Can statistical machine learning advance mechanised proof technology?

Katya Komendantskaya, joint work with Jonathan Heras (Funded by EPSRC First Grant Scheme)

University of Dundee

19 June 2013

Motivation: machine-learning for automated theorem proving?

1 Motivation: machine-learning for automated theorem proving?

- 2 Two main trends: ATP and ITP
 - Proof pattern recognition in ATPs
 - Proof pattern recognition in ITPs

Motivation: machine-learning for automated theorem proving?

- Two main trends: ATP and ITP
 - Proof pattern recognition in ATPs
 - Proof pattern recognition in ITPs

3 More Examples

- The bigop library
- The COQEAL library

Motivation: machine-learning for automated theorem proving?

- Two main trends: ATP and ITP
 - Proof pattern recognition in ATPs
 - Proof pattern recognition in ITPs

3 More Examples

- The bigop library
- The COQEAL library

• 1998 – 2003 Undergraduate degree in Logic, Moscow State University; (1st class honours, gold medal for excellency).

- 1998 2003 Undergraduate degree in Logic, Moscow State University; (1st class honours, gold medal for excellency).
- 2004 2007 PhD in the UCC, Ireland. (The University (and department!) of the famous George Boole)

- 1998 2003 Undergraduate degree in Logic, Moscow State University; (1st class honours, gold medal for excellency).
- 2004 2007 PhD in the UCC, Ireland. (The University (and department!) of the famous George Boole)
- 2007 2008 First postdoc project with Yves Bertot in INRIA, France
 on guardedness of corecursive functions in Coq.

- 1998 2003 Undergraduate degree in Logic, Moscow State University; (1st class honours, gold medal for excellency).
- 2004 2007 PhD in the UCC, Ireland. (The University (and department!) of the famous George Boole)
- 2007 2008 First postdoc project with Yves Bertot in INRIA, France
 on guardedness of corecursive functions in Coq.
- 2008 2011 EPSRC TCS research fellowship first in St Andrews, later transferred to the School of Computing in Dundee.

- 1998 2003 Undergraduate degree in Logic, Moscow State University; (1st class honours, gold medal for excellency).
- 2004 2007 PhD in the UCC, Ireland. (The University (and department!) of the famous George Boole)
- 2007 2008 First postdoc project with Yves Bertot in INRIA, France
 on guardedness of corecursive functions in Coq.
- 2008 2011 EPSRC TCS research fellowship first in St Andrews, later transferred to the School of Computing in Dundee.
- 2010 now Senior Lecturer, School of Computing, University of Dundee. We are growing a new "LiCS" group in Dundee...

- Logic Programming and its applications (in AI, Automated reasoning, Type Inference ...)
- **2** Corecursion in Higher-order Interactive Theorem Provers
- Merging Symbolic and Statistical (Machine Learning) methods
- Gategorical Semantics of Computations

- Logic Programming and its applications (in AI, Automated reasoning, Type Inference ...) (PhD thesis)
- ② Corecursion in Higher-order Interactive Theorem Provers
- Merging Symbolic and Statistical (Machine Learning) methods
- Gategorical Semantics of Computations

- Logic Programming and its applications (in AI, Automated reasoning, Type Inference ...) (PhD thesis)
- Corecursion in Higher-order Interactive Theorem Provers (Postdoc in INRIA)
- Merging Symbolic and Statistical (Machine Learning) methods
- Gategorical Semantics of Computations

- Logic Programming and its applications (in AI, Automated reasoning, Type Inference ...) (PhD thesis)
- Corecursion in Higher-order Interactive Theorem Provers (Postdoc in INRIA)
- Merging Symbolic and Statistical (Machine Learning) methods (PhD Thesis, first EPSRC fellowship, EPSRC First Grant)
- Gategorical Semantics of Computations

- Logic Programming and its applications (in AI, Automated reasoning, Type Inference ...) (PhD thesis)
- Corecursion in Higher-order Interactive Theorem Provers (Postdoc in INRIA)
- Merging Symbolic and Statistical (Machine Learning) methods (PhD Thesis, first EPSRC fellowship, EPSRC First Grant)
- Categorical Semantics of Computations (in parallel to the above, joint with Edinburgh, Bath)

- Logic Programming and its applications (in AI, Automated reasoning, Type Inference ...) (PhD thesis)
- Corecursion in Higher-order Interactive Theorem Provers (Postdoc in INRIA)
- Merging Symbolic and Statistical (Machine Learning) methods (PhD Thesis, first EPSRC fellowship, EPSRC First Grant)
- Categorical Semantics of Computations (in parallel to the above, joint with Edinburgh, Bath)
- ... recently "Coalgebraic Logic Programming for Type Inference" EPSRC grant (merging 1, 2, 4)

My research interests can be classified into four main themes:

- Logic Programming and its applications (in AI, Automated reasoning, Type Inference ...) (PhD thesis)
- Corecursion in Higher-order Interactive Theorem Provers (Postdoc in INRIA)
- Merging Symbolic and Statistical (Machine Learning) methods (PhD Thesis, first EPSRC fellowship, EPSRC First Grant)
- Categorical Semantics of Computations (in parallel to the above, joint with Edinburgh, Bath)
- ... recently "Coalgebraic Logic Programming for Type Inference" EPSRC grant (merging 1, 2, 4)

The work presented today is the result of the EPSRC First Grant. (2012-2013)

• ... Digital era means most of information (in science, industries, even art!) is stored/handled in electronic form.

