34.stream(scons(0,scons(y,scons(0,0))))
10.stream(scons(x,scons(0,scons(0,z)))) 35.stream(scons(0,scons(0,scons(0,0))))
11.stream(scons(x,scons(y,z))) 36.stream(scons(1,scons(1,scons(1,1))))
12.stream(scons(0,scons(y,z))) 37.stream(scons(x,scons(1,scons(1,1))))
13.stream(scons(x,scons(0,z))) 38.stream(scons(x,scons(x,scons(y,y))))
14.stream(scons(x,scons(0,y))) 39.stream(scons(x,scons(y,scons(z,x))))
15.stream(scons(1,(scons(y,z))) 40.stream(scons(0,scons(y,scons(0,0))))
16.stream(scons(x,(scons(1,z))) 41.stream(scons(0,scons(x,scons(0,x))))
17.stream(scons(x,(scons(y,1))) 42.stream(scons(1,scons(y,scons(1,y))))
18.stream(scons(x,(scons(1,z))) 43.stream(scons(1,scons(0,scons(1,0))))
19.stream(scons(x,(scons(x,z))) 44.stream(scons(1,scons(x,scons(y,x))))
20.stream(scons(x,(scons(x,1))) 45.stream(scons(0,scons(x,scons(z,z))))
21.stream(scons(1,(scons(1,y))) 46.stream(scons(x,scons(1,scons(1,1))))
22.stream(scons(x,scons(y,scons(x,z)))) 47.stream(scons(x,scons(z,scons(x,z))))
23.stream(scons(x,scons(0,scons(0,z)))) 48.stream(scons(x,scons(y,scons(z,x))))
24.stream(scons(x,scons(x,scons(0,y)))) 49.stream(scons(0,scons(x,scons(z,z))))
25.stream(scons(1,scons(1,scons(0,z)))) 50.stream(scons(0,scons(x,scons(0,x))))

51.stream(scons(1,scons(x,scons(1,x))))
52.stream(scons(1,scons(0,scons(1,0))))
53.stream(scons(1,scons(x,scons(z,z))))
54.stream(scons(1,scons(x,scons(y,y))))
55.stream(scons(0,scons(x,scons(z,x))))

Figure 45: The table contains the goals which were used to generate the examples of coin-
ductive proof trees (cf. Definition 8) for the pattern-recognition Problem 4; program Stream;
and ill-typed proofs in a proof-family of stream(x,scons(y,z)). The the data set is also
available at [27].
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Positive examples Negative examples

1. nat(s(s(s(s(0))))) 2. nat(s(s(s(s(nil)))))
4. nat(s(s(s(s(x))))) 3. nat(s(s(cons(0,nil))))

9. nat(x) 5. nat(s(nil s(s(s))))
10. list(cons(x,cons(y,z))) 6. nat(cons(x, cons(y,z)))

11. list(cons(0,cons(y,nil))) 7. nat(cons(x,y))
12. list(cons(0,cons(0,nil))) 8. nat(nil)
13. list(cons(x,cons(y,nil))) 28. list(cons(x,cons(nil,y)))
14. list(cons(x,cons(0,nil))) 29. list(cons(x,cons(nil,nil)))
15. list(cons(x,cons(0,y))) 30. list(cons(nil,cons(x,nil)))
16. list(cons(0,cons(y,x))) 31. list(cons(nil,cons(nil,nil)))
17. list(cons(0,cons(0,x))) 32. list(cons(x,cons(y,0)))

18. list(cons(x,cons(s0,nil))) 33. list(cons(0,cons(y,0)))
19. list(cons(0,cons(s0,nil))) 34. list(cons(0,cons(0,0)))
20. list(cons(s0,cons(x,nil))) 35. list(cons(x,cons(0,0)))
21. list(cons(s0,cons(0,nil))) 36. list(cons(x,cons(nil,0)))
22. list(cons(s0,cons(s0,nil))) 37. list(cons(0,cons(nil,x)))
23. list(cons(x,cons(s0,xnil)) 38. list(cons(0,cons(nil,0)))
24. list(cons(0,cons(s0,x))) 39. list(cons(0,cons(nil,nil)))
25. list(cons(s0,cons(y,x))) 40. list(cons(nil,cons(0,nil)))
26. list(cons(s0,cons(0,y))) 41. list(cons(nil,cons(x,y)))

27. list(cons(s0,cons(s0,nil))) 42. list(cons(nil,cons(0,x)))
48. list(cons(y,x)) 43. list(cons(nil,cons(x,0)))
49. list(cons(0,x)) 44. list(cons(nil,cons(0,0)))
50 list(cons(0,nil)) 45. list(cons(nil,cons(nil,x)))
51. list(cons(x,nil)) 46. list(cons(nil,cons(x,nil)))

55. list(x) 47. list(cons(nil,cons(nil,0)))
56. list(nil) 52. list(cons(nil,x))

61. nat(s(s(s(s(s(0)))))) 53. list(cons(x,0))
62. nat(s(s(s(s(s(x)))))) 54. list(cons(nil,0))

63. nat(s(s(s(0)))) 57. list(0)
64. nat(s(s(0))) 58. list(cons(x,cons(y,x)))

65. nat(s(0)) 59. list(cons(x,cons(x,x)))
66. nat(0) 60. list(cons(x,cons(y,y)))

72. nat(s(s(s(s(s(x)))))) 76. nat(s(x(s(s(s(x))))))
73. nat(s(s(s(0)))) 77. nat(s(x(s(s(s(0))))))

74. nat(s(s(x))) 78. nat(s(s(x(s(s(x))))))
75. nat(s(x)) 79. nat(s(s(x(s(s(0))))))

90. list(cons(x,cons(x,cons(x,y)))) 61. nat(s(s(s(s(s(0))))))
91. list(cons(x,cons(y,cons(y,z)))) 62. nat(s(s(s(s(s(x))))))