- ... Digital era means most of information (in science, industries, even art!) is stored/handled in electronic form.
- ... Computer-generated data may not make much sense to human users; or in fact, other computers!

- ... Digital era means most of information (in science, industries, even art!) is stored/handled in electronic form.
- ... Computer-generated data may not make much sense to human users; or in fact, other computers!
- The volumes of data make it unfeasible to be processed and interpreted manually.

- ... Digital era means most of information (in science, industries, even art!) is stored/handled in electronic form.
- ... Computer-generated data may not make much sense to human users; or in fact, other computers!
- The volumes of data make it unfeasible to be processed and interpreted manually.
- ... the only hope is, our machine-learning algorithms become fast and clever enough to do that dirty (pre-processing) work for us!

- ... Digital era means most of information (in science, industries, even art!) is stored/handled in electronic form.
- ... Computer-generated data may not make much sense to human users; or in fact, other computers!
- The volumes of data make it unfeasible to be processed and interpreted manually.
- ... the only hope is, our machine-learning algorithms become fast and clever enough to do that dirty (pre-processing) work for us!

Katya (Dundee)

So, why should we (logicians) care?

So, why should we (logicians) care?

Katya (Dundee)

Katya (Dundee)

• ... increasingly, theorems [be it mathematics or software/hardware verification] are proven IN automated provers.

- ... increasingly, theorems [be it mathematics or software/hardware verification] are proven IN automated provers.
- Manual handling of various proofs, strategies, libraries, becomes difficult.

- ... increasingly, theorems [be it mathematics or software/hardware verification] are proven IN automated provers.
- Manual handling of various proofs, strategies, libraries, becomes difficult.
- ... team-development is hard, especially that TPs are sensitive to notation;

- ... increasingly, theorems [be it mathematics or software/hardware verification] are proven IN automated provers.
- Manual handling of various proofs, strategies, libraries, becomes difficult.
- ... team-development is hard, especially that TPs are sensitive to notation;
- ... comparison of proofs and proof similarities across libraries or even within one big library are hard;

Motivation: machine-learning for automated theorem proving?

Main applications in Automated Theorem Proving:

Where can we use ML?

ML in other areas of (Computer) Science:

Where data is abundant, and needs quick automated classification:

- robotics (from space rovers to small apps in domestic appliances, cars...);
- image processing;
- natural language processing;
- web search;
- computer network analysis;
- Medical diagnostics;
- etc, etc, ...

In all these areas, ML is a common tool-of-the-trade, additional to the primary research specialisation. Will this practice come to Automated theorem proving?

Katya (Dundee)

Machine Learning for Proof General

19 June 2013 10 / 50

Automated reasoning does NOT need ML applications:

...where AR does not need help

- verification (unlike in Medical diagnosis)
- language parsing (unlike in NLP)

Automated reasoning does NOT need ML applications:

...where AR does not need help

- verification (unlike in Medical diagnosis)
- language parsing (unlike in NLP)

.. where we do not trust them

- new theoretical break-troughs (formulation of new theorems);
- giving semantics to data (cf. Deep learning).
where do we both need ML-tools and trust them?

where do we both need ML-tools and trust them?

• finding common proof-patterns in proofs across various scripts, libraries, users, notations;

where do we both need ML-tools and trust them?

- finding common proof-patterns in proofs across various scripts, libraries, users, notations;
- providing proof-hints, especially in (industrial) cases where routine similar cases are frequent, and proof development is distributed across several programmers.

Outline

- Two main trends: ATP and ITP
 - Proof pattern recognition in ATPs
 - Proof pattern recognition in ITPs

3 More Examples

- The bigop library
- The COQEAL library

ATPs and ITPs

- Automated Theorem Provers (ATPs) and SAT/SMT solvers are
 - ... fast and efficient;
 - ... applied in different contexts: program verification, scheduling, test case generation, etc.

ATPs and ITPs

- Automated Theorem Provers (ATPs) and SAT/SMT solvers are
 - ... fast and efficient;
 - ... applied in different contexts: program verification, scheduling, test case generation, etc.
- Interactive Theorem Provers (ITPs) have been
 - ... enriched with dependent types, (co)inductive types, type classes and provide rich programming environments;
 - ... applied in formal mathematical proofs: Four Colour Theorem (60,000 lines), Kepler conjecture (325,000 lines), Feit-Thompson Theorem (170,000 lines), etc.
 - ... applied in industrial proofs: seL4 microkernel (200,000 lines), verified C compiler (50,000 lines), ARM microprocessor (20,000 lines), etc.

Challenges

- ... size of ATP and ITP libraries stand on the way of efficient knowledge reuse;
- ... manual handling of various proofs, strategies, libraries becomes difficult;
- ... team-development is hard, especially that TPs are sensitive to notation;
- ... comparison of proof similarities is hard.

Machine-Learning in the software verification cycle

Consider a sample software verification cycle

Where would we welcome statistical machine-learning assistance?

Java Virtual Machine (JVM) is a stack-based abstract machine which can execute Java bytecode.

Java Virtual Machine (JVM) is a stack-based abstract machine which can execute Java bytecode.

Goal

- Model a subset of the JVM in (e.g.) Coq, defining an interpreter for JVM programs,
- \bullet Verify the correctness of JVM programs within $\mathrm{Coq.}$

Java Virtual Machine (JVM) is a stack-based abstract machine which can execute Java bytecode.

Goal

- Model a subset of the JVM in (e.g.) COQ, defining an interpreter for JVM programs,
- \bullet Verify the correctness of JVM programs within $\rm Coq.$

This work is inspired by:

H. Liu and J S. Moore. Executable JVM model for analytic reasoning: a study. Journal Science of Computer Programming - Special issue on advances in interpreters, virtual machines and emulators (IVME'03), 57(3):253–274, 2003.

Java code:

```
static int factorial(int n)
{
    int a = 1;
    while (n != 0){
        a = a * n;
        n = n-1;
        }
    return a;
}
```

	Byteo	:ode	e:
	0	:	iconst 1
Java code:	1	:	istore 1
	2	:	iload 0
static int factorial(int n) 3	:	ifeq 13
{	4	:	iload 1
int $a = 1;$	5	:	iload 0
while (n != 0){	6	:	imul
a = a * n;	7	:	istore 1
n = n - 1;	8	:	iload 0
}	9	:	iconst 1
return a;	10	:	isub
}	11	:	istore 0
	12	:	goto 2
	13	:	iload 1
	14	:	ireturn

	() :	iconst 1
Java code:	1	1 :	istore 1
	2	2 :	iload 0
static int factorial(int	n) 3	3:	ifeq 13
{	4	ł :	iload 1
int $a = 1;$	5	5 :	iload 0
while (n != 0){	6	i i	imul
a = a * n;	7	: ?	istore 1
n = n-1;	8	3:	iload 0
}	ç) :	iconst 1
return a;	1	0:	isub
}	1	1 :	istore 0
	1	2 :	goto 2
	1	3 :	iload 1

Bytecode:

JVM model:

counter: 0

local variables:

J L	
-------------------------	--

ireturn

14

5		
0	:	iconst 1
1	:	istore 1
2	:	iload 0
3	:	ifeq 13
4	:	iload 1
5	:	iload 0
6	:	imul
7	:	istore 1
8	:	iload 0
9	:	iconst 1
10	:	isub
11	:	istore 0
12	:	goto 2
13	:	iload 1
	0 1 2 3 4 5 6 7 8 9 10 11 12 13	0 : 1 : 2 : 3 : 4 : 5 : 6 : 7 : 8 : 9 : 10 : 11 : 12 : 13 :

Bytecode:

JVM model:

counter: 1

stack:

local variables:

D	•
----------	---

ireturn

14

14

Running example

	0	:	iconst 1
Java code:	1	:	istore 1
	2	:	iload 0
<pre>static int factorial(int n)</pre>	3	:	ifeq 13
{	4	:	iload 1
int $a = 1;$	5	:	iload 0
while (n != 0){	6	:	imul
a = a * n;	7	:	istore 1
n = n-1;	8	:	iload 0
}	9	:	iconst 1
return a;	10	:	isub
}	11	:	istore 0
	12	:	goto 2
	13	:	iload 1

JVM model:

counter: 2

local variables:

	0	:	iconst 1
Java code:	1	:	istore 1
	2	:	iload 0
static int factorial(int n) 3	:	ifeq 13
{	4	:	iload 1
int $a = 1;$	5	:	iload 0
while (n != 0){	6	:	imul
a = a * n;	7	:	istore 1
n = n - 1;	8	:	iload 0
}	9	:	iconst 1
return a;	10	:	isub
}	11	:	istore 0
	12	:	goto 2
	13	:	iload 1

Bytecode:

JVM model:

counter: 3

stack:

 5
 ...

local variables:

ireturn

14

14

Running example

	0	:	iconst 1
Java code:	1	:	istore 1
	2	:	iload 0
<pre>static int factorial(int n)</pre>	3	:	ifeq 13
{	4	:	iload 1
int $a = 1;$	5	:	iload 0
while (n != 0){	6	:	imul
a = a * n;	7	:	istore 1
n = n-1;	8	:	iload 0
}	9	:	iconst 1
return a;	10	:	isub
}	11	:	istore 0
	12	:	goto 2
	13	:	iload 1

JVM model:

counter: 4

stack:

local variables:

|--|

14

Running example

	0	:	iconst 1
Java code:	1	:	istore 1
	2	:	iload 0
static int factorial(int n)	3	:	ifeq 13
{	4	:	iload 1
int $a = 1;$	5	:	iload 0
while (n != 0){	6	:	imul
a = a * n;	7	:	istore 1
n = n-1;	8	:	iload 0
}	9	:	iconst 1
return a;	10	:	isub
}	11	:	istore 0
	12	:	goto 2
	13	:	iload 1

JVM model:

counter: 5

stack:

local variables:

14

Running example

	0	:	iconst 1
Java code:	1	:	istore 1
	2	:	iload 0
static int factorial(int n)	3	:	ifeq 13
{	4	:	iload 1
int $a = 1;$	5	:	iload 0
while (n != 0){	6	:	imul
a = a * n;	7	:	istore 1
n = n - 1;	8	:	iload 0
}	9	:	iconst 1
return a;	10	:	isub
}	11	:	istore 0
	12	:	goto 2
	13	:	iload 1

JVM model:

counter: 6

stack:

 5
 1
 ...

local variables:

|--|

	0	:	iconst 1
Java code:	1	:	istore 1
	2	:	iload 0
static int factorial(int n)	3	:	ifeq 13
{	4	:	iload 1
int $a = 1;$	5	:	iload 0
while (n != 0){	6	:	imul
a = a * n;	7	:	istore 1
n = n-1;	8	:	iload 0
}	9	:	iconst 1
return a;	10	:	isub
}	11	:	istore 0
	12	:	goto 2
	13	:	iload 1

Bytecode:

JVM model:

counter: 7

stad	:k:		
5			

local variables:

|--|

ireturn

14

	0	:	iconst 1
Java code:	1	:	istore 1
	2	:	iload 0
static int factorial(int n)	3	:	ifeq 13
{	4	:	iload 1
int $a = 1;$	5	:	iload 0
while (n != 0){	6	:	imul
a = a * n;	7	:	istore 1
n = n - 1;	8	:	iload 0
}	9	:	iconst 1
return a;	10	:	isub
}	11	:	istore 0
	12	:	goto 2
	13	:	iload 1

Bytecode: 0 : *iconst* 1

JVM model:

counter: 8

stack:

local variables:

5	5		

ireturn

14

14

Running example

	0	:	iconst 1
Java code:	1	:	istore 1
	2	:	iload 0
static int factorial(int n)) 3	:	ifeq 13
{	4	:	iload 1
int $a = 1;$	5	:	iload 0
while (n != 0){	6	:	imul
a = a * n;	7	:	istore 1
n = n - 1;	8	:	iload 0
}	9	:	iconst 1
return a;	10	:	isub
}	11	:	istore 0
	12	:	goto 2
	13	:	iload 1

JVM model:

counter: 9

stad	:k:		
5			

local variables:

14

Running example

	0	:	iconst 1
Java code:	1	:	istore 1
	2	:	iload 0
static int factorial(int n)	3	:	ifeq 13
{	4	:	iload 1
int $a = 1;$	5	:	iload 0
while (n != 0){	6	:	imul
a = a * n;	7	:	istore 1
n = n - 1;	8	:	iload 0
}	9	:	iconst 1
return a;	10	:	isub
}	11	:	istore 0
	12	:	goto 2
	13	:	iload 1

JVM model:

counter: 10

stad	:k:		
1	5		

local variables:

|--|

		0	:	iconst 1
Java code:		1	:	istore 1
		2	:	iload 0
static int factorial(int	n)	3	:	ifeq 13
{		4	:	iload 1
int $a = 1;$		5	:	iload 0
while (n != 0){		6	:	imul
a = a * n;		7	:	istore 1
n = n-1;		8	:	iload 0
}		9	:	iconst 1
return a;		10	:	isub
}		11	:	istore 0
		12	:	goto 2
		13	:	iload 1

Bytecode:

JVM model:

counter: 11

stack:

 4
 ...

local variables:

ireturn

14

Running example

	0	:	iconst 1
Java code:	1	:	istore 1
	2	:	iload 0
static int factorial(int n)	3	:	ifeq 13
{	4	:	iload 1
int $a = 1;$	5	:	iload 0
while (n != 0){	6	:	imul
a = a * n;	7	:	istore 1
n = n - 1;	8	:	iload 0
}	9	:	iconst 1
return a;	10	:	isub
}	11	:	istore 0
	12	:	goto 2
	13	:	iload 1
	14	:	ireturn

JVM model:

counter: 12

local variables:

14

Running example

	0	:	iconst 1
Java code:	1	:	istore 1
	2	:	iload 0
static int factorial(int n)	3	:	ifeq 13
{	4	:	iload 1
int $a = 1;$	5	:	iload 0
while (n != 0){	6	:	imul
a = a * n;	7	:	istore 1
n = n - 1;	8	:	iload 0
}	9	:	iconst 1
return a;	10	:	isub
}	11	:	istore 0
	12	:	goto 2
	13	:	iload 1

JVM model:

counter: 2

local variables:

|--|--|

Bytecode:

. . .

JVM model:

. . .

Java code:

```
static int factorial(int n)
{
    int a = 1;
    while (n != 0){
        a = a * n;
        n = n-1;
        }
    return a;
}
```

14

Running example

	0	:	iconst 1
Java code:	1	:	istore 1
	2	:	iload 0
<pre>static int factorial(int n)</pre>	3	:	ifeq 13
{	4	:	iload 1
int $a = 1;$	5	:	iload 0
while (n != 0){	6	:	imul
a = a * n;	7	:	istore 1
n = n-1;	8	:	iload 0
}	9	:	iconst 1
return a;	10	:	isub
}	11	:	istore 0
	12	:	goto 2
	13	:	iload 1

JVM model:

counter: 13

stac	:k:		
0			

local variables:

0 120	
-------	--

14

Running example

		0	:	iconst 1
Java code:		1	:	istore 1
		2	:	iload 0
static int factorial(int	n)	3	:	ifeq 13
{		4	:	iload 1
int $a = 1;$		5	:	iload 0
while (n != 0){		6	:	imul
a = a * n;		7	:	istore 1
n = n - 1;		8	:	iload 0
}		9	:	iconst 1
return a;		10	:	isub
}		11	:	istore 0
		12	:	goto 2
		13	:	iload 1