92. list(cons(x,cons(x,cons(x, cons(x,y))))) 63. nat(s(s(s(0))))
93. list(cons(x,cons(x,cons(y,z)))) 64. nat(s(s(0)))
134. list(cons(s(0),cons(x,nil))) 65. nat(s(0))
135. list(cons(s(0),cons(0,nil)))) 66. nat(0)

136. list(cons(s(0),cons(s(x),y)))) 67. nat(x(s(s(s(s(0))))))
118. list(cons(s(x)),cons(x,y)) 68. nat(s(s(s(s(s(nil))))))
137. list(cons(0,cons(s(0),y)))) 69. nat(s(s(s(nil))))

138. list(cons(0,cons(s(x),nil)))) 70. nat(s(s(nil)))
100. list(cons(y,cons(x,cons(x,z)))) 71. nat(s(nil))
101. list(cons(0,cons(x,cons(x,y)))) 80. nat(s(0(s(s(s(0))))))
102. list(cons(x,cons(0,cons(x,y)))) 81. nat(s(s(0(s(s(0))))))
103. list(cons(0,cons(0,cons(x,y)))) 82. nat(0(s(s(s(s(0))))))
104. list(cons(0,cons(0,cons(0,y)))) 83. nat(s(s(s(0(s(0))))))

Figure 46: The table contains the goals which were used to generate examples of coinductive
proof trees (cf. Definition 8) for the pattern-recognition Problem 5; for program List. The
the data set is also available at [27].
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105. list(cons(0,cons(0,cons(0,nil)))) 204. list(cons(x,cons(s(s(x)),s(x))))
106. list(cons(s(0),cons(x,z))) 203. list(cons(s(s(x)),cons(x,s(x))))
107. list(cons(x,cons(s(0),y))) 205. list(cons(s(s(x)),cons(s(s(x)),s(x))))

108. list(cons(s(0),cons(x,nil))) 206. list(cons(s(x),cons(s(s(x)),s(x))))
109. list(cons(x,cons(s(0),nil))) 207. list(cons(s(s(x)),cons(s(x),s(s(x)))))

110. list(cons(x,cons(x,cons(x,nil)))) 208. list(cons(s(s(x)),cons(x,s(s(x)))))
111. list(cons(x,cons(x,cons(x,cons(x,nil))))) 209. list(cons(x,cons(s(s(x)),s(s(x)))))

112. list(cons(x,cons(y,cons(x,nil)))) 210. list(cons(s(s(x)),cons(s(s(x)),s(s(x)))))
113. list(cons(x,cons(0,cons(x,nil)))) 84. nat(s(s(s(s(0(0))))))
114. list(cons(0,cons(0,cons(x,nil)))) 85. nat(s(s(s(s))))
115. list(cons(0,cons(0,cons(0,nil)))) 86. nat(s(s(s(0(0(0))))))

116. list(cons(s(s(0)),nil)) 211. list(cons(s(x),cons(s(s(x)),s(s(x)))))
117. list(cons(s(s(x)),nil)) 212. list(cons(s(s(s(x))),cons(s(s(s(x))),s(s(s(x))))))

119. list(cons(s(x)),cons(x,nil)) 87. nat(s(s(0(0(0(0))))))
120. list(cons(x),cons(s(x),y)) 88. nat(s(s(0(s(s(x))))))

121. list(cons(s(x)),cons(s(x),y)) 89. nat(s(s(0(s(x)))))
122. list(cons(x),cons(s(x),nil)) 97. list(cons(x,x))

123. list(cons(s(x),cons(s(x),nil))) 213. list(cons(s(s(s(x))),cons(s(s(x)),s(s(s(x))))))
124. list(cons(s(x),cons(s(x),cons(s(x),y)))) 214. list(cons(s(s(s(x))),cons(s(s(s(x))),s(s(x)))))

125. list(cons(s(x),cons(s(x),cons(s(x),nil)))) 97. list(cons(x,x))
126. list(cons(s(x),cons(x,cons(x,y)))) 215. list(cons(s(s(x)),cons(s(s(s(x))),s(s(s(x))))))

127. list(cons(s(x),cons(x,cons(x,nil)))) 216. list(cons(s(s(s(x))),cons(s(s(s(x))),x)))
128. list(cons(x,cons(s(x),cons(x,y)))) 94. list(cons(x,cons(x,cons(x,x))))

129. list(cons(x,cons(s(x),cons(x,nil)))) 95. list(cons(x,cons(x,cons(x, cons(x,x)))))
130. list(cons(x,cons(x,cons(s(x),y)))) 96. list(cons(x,cons(x,cons(x,cons(x, cons(x,x))))))

131. list(cons(x,cons(x,cons(s(x),nil)))) 98. list(cons(x,cons(x,cons(y,cons(x,y)))))
132. list(cons(s(0),cons(x,y))) 99. list(cons(x,cons(y,cons(x,cons(x,y)))))
133. list(cons(s(0),cons(0,y)))) 140. list(cons(s(0),cons(s(y),y))))

139. list(cons(0,cons(s(0),nil)))) 217. list(cons(x,cons(s(s(s(x))),s(s(s(x))))))
141. list(cons(s(0),cons(s(0),y)))) 218. list(cons(s(s(s(x))),cons(x,s(s(s(x))))))
142. list(cons(s(0),cons(x,nil)))) 219. list(cons(s(s(s(x))),cons(s(s(s(x))),s(x))))

143. list(cons(s(0),cons(s(0),nil))))
144. list(cons(s(0),cons(s(0),cons(s(0),y)))) 232. list(s(s(s(x))),x)

152. list(cons(y,cons(x,cons(x,nil)))) 233. list(s(s(x)),x)
145. list(cons(s(0),cons(s(0),cons(s(0),nil)))) 234. list(s(s(s(s(x)))),s(x))

146. list(cons(s(0),cons(0,cons(0,y)))) 235. list(s(s(s(s(x)))),s(s(x)))
147. list(cons(s(0),cons(0,cons(0,nil)))) 236. list(s(s(s(s(x)))),s(s(s(x))))
148. list(cons(0,cons(s(0),cons(0,y)))) 237. list(s(s(s(s(x)))),s(s(s(s(x)))))

149. list(cons(0,cons(s(0),cons(0,nil)))) 238. list(x,s(s(s(s(x)))))
150. list(cons(0,cons(0,cons(s(0),y)))) 253. list(s(s(x)),s(s(s(s(x)))))

151. list(cons(0,cons(0,cons(s(0),nil)))) 254. list(s(s(s(x))),s(s(s(s(x)))))
171. list(cons(s(s(0)),cons(s(0),nil))) 153. list(cons(nil,cons(y,cons(x,nil))))

172. list(cons(s(s(0)),cons(0,nil))) 154. list(cons(nil,cons(nil,cons(x,nil))))
173. list(cons(0,cons(s(s(0)),nil))) 155. list(cons(nil,cons(nil,cons(nil,nil))))

174. list(cons(s(s(0)),cons(s(s(0)),nil))) 156. list(cons(nil,cons(nil,cons(nil,cons(nil,nil)))))
175. list(cons(s(0),cons(s(s(0)),nil))) 157. list(cons(nil,cons(nil,cons(nil,cons(nil,cons(nil,nil))))))
176. list(cons(s(s(0)),cons(s(0),x))) 158. list(cons(nil,cons(x,cons(x,y))))

177. list(cons(s(s(0)),cons(0,x))) 159. list(cons(nil,cons(x,cons(y,x))))
178. list(cons(0,cons(s(s(0)),x))) 160. list(cons(x,cons(nil,cons(y,x))))

179. list(cons(s(s(0)),cons(s(s(0)),x))) 161. list(cons(x,cons(nil,cons(x,y))))
180. list(cons(s(0),cons(s(s(0)),x))) 162. list(cons(x,cons(nil,cons(x,cons(x,x)))))

186. list(cons(s(s(x)),cons(s(x),nil))) 163. list(cons(x,cons(nil,cons(x,x))))

Figure 47: The table contains the goals which were used to generate the examples of coin-
ductive proof trees (cf. Definition 8) for the pattern-recognition Problem 5; program ListNat.
The the data set is also available at [27].
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187. list(cons(s(s(x)),cons(x,nil))) 164. list(cons(s(0),cons(s(0),cons(s(0),s(0)))))
188. list(cons(x,cons(s(s(x)),nil))) 165. list(cons(s(0),cons(0,cons(0,s(0)))))

189. list(cons(s(s(x)),cons(s(s(x)),nil))) 166. list(cons(nil,cons(0,cons(0,s(0)))))
190. list(cons(s(x),cons(s(s(x)),nil))) 167. list(cons(nil,cons(s(0),cons(0,0))))
191. list(cons(s(s(x)),cons(s(x),y))) 168. list(cons(nil,cons(s(0),cons(s(0),nil))))

192. list(cons(s(s(x)),cons(x,y))) 169. list(cons(s(0),cons(nil,cons(s(0),nil))))
193. list(cons(x,cons(s(s(x)),y))) 170. list(cons(s(0),cons(s(0),cons(nil,nil))))

195. list(cons(s(x),cons(s(s(x)),y))) 184. list(cons(s(s(0)),cons(x,x)))
183. list(cons(s(s(x))),cons(s(s(x)),nil))) 185. list(cons(x,cons(s(s(0)),x)))

250. list(cons(x,cons(x, cons(y,0)))) 196. list(cons(s(s(x)),cons(s(x),x)))
181. list(s(s(0)),nil) 201. list(cons(s(s(s(x))),cons(s(s(s(x))),x)))
182. list(s(s(x)),nil) 202. list(cons(s(s(x)),cons(s(x),x)))

228. list(s(s(s(0))),nil) 197. list(cons(s(s(x)),cons(x,x)))
229. list(s(s(s(x))),nil) 198. list(cons(x,cons(s(s(x)),x)))
230. list(s(s(s(0))),x) 199. list(cons(s(s(x)),cons(s(s(x)),x)))
231. list(s(s(s(x))),y) 200. list(cons(s(x),cons(s(s(x)),x)))

220. list(cons(s(s(s(x))),cons(s(x),s(s(s(x))))))
221. list(cons(s(x),cons(s(s(s(x))),s(s(s(x))))))
222. list(cons(s(s(s(x))),cons(s(s(s(x))),s(x))))

223. list(cons(s(s(s(x))),cons(s(x),x)))
224. list(cons(s(s(s(x))),cons(s(x),s(x))))

225. list(cons(s(x),cons(s(s(s(x))),x)))
226. list(cons(s(s(s(x))),cons(s(s(x)),x)))
227. list(cons(s(s(x)),cons(s(s(s(x))),x)))

239. list(cons(0,cons(0, cons(0,0))))
240. list(cons(0,cons(0, cons(0, cons(0,0)))))

241. list(cons(0,cons(0, cons(0, cons(0,cons(0,0))))))
242. list(cons(0,cons(x, cons(x,x))))
243. list(cons(0,cons(x, cons(y,x))))
244. list(cons(0,cons(x, cons(y,y))))
245. list(cons(x,cons(0, cons(y,y))))
246. list(cons(y,cons(0, cons(x,y))))
247. list(cons(x,cons(0, cons(x,x))))
248. list(cons(0,cons(x, cons(x,0))))
249. list(cons(0,cons(x, cons(y,0))))
251. list(cons(x,cons(y, cons(0,0))))
252. list(cons(x,cons(0, cons(0,0))))

255. list(cons(0,cons(x, cons(x,cons(x,x)))))