JVM model:

counter: 14

stack:		
120		

local variables:

|--|

14

Running example

	0	:	iconst 1
Java code:	1	:	istore 1
	2	:	iload 0
static int factorial(int n)	3	:	ifeq 13
{	4	:	iload 1
int $a = 1;$	5	:	iload 0
while (n != 0){	6	:	imul
a = a * n;	7	:	istore 1
n = n - 1;	8	:	iload 0
}	9	:	iconst 1
return a;	10	:	isub
}	11	:	istore 0
	12	:	goto 2
	13	:	iload 1

JVM model:

counter: 15

stack:		
120		

local variables:

|--|

	Bytecode:		2:		
	0	:	iconst 1	JVM model:	
Java code:	1	:	istore 1		
	2	:	iload 0		
static int factorial(int n)	3	:	ifeq 13	counter:	
{	4	:	iload 1	15	
int $a = 1;$	5	:	iload 0		
while (n != 0){	6	:	imul		
a = a * n;	7	:	istore 1	stack:	
n = n-1;	8	:	iload 0	120	
}	9	:	iconst 1	120	
return a;	10	:	isub		
}	11	:	istore 0	local variables:	
	12	:	goto 2	local variables.	
	13	:	iload 1	0 120	
	14	:	ireturn		

Goal (Factorial case)

 $\forall n \in \mathbb{N}$, running the bytecode associated with the factorial program with n as input produces a state which contains n! on top of the stack.

Goal (Factorial case)

 $\forall n \in \mathbb{N}$, running the bytecode associated with the factorial program with n as input produces a state which contains n! on top of the stack

Goal (Factorial case)

 $\forall n \in \mathbb{N}$, running the bytecode associated with the factorial program with n as input produces a state which contains n! on top of the stack

Methodology:

```
Definition theta_fact (n : nat) := n'!.
```

Write the specification of the function

Goal (Factorial case)

 $\forall n \in \mathbb{N}$, running the bytecode associated with the factorial program with n as input produces a state which contains n! on top of the stack

Methodology:

- Write the specification of the function
- Write the algorithm (tail recursive function)

```
Fixpoint helper_fact (n a : nat) :=
match n with
| 0 \Rightarrow a
| S p \Rightarrow helper_fact p (n * a)
end.
Definition fn_fact (n : nat) :=
helper_fact n 1.
```

Goal (Factorial case)

 $\forall n \in \mathbb{N}$, running the bytecode associated with the factorial program with n as input produces a state which contains n! on top of the stack

Methodology:

- Write the specification of the function
- Write the algorithm (tail recursive function)
- Prove that the algorithm satisfies the specification
Goal (Factorial case)

 $\forall n \in \mathbb{N}$, running the bytecode associated with the factorial program with n as input produces a state which contains n! on top of the stack

```
Methodology:
                                  Definition pi_fact :=
                                    [::(ICONST,1%Z);
  Write the specification of the
                                        (ISTORE,1%Z);
     function
                                        (ILOAD,0%Z);
  Write the algorithm (tail)
                                        (IFEQ,10%Z);
     recursive function)
                                        (ILOAD,1%Z);
                                        (ILOAD,0%Z);
  Prove that the algorithm
                                        (IMUL, 0%Z);
     satisfies the specification
                                        (ISTORE, 1%Z);
    Write the JVM program
                                        (ILOAD, 0%Z);
                                        (ICONST, 1\%Z);
                                        (ISUB, 0%Z);
                                        (ISTORE, 0%Z);
                                        (GOTO, (-10)\%Z);
                                        (ILOAD, 1%Z);
                                        (HALT, 0%Z)].
```

Goal (Factorial case)

 $\forall n \in \mathbb{N}$, running the bytecode associated with the factorial program with n as input produces a state which contains n! on top of the stack

Methodology:

- Write the specification of the function
- Write the algorithm (tail recursive function)
- Prove that the algorithm satisfies the specification
- Write the JVM program
- Define the function that schedules the program

```
Definition sched_fact (n : nat) := nseq 2 0 ++ loop_sched_fact n.
```

Goal (Factorial case)

 $\forall n \in \mathbb{N}$, running the bytecode associated with the factorial program with n as input produces a state which contains n! on top of the stack

Methodology:

- Write the specification of the function
- Write the algorithm (tail recursive function)
- Prove that the algorithm satisfies the specification
- Write the JVM program
- Define the function that schedules the program
- 6 Prove that the code implements the algorithm

```
Lemma program_is_fn_fact n :
    run (sched_fact n)
        (make_state 0 [::n] [::] pi_fact) =
      (make_state 14 [::0; fn_fact n ]
        (push (fn_fact n ) [::]) pi_fact).
```

Goal (Factorial case)

 $\forall n \in \mathbb{N}$, running the bytecode associated with the factorial program with n as input produces a state which contains n! on top of the stack

Methodology:

- Write the specification of the function
- Write the algorithm (tail recursive function)
- Prove that the algorithm satisfies the specification
- Write the JVM program
- Define the function that schedules the program
- 6 Prove that the code implements the algorithm
- Prove total correctness

```
Theorem total_correctness_fact n sf :
    sf = run (sched_fact n)
    (make_state 0 [::n] [::] pi_fact) ->
    next_inst sf = (HALT,0%Z) /\
    top (stack sf) = (n'!).
```

Two main trends: ATP and ITP

Introducing machine-learning...

Where and how it is best to apply machine-learning in such cycles is a research question on its own.

Two main trends: ATP and ITP

Introducing machine-learning...

Where and how it is best to apply machine-learning in such cycles is a research question on its own.

... Your own ideas/suggestions are welcome

Two main trends: ATP and ITP

Introducing machine-learning...

Where and how it is best to apply machine-learning in such cycles is a research question on its own.

... Your own ideas/suggestions are welcome It what follows, I'll explain a few existing approaches.

Outline

Motivation: machine-learning for automated theorem proving?

- Two main trends: ATP and ITP
 - Proof pattern recognition in ATPs
 - Proof pattern recognition in ITPs

3 More Examples

- The bigop library
- The COQEAL library

Proof pattern recognition in ATPs

Given a proof goal, ATPs apply various lemmas to rewrite or simplify the goal until it is proven.

Proof pattern recognition in ATPs

Given a proof goal, ATPs apply various lemmas to rewrite or simplify the goal until it is proven.

Goal

Apply machine-learning techniques to improve the premise selection procedure on the basis of previous experience.

Proof pattern recognition in ATPs

Given a proof goal, ATPs apply various lemmas to rewrite or simplify the goal until it is proven.

Goal

Apply machine-learning techniques to improve the premise selection procedure on the basis of previous experience.

References:

- D. Kühlwein et al. MaSh: Machine Learning for Sledgehammer. In ITP'13, 2013
- C. Kaliszyk and J. Urban. Learning-assisted Automated Reasoning with Flyspeck. 2012
- D. Kühlwein et al. Overview and evaluation of premise selection techniques for large theory mathematics. In IJCAR12, LNCS 7364, pages 378–392, 2012.
 - E. Tsivtsivadze et al. Semantic graph kernels for automated reasoning. In SDM11, pages 795–803, 2011.

Application to ITPs

Several ITPs use ATPs to discharge proof obligations. Then, the ATP approach can be used to speed up those proofs.

Application to ITPs

Several ITPs use ATPs to discharge proof obligations. Then, the ATP approach can be used to speed up those proofs.

Example Goal

Determine the lemmas that can be useful to prove the equivalence between the recursive and tail-recursive versions of factorial.

Example Goal

Determine the lemmas that can be useful to prove the equivalence between the recursive and tail-recursive versions of factorial.

A classifier for each lemma in the library.

. . .

. . .

. . .

Example Goal

Determine the lemmas that can be useful to prove the equivalence between the recursive and tail-recursive versions of factorial.

Training phase:

- lemma A is used in the proof of lemma $B \implies \langle A \rangle (B) = 1;$
- otherwise $\implies \langle A \rangle (B) = 0;$

Example Goal

Determine the lemmas that can be useful to prove the equivalence between the recursive and tail-recursive versions of factorial.

Testing phase:

Features of this approach

Feature extraction:

- features are extracted from all first-order formulas of the library;
- sparse feature vectors (10⁶ features);
- classifier for every lemma of the library.

Features of this approach

2 Machine-learning tools:

- work with supervised learning;
- algorithms range from SVMs to Naive Bayes learning;
- sparse methods; using software such as SNoW.

Features of this approach

Main improvement:

• the number of goals proven automatically increases by up to 20%-40%

Outline

Motivation: machine-learning for automated theorem proving?

Two main trends: ATP and ITP

- Proof pattern recognition in ATPs
- Proof pattern recognition in ITPs

3 More Examples

- The bigop library
- The COQEAL library

Proof pattern recognition in ITPs

In ITPs, the proof development is interactive (via tactics).

Proof pattern recognition in ITPs

In ITPs, the proof development is interactive (via tactics).

Goal: make machine-learning a part of interactive proof development

Apply machine-learning methods to:

- find common proof-patterns in proofs across various scripts, libraries, users and notations;
- and provide proof-hints;
- assist the user, not the prover.

Proof pattern recognition in ITPs

In ITPs, the proof development is interactive (via tactics).

Goal: make machine-learning a part of interactive proof development

Apply machine-learning methods to:

- find common proof-patterns in proofs across various scripts, libraries, users and notations;
- and provide proof-hints;
- assist the user, not the prover.

ML4PG:

 Proof General extension which applies machine learning methods to Coq/SSReflect proofs. [Now available in standard Proof General distribution!!!]

E. Komendantskaya, J. Heras and G. Grov. Machine learning in Proof General: interfacing interfaces. EPTCS Post-proceedings of User Interfaces for Theorem Provers. 2013.

Katya (Dundee)

Machine Learning for Proof General

19 June 2013 29 / 50

Interaction with ML4PG:

• User interacts with Proof General as usual,

- User interacts with Proof General as usual,
- User gets stuck in a proof,

- User interacts with Proof General as usual,
- User gets stuck in a proof,
- User configures ML4PG,

- User interacts with Proof General as usual,
- User gets stuck in a proof,
- User configures ML4PG,
- User calls for a statistical hint,

- User interacts with Proof General as usual,
- User gets stuck in a proof,
- User configures ML4PG,
- User calls for a statistical hint,
- ML4PG informs the user of arising proof patterns.

Lemma fact_tail_aux_lemma : forall (a n : nat), fact_tail_aux n a = a * n'!. Proof.