Figure 48: The table contains the goals which were used to generate the examples of coin-
ductive proof trees (cf. Definition 8) for the pattern-recognition Problem 5; program ListNat.
The the data set is also available at [27].
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1.stream(scons(0,scons(1,x))) 5.stream(scons(x,scons(x,x)))
2.stream(scons(1,scons(1,x))) 6.stream(scons(x,scons(0,x)))
3.stream(scons(0,scons(0,x))) 7.stream(scons(x,scons(y,x)))
4.stream(scons(1,scons(0,x))) 8.stream(scons(y,scons(x,x)))
12.stream(scons(0,scons(x,y))) 10.stream(scons(0,scons(x,x)))
13.stream(scons(x,scons(0,y))) 11.stream(scons(x,scons(x,0)))
17.stream(scons(1,scons(1,x))) 14.stream(scons(x,scons(y,0)))
18.stream(scons(1,scons(x,y))) 15.stream(scons(x,scons(1,x)))
19.stream(scons(x,scons(1,y))) 16.stream(scons(1,scons(x,x)))
31.stream(scons(0,x)) 20.stream(scons(x,scons(y,1)))
32.stream(scons(1,x)) 21.stream(0)
34.stream(scons(x,y)) 22.stream(scons(0,scons(0,0)))
47.stream(x) 23.stream(scons(1,scons(1,1)))
48.stream(scons(0,(scons(0,scons(0,x))) 24.stream(scons(0,scons(1,0)))
49.stream(scons(1,(scons(1,scons(1,x))) 25.stream(scons(0,scons(0,1)))
50.stream(scons(1,(scons(1,scons(0,x))) 26.stream(scons(1,scons(0,0)))
51.stream(scons(1,(scons(0,scons(1,x))) 27.stream(scons(1,scons(1,0)))
52.stream(scons(0,(scons(1,scons(1,x))) 28..stream(scons(1,scons(0,1)))
53.stream(scons(1,(scons(0,scons(0,x))) 29.stream(scons(0,scons(1,1)))
54.stream(scons(0,(scons(1,scons(0,x))) 30.stream(1)
55.stream(scons(0,(scons(0,scons(1,x))) 33.stream(scons(x,x))
86.stream(y) 35.stream(scons(x,1))
87.stream(scons(x,y)) 36.stream(scons(x,0))
88.stream(scons(1,y)) 37.stream(scons(1,1))
89.stream(scons(0,y)) 38.stream(scons(0,0))
90.stream(scons(x,scons(y,z))) 39.stream(scons(1,0))
91.stream(scons(0,scons(y,z))) 40.stream(scons(0,1))
92.stream(scons(x,scons(0,z))) 41.bit(scons(0,x)
93.stream(scons(1,scons(y,z))) 42.bit(scons(1,x))
94.stream(scons(x,scons(1,z))) 43.bit(scons(x,y))
95.stream(scons(x,scons(x,scons(y,z))) 44.bit(scons(x,x))
96.stream(scons(1,scons(1,scons(0,x))) 45.bit(scons(y,x))
9. stream(scons(x,scons(x,y))) 46.bit(scons(y,1))

Figure 49: The table contains some of the goals which were used to generate examples of
coinductive proof trees (cf. Definition 8) for the pattern-recognition Problem 5; for program
Stream; cf. [27].
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Goals/Positive Examples Goals/Negative Examples

56.stream(scons(x,scons(0,scons(0,1))))
57.stream(scons(x,scons(1,scons(1,0))))
58.stream(scons(x,scons(1,scons(0,1))))
59.stream(scons(x,scons(0,scons(1,0))))
60.stream(scons(x,scons(1,scons(1,1))))
61.stream(scons(x,scons(0,scons(0,0))))
62.stream(scons(x,scons(1,scons(0,0))))
63.stream(scons(x,scons(0,scons(1,1))))
64.stream(scons(0,scons(x,scons(0,1))))
65.stream(scons(1,scons(x,scons(1,0))))
66.stream(scons(1,scons(x,scons(0,1))))
67.stream(scons(0,scons(x,scons(1,0))))
68.stream(scons(1,scons(x,scons(1,1))))
69.stream(scons(0,scons(x,scons(0,0))))
70.stream(scons(1,scons(x,scons(0,0))))
71.stream(scons(0,scons(x,scons(1,1))))
72.stream(scons(1,scons(1,scons(1,1))))
73.stream(scons(0,scons(0,scons(0,0)))
74.stream(scons(0,scons(1,scons(1,1)))
75.stream(scons(1,scons(0,scons(1,1)))
76.stream(scons(1,scons(1,scons(0,1)))
77.stream(scons(1,scons(1,scons(1,0)))
78.stream(scons(1,scons(0,scons(0,0)))
79.stream(scons(0,scons(1,scons(0,0)))
80.stream(scons(0,scons(0,scons(1,0)))
81.stream(scons(0,scons(0,scons(0,1)))
82.stream(scons(0,scons(0,scons(1,1)))
83.stream(scons(1,scons(1,scons(0,0)))
84.stream(scons(1,scons(0,scons(0,1)))
85.stream(scons(0,scons(1,scons(1,10))))

Figure 50: The table contains some of the goals which were used to generate examples of
coinductive proof trees (cf. Definition 8) for the pattern-recognition Problem 5; for program
Stream; cf. [27].
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7 Implementation scenarios

In this Section, we offer several implementation scenarios for the results of the
previous section. We invite the reader to imagine an automated theorem prover
(ATP) used for proof development of industrial scale, which involves thousands
of lemmas, many of them having similar structure. We assume that the prover
routinely solves similar cases by using the same kind of proof steps or tactics;
and in some cases, when a customary path in proof fails, the user discards the
unsuccessful attempt and tries another route. This is the ideal setting for which
we design the statistical proof-pattern recognition tool (SPPT). To start with,
SPPT registers all – successful and unsuccessful – attempts of proofs, and stores
them in a form of feature vectors. They form the basis for statistical proof-
pattern recognition. Further, it generates a set of neural networks which use
the feature vectors for training and classification. With each new example, the
tool re-trains itself, and thus becomes more accurate in its future classification.
If several people work in a group, this data can be shared. For every newly
started attempt of a proof, we would like SPPT to do the following:
– warn the user if (after some number of proof steps) the proof structurally
resembles the previous failed attempts of other proofs; that is, SPPT may serve
for early diagnosis of proof failure.
– inform the user if the proof belongs to an earlier detected proof family. This
would allow to re-use the previously discovered proof-patterns; or to optimise
proof-search.

So, in practice, SPPT would play the role of a statistical hint generator.
There will be cases in automated theorem proving that will be so conceptually
demanding that they will not yield mere statistical proof-pattern analysis. For
such cases, we assume that SPPT is just switched-off or ignored.

From this general picture, we now descend to implementational level, and
discuss several scenarios how such application can be designed in practice. Note
that the tool can be used to classify proofs as described in either of the Problems
1-5 considered in Section 6. All experiments in this section use neural networks
described in Section 6.

It is likely that the automated proof development will involve working with
a variety of data structures, in our case represented by separate logic programs.
In this case, two scenarios are likely.

Scenario 1 The ATP may be used to work with one data structure (logic pro-
gram) at a time, but such programs regularly change.

The obvious objection to such approach is that creating a new neural net-
work for every new fragment of a big program development may be cumber-
some; it will not capture possible common patterns across different programs
and fragments, but also, it will handle badly the cases where some apparently
disconnected programs are bound by a newly added definition. The next two
implementation scenarios address these problems.

Scenario 2 or else, the ATP is used to work with several data structures. , so
examples are mixed from the start.
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liststream(cons(nil, nil), scons(1, y))

list(cons(nil, nil))

nat(nil) list(nil)

2

stream(scons(1, y))

bit(1)

2

stream(y)

liststream(cons(nil, nil), scons(1, y))

list(cons(nil, nil))

nat(nil) list(nil)

stream(scons(1, y))

bit(1) stream(y)

Figure 51: Well-formed and ill-typed (left) and ill-formed (right) coinductive
trees (Problems 1 and 5) for program Listream.

Example 27 Using our running examples, the ATP in question first worked
with the proofs over the program ListNat and then switched to Stream, or vice
versa.

Depending on this, the proof feature vectors can be stored and used for training
in several Implementation Scenarios (IS):

IS 3 The SPPT can create a new neural network for every new logic program.

Example 28 Using our running examples, a separate sets of feature vectors for
nat, ListNat, and Stream, can be used to train three separate neural networks,
see also Figure 3 for experiments supporting this approach.

This implementation strategy would be particularly convenient if the ATP uses
varied data structures, but they do not mix in the same proofs. But it may not
always be practical for other cases. Consider the example below.

Example 29 Suppose the ATP was used to work with proofs constructed for
two programs – ListNat, and Stream; and maintains two corresponding neural
networks. However, a new clause is added by the user:
listream(x,y) ← list(x), stream(y).

The new, extended program including all our running examples and the
clause above will be called Listream; see Figures 51 and 52. Neither of the
two neural nets will accept the changed feature vectors for new proofs, as addi-
tional new predicate will infer the change in size of the vectors.

If the proofs for varied logic programs normally mix, we offer two other
implementation choices below.

IS 4 SPPT contains only one neural network, and re-trains it irrespective of
the changes in program clauses, new predicates or proof structures.

Clearly, if e.g. ListNat and Stream have different proof-patterns, some mis-
classification when switching between programs is inevitable; and so is the loss of
accuracy with respect to the old proof-patterns, as the neural network re-trains
itself in favour of the new examples. In this case, legitimate questions are: How
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liststream(cons(x, y), scons(z, z))

list(cons(x, y))

nat(x) list(y)

stream(scons(z, z))

bit(z) stream(z)

liststream(cons(x, y), scons(z, z))

list(cons(x, y))

nat(x) list(y)

2

stream(scons(z, z))

bit(z) stream(z)

2

Figure 52: Well-formed and ill-typed (left) and ill-formed (right) coinductive
trees (Problems 1 and 5) for program Listream.

liststream(cons(0, y), scons(0, z)))

list(cons(0, y))

nat(0)

2

list(y)

stream(scons(0, z))

bit(0)

2

stream(z)

liststream(cons(0, y), scons(1, 0)))

list(cons(0, y))

nat(0)

2

list(y)

stream(scons(1, 0))

bit(1)

2

stream(0)

Figure 53: Well-formed well-typed (left) and ill-typed (right) coinductive trees,
used for Problem 5 experiments for program Listream.

liststream(cons(0, x), scons(y, z)))

list(cons(0, x))

nat(0)

2

list(x)

stream(scons(y, z))

bit(y) stream(z)

liststream(cons(1, 1), scons(0, 0)))

list(cons(1, 1))

nat(1) list(1)

stream(scons(0, 0))

bit(0)

2

stream(0)

Figure 54: Well-formed well-typed (left) and ill-typed (right) coinductive trees
used for Problem 5 experiments for program Listream.
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X-Y — Problem Initial accuracy for X Test 1 on Y Test 2 Test 3 X-Y Mixed data

List-Stream — P1 76.4% 44.2% 51.9% 63.9% 67.1%
Stream-List — P1 84.3% 36.7% 44% 67% 67.1%

List-Stream — P5 82.4% 65.6% 80.0% 100% 80.1%
Stream-List — P5 79.0% 43.5% 63.5% 85.9% 80.1%

Figure 55: Gradual adaptation to newly discovered proof patterns. Letters X and
Y above stand for our two running examples of logic programs we used interchangeably for
various experiments; P1 and P5 stand for Problems 1 and 5 from Section 6. First a type X
is taken, and it’s accuracy is tested on several neural networks of different sizes; the average
is shown in the first column. Then these trained networks were used to classify examples of
the proofs of new type Y. The accuracy drops at the start, see the “Test 1” column. Further
columns show how the neural network adapts when more and more of new examples are
used for its training. Note that transitions from ListNat proofs to Stream are generally more
smooth than the other way around; Problem 5 is generally easier than Problem 1.

well will neural network trained on one set of proof patterns will recognise new
proof-patterns? and How soon will it adapt, as it gets more of new examples
to learn from? To answer these questions, we designed a series of experiments,
as shown in Figure 55. We used the data base of examples we give in [27] and
Figures 57 and 58 below. The experiments convince us that the neural networks
trained one one type of proof patterns do not immediately show good results
when tested on proofs of new type. However, they re-gain accuracy quite well,
when given a chance to use this new data for re-training.