-U:**- lists.v All L1 (Coq Script(0) Holes)------

1 subgoals, subgoal 1 (ID 13)

forall n a : nat, fact_tail_aux n a = a * n'!

-U:%%- *response* All L1 (Cog Response)------

-U:%%- *response* All L1 (Coq Response)------

Feature extraction mechanism

```
Lemma fact_tail_aux_lemma :
  forall (a n : nat), fact_tail_aux n a = a * n'!.
Proof.
```

	tactics	N tactics	arg type	tactic arg is hypothesis?	top symbol	subgoals
g1						
g2						
g3						
g4						
g5						
Feature extraction mechanism

```
Lemma fact_tail_aux_lemma :
   forall (a n : nat), fact_tail_aux n a = a * n'!.
Proof.
move => n.
```

	tactics	N tactics	arg type	tactic arg is hypothesis?	top symbol	subgoals
g1	move	1	nat	no	forall	1
g2						
g3						
g4						
g5						

Feature extraction mechanism

```
Lemma fact_tail_aux_lemma :
forall (a n : nat), fact_tail_aux n a = a * n'!.
Proof.
move \Rightarrow n. elim : n \Rightarrow [a| n IH a /=].
```

	tactics	N tactics	arg type	tactic arg is hypothesis?	top symbol	subgoals
g1	move	1	nat	no	forall	1
g2	elim, move	2	nat, [nat nat Prop nat]	yes	forall	2
g3						
g4						
g5						

Feature extraction mechanism

```
Lemma fact_tail_aux_lemma :
  forall (a n : nat), fact_tail_aux n a = a * n'!.
Proof.
move => n. elim : n => [a| n IH a /=].
  by rewrite /theta_fact fact0 muln1.
```

	tactics	N tactics	arg type	tactic arg is hypothesis?	top symbol	subgoals
g1	move	1	nat	no	forall	1
g2	elim, move	2	nat, [nat nat Prop nat]	yes	forall	2
g3	rewrite	1	Prop, Prop, Prop	EL_1 , EL_2 , EL_3	equal	1
g4						
g5						

ML4PG

ML4PG assists the user providing similar lemmas as proof hints.

Features of this approach

Feature extraction:

- features are extracted from higher-order propositions and proofs;
- feature extraction is built on the method of proof-traces;
- the feature vectors are fixed at the size of 30;
- longer proofs are analysed by means of the proof-patch method.

Features of this approach

- Machine-learning tools:
 - work with unsupervised learning (clustering) algorithms implemented in MATLAB and Weka;
 - use algorithms such as Gaussian, K-means, and farthest-first.

We have integrated Proof General with a variety of clustering algorithms:

We have integrated Proof General with a variety of clustering algorithms:

• Unsupervised machine learning technique:

We have integrated Proof General with a variety of clustering algorithms:

• Unsupervised machine learning technique:

• Engines: Matlab, Weka, Octave, R, ...

We have integrated Proof General with a variety of clustering algorithms:

• Unsupervised machine learning technique:

• Engines: Matlab, Weka, Octave, R, ...

We have integrated Proof General with a variety of clustering algorithms:

• Unsupervised machine learning technique:

- Engines: Matlab, Weka, Octave, R, ...
- Algorithms: K-means, Gaussian Mixture models, simple Expectation Maximisation, . . .

A proof in Coq/SSReflect with ML4PG help

Methodology:

- Write the specification of the function
- Write the algorithm (tail recursive function)
- Prove that the algorithm satisfies the specification
- Write the JVM program
- Optime the function that schedules the program
- O Prove that the code implements the algorithm
- Prove total correctness

Methodology:

- Write the specification of the function
- Write the algorithm (tail recursive function)
- Prove that the algorithm satisfies the specification
- Write the JVM program
- Oefine the function that schedules the program
- O Prove that the code implements the algorithm
- Prove total correctness

Suggestions for fn_fact_is_theta :

 $fn_expt_is_theta$, $fn_mult_is_theta$, $fn_power_is_theta$

Methodology:

- Write the specification of the function
- Write the algorithm (tail recursive function)
- Prove that the algorithm satisfies the specification
- Write the JVM program
- Oefine the function that schedules the program
- O Prove that the code implements the algorithm
- Prove total correctness

Suggestions for program_is_fn_fact :

 $program_is_fn_expt\ ,\ program_is_fn_mult\ ,\ program_is_fn_power$

Methodology:

- Write the specification of the function
- Write the algorithm (tail recursive function)
- Prove that the algorithm satisfies the specification
- Write the JVM program
- Oefine the function that schedules the program
- **o** Prove that the code implements the algorithm
- Prove total correctness

Suggestions for total_correctness_fact :

 $total_correctness_expt\ ,\ total_correctness_mult\ ,\ total_correctness_power$

• ML4PG statistical tool can be switched on/off on user's demand;

- ML4PG statistical tool can be switched on/off on user's demand;
- ML4PG does not assume any knowledge of machine-learning interfaces from the user;

- ML4PG statistical tool can be switched on/off on user's demand;
- ML4PG does not assume any knowledge of machine-learning interfaces from the user;
- modular: allows the user to make choices regarding approach to levels of proofs and particular statistical algorithms;

- ML4PG statistical tool can be switched on/off on user's demand;
- ML4PG does not assume any knowledge of machine-learning interfaces from the user;
- modular: allows the user to make choices regarding approach to levels of proofs and particular statistical algorithms;
- tolerant to mixing and matching different proof libraries and different notation used in proofs across different users.