We concentrate now only on Problem 5 re-training implementation, as the
proofs arising there are more regular. Figure 56 shows how subtle the retraining
can be. The setting for the experiments was as follows. First an arbitrary neural
network was trained on the Listnat data set of 255 examples. Then the data
set of 96 Stream examples was divided into three equal parts. First part was
fed as a data to the initial neural network trained on ListNat as a test, the
result was 65.6%. Then a proportion of this new small set of examples was used
to retrain this old neural network, and smaller proportion – to test it again –
the accuracy was 80% for these new reserved examples; see the “Test2” row
of Figure 56. Then the same re-training and testing experiment was repeated
with the second part of the fresh data set Stream. Thus, this time we retrained
second neural network using the second data set on Stream, and the accuracy
increased to 100%, and it did not fall after training on the new, third part, of
the Stream data set. Finally, the last column shows the results of training on
a data set in which examples for ListNat and Stream are mixed. The second
half of Table 56 shows a similar example but with training done on Stream

eaxmples, and re-training on ListNat.
From these experiments, it is clear that networks trained with proofs of more

complex structure (like ListNat) adapt better to proofs of relatively simpler
structure (like Stream) than the other way around, see Figure 56. Also, the
story of gradual adaptation is not always as smooth as appears in Figure 55,
it will vary greately depending on whether new examples of proofs bear similar
features to the old examples, irrespective of the data type. In this respect, if we
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X-Y Initial accuracy for X Test 1 on Y Test 2 Test 3 Test 4 Mixed data

List-Stream-1 82.4% 65.6% 80.0% 100% 100% 80.1 %
List-Stream-2 82.4% 65.6% 100% 68.6% 80% 80.1%
List-Stream-3 82.4% 65.6% 60% 60% 100% 80.1%
Stream-List-1 79.0% 67.1% 43.5% 63.5% 85.9% 80.1%
Stream-List-2 79.0% 67.1% 53.8% 53.8% 61.5% 80.1%
Stream-List-3 79.0% 67.1% 30.8% 76.9% 61.5% 80.1%

Figure 56: Gradual adaptation to newly discovered proof patterns, for Problem
5. Letters X and Y above stand for our two running examples of logic programs we used
interchangeably for various experiments. First a type X is taken, and it’s accuracy is tested
on several neural networks of different sizes; the average is shown in the first column. Then
these trained networks were used to classify examples of the proofs of new type Y. The accuracy
drops at the start, see the “Test 1” column. Further columns show how the neural network
adapts when more and more of new examples are used for its training. Note that transitions
from ListNat proofs to Stream are generally more smooth than the other way around. The
table show how different the results of training can be when we change the order in which
training and testing examples arrive as inputs to the neural network.

look at examples of adaptation of a neural network trained on a bigger data set
for ListNat to a smaller dataset for Stream, we will see that despite the sizes
of the new data set, adaptation is very successful, and reaches 100% for some
examples; being clearly more accurate than training on a mixed data set. The
same Figure shows that adaptation in the other direction does not go nearly so
well, even despite the fact that the new data set is twice bigger than the old
data set. Only for some examples accuracy exceeds the accuracy of the mixed
set results.

In many respects, this is good news for the method we test. It means that its
accuracy is more sensitive to the structural properties of proofs than to the data
structure the given logic program defines. It also shows that structure matters
more than the size of the data set, which is again a positive feature: in real-life
applications, new examples of proofs may not be coming in very large batches,
and patterns may need to be recognised on a basis of just a few examples.

The only possible reservation concerning this implementation is that to some
extent, the neural network “forgets” about old patterns it “knew” in favour of
the new patterns it adapts to, cf. the leftmost and rightmost columns of Figure
55. This is why, we suggest the third implementation scenario, as follows.

IS 5 The feature vectors are re-defined and extended to fit all available pro-
grams.

In this case, statistically the proof features originating from different programs
are all considered as features of one meta-proof. Example of an extended feature
matrix for Listream is given in Figure 59.

We performed an experiment of classifying merged matrices for proofs in
ListNat and Stream, see Figure 59. The merged matrices did not loose accuracy
comparing to the feature vectors taken for these programs separately, which
is quite exceptional from machine-learning perspective, where the growth of
vector size normally causes a drop in accuracy. This can happen only if the
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Goals/Positive Examples Goals/Positive Examples

1.listream(cons(x,x),cons(y,z)) 2.listream(cons(1,1),cons(y,z))
3.listream(cons(0,0),cons(y,z)) 4.listream(cons(x,y),cons(0,0))
5.listream(cons(x,y),cons(z,z)) 6.listream(cons(x,y),cons(1,1))
7.listream(cons(x,y),scons(z,z)) 8.listream(cons(x,y),scons(0,0))
9.listream(cons(x,y),scons(1,1)) 10.listream(scons(x,y),cons(z,z))
11.listream(cons(nil,nil),scons(1,0)) 12.listream(cons(nil,s(0)),scons(0,0))
13.listream(cons(s(0),nil),scons(0,0)) 14.listream(cons(s(0),s(0)),scons(1,0))
15.listream(cons(0,0),scons(1,1)) 16.listream(cons(1,1),scons(0,0))
17.listream(cons(1,1),scons(1,1)) 18.listream(cons(0,0),scons(0,0))
19.listream(x,y) 20.listream(nil,x)
21.listream(cons(0,y),scons(1,z)) 22.listream(cons(s(0),x),scons(0,z))
23.listream(cons(s(0),nil),scons(0,x)) 24.listream(cons(s(0),x),scons(y,z))
25.listream(cons(0),nil),scons(1,x)) 26.listream(cons(0,x),scons(0,x))

Figure 57: The goals that we used to generate the set of examples of coinductive proof trees
for the program Listream, Problem 1. The trees were generated according to the algorithm
of Definition 8 and then converted into vectors, the full data base is given in [27]. Each goal
above was represented by both a well-formed and an ill-formed tree.

patterns are strongly defined. In another experiment, we tested examples of
proofs for Listream. Finally, we tested how merged matrices would adapt to
new proofs for Listream, cf Figure 59. As was expected, the accuracy drops,
but as analysed in Figure 55, it can be re-gained with training.

It is encouraging that for Problem 5, training on merged-matrix features
over-performed simple mixing of data sets (as in Figure 55). When working with
extended feature vectors, Listream over-performed the simpler merged-matrix
data training. This shows that the feature-selection method we present allows
extensions that capture significant and increasingly intricate proof-patterns.

8 Conclusions and Future work

We have developed a method for representing proofs as feature vectors; and em-
ployed the coinductive trees for this purpose. We tested the method on a range
of classification problems (Problems 1-5), and on a range of implementation sce-
narios. We detected and analysed some strong and weak points of the method,
but overall, the method’s accuracy and adaptivity is encouraging. Our key con-
tribution compared to e.g. a similar approach [39] is that we do not base pattern
recognition on the structure of the formula alone, but on the proof-search pat-
terns that implicitly involve resolution and unification algorithms. Also, the
main attention was given to accuracy of proof-pattern representation, rather
than the learning functions. Employing the various kernel functions studied in
[39] to our data sets is one of our future plans.

More work will be done in the future, mostly on further automatisation of the
method, and devising its extensions to other kinds of proofs in logic programs
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Goals/Positive Examples Goals/Negative Examples

1.listream(x,y) 21.listream(cons(1,1),cons(y,z))
2.listream(nil,x) 22.listream(cons(x,x),cons(y,z))
3.listream(cons(s(0),nil),scons(0,x)) 23.listream(cons(x,y),cons(0,0))
4.listream(cons(0,y),scons(1,z)) 24.listream(cons(0,0),cons(y,z))
5.listream(cons(s(0),x),scons(0,z)) 25.listream(cons(x,y),cons(z,z))
6.listream(cons(s(0),x),scons(y,z)) 26.listream(cons(x,y),cons(1,1))
7.listream(conss(S(0),nil),scons(1,x)) 27.listream(cons(x,y),scons(z,z))
8.listream(cons(0,x),scons(0,x)) 28.listream(cons(x,y),scons(0,0))
9.listream(cons(0,y),scons(0,z)) 29.listream(scons(x,y),cons(z,z))
10.listream(cons(0,nil),scons(1,x)) 30.listream(cons(x,y),scons(1,1))
11.listream(cons(x,0),scons(x,z)) 31.listream(cons(nil,nil),scons(1,0))
12.listream(cons(S(0),nil),scons(1,x)) 32.listream(cons(nil,s(0)),scons(0,0))
13.listream(cons(x,y),scons(x,y)) 33.listream(cons(s(0),nil),scons(0,0))
14.listream(cons(0,x),scons(0,scons(0,y))) 34.listream(cons(s(0),s(0)),scons(1,0))
15.listream(cons(nil),scons(1,scons(1,y))) 35.listream(cons(0,0),scons(1,1))
16.listream(cons(s(0),y),scons(0,z)) 36.listream(cons(1,1),scons(0,0))
17.listream(cons(0,y),scons(1,z)) 37.listream(cons(1,1),scons(1,1))
18.listream(cons(s(0),nil),scons(0,x)) 38.listream(cons(0,0),scons(0,0))
19.listream(cons(s(0),nil),scons(y,z)) 39.listream(cons(nil,nil),scons(1,y))
20.listream(cons(0,x),scons(0,x)) 40.listream(cons(x,x),scons(0,x))
45.listream(cons(x,nil),scons(0,y)) 41.listream(cons(x,x),scons(0,x)
46.listream(cons(x,nil),scons(1,y)) 42.listream(cons(x,0),x)
47.listream(cons(s(0),nil),scons(y,x)) 43.listream(cons(nil,x),scons(1,y)
48.listream(cons(s(0),nil),scons(1,x)) 44.listream(cons(x,0),scons(0,scons(0,y)))

Figure 58: The goals that we used to generate the set of examples of coinductive proof trees
for the program Listream, Problem 5. The trees were generated according to the algorithm
of Definition 8 and then converted into vectors, the full data base is given in [27]. Positive
examples are given in the lett column, and negative – in the right column.

Matrix M3 listream stream bit list nat • 2

cons(x, x) - 211411 0 0 -211 0 2 0
scons(y, z)) - 211411 -411 0 0 0 2 0

x 0 0 0 -1 -1 0 0
y 0 0 -1 0 0 0 0
z 0 -1 0 0 0 0 0

Prob 1 Prob 5

Merged matrices 84.3% 82%
Listream 76.3% 88.6%

Merged-Listream 51.2% 64.9%

Figure 59: Top: Feature matrix for the coinductive tree for the goal listream(cons(x,x),
cons(y,z)). Bottom: Accuracy of proof-pattern recognition for matrices featuring proofs
with predicates from both ListNat and Stream (“Merged matrix” row); proofs for extended
program Listream (“Listream” row); and experiment of training on “Merged Matrix”, and
testing the trained neural network on Listream (last row).
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and in ITPs.

References
[1] S. Abe. Support Vector Machines for Pattern Classification. Springer-Verlag.

[2] E. Alpaydin. Introduction to machine learning. MIT Press.

[3] Y. Bertot and E. Komendantskaya. Inductive and coinductive components of corecursive
functions in coq. Electr. Notes Theor. Comput. Sci., 203(5):25–47, 2008.

[4] C. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[5] S. Colton. Automated Theory Formation in Pure Mathematics. Springer, 2002.

[6] T. Coquand. Infinite objects in type theory. In Types for Proofs and Programs, Int.
Workshop TYPES’93, volume 806 of LNCS, pages 62–78. Springer-Verlag, 1994.

[7] A. d’Avila Garcez, K. B. Broda, and D. M. Gabbay. Neural-Symbolic Learning Systems:
Foundations and Applications. Springer-Verlag, 2002.

[8] J. Denzinger, M. Fuchs, C. Goller, and S. Schulz. Learning from previous proof experi-
ence: A survey. Technical report, Technische Universitat Munchen, 1999.

[9] J. Denzinger and S. Schulz. Automatic acquisition of search control knowledge from
multiple proof attempts. Inf. Comput., 162(1-2):59–79, 2000.

[10] R. Duda, P. Hart, and D. Stork. Pattern Classification. John Wiley, 2001.

[11] H. Duncan. The use of Data-Mining for the Automatic Formation of Tactics. PhD
thesis, University of Edinburgh, 2002.

[12] C. Dwork, P. Kanellakis, and J. Mitchell. On the sequential nature of unification. Journal
of Logic Programming, 1:35–50, 1984.

[13] G.Grov, E.Komendantskaya, and A.Bundy. A statistical relational learning challenge -
extracting proof strategies from exemplar proofs. In ICML’12 worshop on Statistical
Relational Learning, Edinburgh, 30 July 2012, 2012.

[14] G. Gupta and V. Costa. Optimal implementation of and-or parallel prolog. In Conference
proceedings on PARLE’92, pages 71–92, NY, 1994. Elsevier.

[15] G. Gupta and et al. Coinductive logic programming and its applications. In ICLP 2007,
volume 4670 of LNCS, pages 27–44. Springer, 2007.

[16] S. Haykin. Neural Networks. A Comprehensive Foundation. Macmillan College Publish-
ing Company, 1994.

[17] R. Hecht-Nielsen. Neurocomputing. Addison-Wesley, 1990.

[18] P. Hitzler, S. Hölldobler, and A. K. Seda. Logic programs and connectionist networks.
Journal of Applied Logic, 2(3):245–272, 2004.

[19] S. Hölldobler and Y. Kalinke. Towards a massively parallel computational model for
logic programming. In Proceedings of the ECAI94 Workshop on Combining Symbolic
and Connectionist Processing, pages 68–77. ECCAI, 1994.

[20] S. Hölldobler, Y. Kalinke, and H. P. Storr. Approximating the semantics of logic programs
by recurrent neural networks. Applied Intelligence, 11:45–58, 1999.

[21] A. Ireland, G. Grov, and M. Butler. Reasoned modelling critics: Turning failed proofs
into modelling guidance. In ASM, pages 189–202, 2010.

[22] M. Johansson, L. Dixon, and A. Bundy. Case-analysis for rippling and inductive proof.
In ITP, volume 6172 of LNCS, pages 291–306. Springer, 2010.

[23] K. Kersting, L. D. Raedt, and T. Raiko. Logical hidden markov models. J. Artif. Intell.
Res. (JAIR), 25:425–456, 2006.

[24] E. Komendantskaya. Neurons or symbols: why does or remain exclusive? Position paper.
In Proceedings of ICNC’09, Madeira, 3-7 October. INSTICC, 2009.

68



[25] E. Komendantskaya. Machine-learning coalgebraic proofs. In Short Post-proceedings of
ITP’11, 2011.

[26] E. Komendantskaya. Unification neural networks: unification by error-correction learn-
ing. Logic Journal of the IGPL, 19(6):821–847, 2011.

[27] E. Komendantskaya. ML-CAP home page, 2012.
http://www.computing.dundee.ac.uk/staff/katya/MLCAP-man/.

[28] E. Komendantskaya and J. Power. Coalgebraic derivations in logic programming. In
CSL’11, 2011.

[29] E. Komendantskaya and J. Power. Coalgebraic semantics for derivations in logic pro-
gramming. In CALCO’11, 2011.

[30] E. Komendantskaya and A. Seda. On approximation of the semantic operators deter-
mined by bilattice-based logic programs. In FTP’05, pages 112–130, 2005.

[31] J. Lloyd. Foundations of Logic Programming. Springer-Verlag, 2nd edition, 1987.

[32] J. Lloyd. Logic for Learning: Learning Comprehensible Theories from Structured Data.
Springer, Cognitive Technologies Series, 2003.

[33] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[34] K.-R. Muller, S. Mika, G. Ratsch, K. Tsuda, and B. Scholkopf. An introduction to
kernel-based learning algorithms. Neural Networks, IEEE Transactions on., 12(2):181,
2001.

[35] D. Nauck, F. Klawonn, R. Kruse, and F.Klawonn. Foundations of Neuro-Fuzzy Systems.
John Wiley and Sons Inc., NY, 1997.

[36] A. Passerini, P. Frasconi, and L. D. Raedt. Kernels on prolog proof trees: Statistical
learning in the ilp setting. Journal of Machine Learning Research, 7:307–342, 2006.

[37] J. Rutten. Universal coalgebra: a theory of systems. TCS, 2000.

[38] V. Sorge, A. Meier, R. L. McCasland, and S. Colton. Automatic construction and veri-
fication of isotopy invariants. J. Autom. Reasoning, 40(2-3):221–243, 2008.

[39] E. Tsivtsivadze, J. Urban, H. Geuvers, and T. Heskes. Semantic graph kernels for auto-
mated reasoning. In SDM’11, pages 795–803. SIAM / Omnipress, 2011.

[40] J. Urban, G. Sutcliffe, P. Pudlák, and J. Vyskocil. Malarea sg1- machine learner for
automated reasoning with semantic guidance. In IJCAR, LNCS, pages 441–456. Springer,
2008.

[41] V. Vapnik. Statistical Learning Theory. John Wiley & Sons.

[42] L. Vlacic. Learning and soft computing, support vector machines, neural networks, and
fuzzy logic models, vojislav kecman. Neurocomputing, 47(1-4):305 – 307, 2002.

[43] J. Wang and P. Domingos. Hybrid markov logic networks. In AAAI, pages 1106–1111,
2008.

[44] L. Zadeh. Interpolative reasoning in fuzzy logic and neural network theory. Fuzzy Sys-
tems, pages 1–20, 1992.

69