- ML4PG statistical tool can be switched on/off on user's demand;
- ML4PG does not assume any knowledge of machine-learning interfaces from the user;
- modular: allows the user to make choices regarding approach to levels of proofs and particular statistical algorithms;
- tolerant to mixing and matching different proof libraries and different notation used in proofs across different users.
- easily extendable: e.g. from Coq to SSReflect and ACL2.

- ML4PG statistical tool can be switched on/off on user's demand;
- ML4PG does not assume any knowledge of machine-learning interfaces from the user;
- modular: allows the user to make choices regarding approach to levels of proofs and particular statistical algorithms;
- tolerant to mixing and matching different proof libraries and different notation used in proofs across different users.
- easily extendable: e.g. from Coq to SSReflect and ACL2.

Most amazingly...

- ML4PG statistical tool can be switched on/off on user's demand;
- ML4PG does not assume any knowledge of machine-learning interfaces from the user;
- modular: allows the user to make choices regarding approach to levels of proofs and particular statistical algorithms;
- tolerant to mixing and matching different proof libraries and different notation used in proofs across different users.
- easily extendable: e.g. from Coq to SSReflect and ACL2.

Most amazingly...

it really works!!!!

Table of Contents

- Motivation: machine-learning for automated theorem proving?
- Two main trends: ATP and ITP

3 More Examples

4 Conclusions and Further work

$\bullet~\mathrm{SSReflect}$ library about indexed big "operations"

- $\bullet~\mathrm{SSReflect}$ library about indexed big "operations"
- Examples:

$$\sum_{0 \le i < 2n \mid odd \ i} i = n^2, \prod_{0 \le i \le n} i = n!, \bigcup_{i \in I} f(i), \ldots$$

- SSREFLECT library about indexed big "operations"
- Examples:

$$\sum_{0 \le i < 2n \mid odd \ i} i = n^2, \prod_{0 \le i \le n} i = n!, \bigcup_{i \in I} f(i), \ldots$$

- Applications:
 - Definition of matrix multiplication
 - Binomials
 - Union of sets
 - . . .

Application of ML4PG: Inverse of nilpotent matrices

Definition

Let M be a square matrix, M is nilpotent if it exists an n such that $M^n = 0$

Application of ML4PG: Inverse of nilpotent matrices

Definition

Let M be a square matrix, M is nilpotent if it exists an n such that $M^n = 0$

Lemma

Let M be a nilpotent matrix, then

$$(1-M) imes \sum_{0\leq i < n} M^i = 1$$

where *n* is such that $M^n = 0$

 $Lemma \ inverse_I_minus_M_big \ (M : `M_m) : (exists n, M^n = 0) \rightarrow (1 - M) \ *m \ (\sum_(0 <= i < n) \ M^i) = 1.$

Theorem (Fundamental Lemma of Persistent Homology) $\beta_i^{j,k} : \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{Z}$

$$\beta_n^{k,l} - \beta_n^{k,m} = \sum_{1 \le i \le k} \sum_{1 < j \le m} (\beta_n^{j,p-1} - \beta_n^{j,p}) - (\beta_n^{j-1,p-1} - \beta_n^{j-1,p})$$

Theorem (Fundamental Lemma of Persistent Homology) $\beta_i^{j,k} : \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{Z}$

$$\beta_n^{k,l} - \beta_n^{k,m} = \sum_{1 \le i \le k} \sum_{1 < j \le m} (\beta_n^{j,p-1} - \beta_n^{j,p}) - (\beta_n^{j-1,p-1} - \beta_n^{j-1,p})$$

$$\sum_{1 < i < k} \sum_{l < j \le m} (\beta_n^{j,i-1} - \beta_n^{j,i}) - (\beta_n^{j-1,i-1} - \beta_n^{j-1,i}) =$$

Theorem (Fundamental Lemma of Persistent Homology) $\beta_i^{j,k} : \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{Z}$

$$\beta_n^{k,l} - \beta_n^{k,m} = \sum_{1 \le i \le k} \sum_{l < j \le m} (\beta_n^{j,p-1} - \beta_n^{j,p}) - (\beta_n^{j-1,p-1} - \beta_n^{j-1,p})$$

$$\sum_{1 \leq i \leq k} \sum_{\substack{l < j \leq m \\ l \leq i \leq k}} (\beta_n^{j,i-1} - \beta_n^{j,i}) - (\beta_n^{j-1,i-1} - \beta_n^{j-1,i}) =$$

$$\sum_{1 \leq i \leq k} ((\beta_n^{l+1,i-1} - \beta_n^{l+1,i}) - (\beta_n^{l,i-1} - \beta_n^{l,i}) +$$

$$(\beta_n^{l+2,i-1} - \beta_n^{l+2,i}) - (\beta_n^{l+1,i-1} - \beta_n^{l+1,i}) +$$

$$\cdots$$

$$(\beta_n^{m-1,i-1} - \beta_n^{m-1,i}) - (\beta_n^{m-2,i-1} - \beta_n^{m-2,i}) +$$

$$(\beta_n^{m,i-1} - \beta_n^{m,i}) - (\beta_n^{m-1,i-1} - \beta_n^{m-1,i}))$$

Theorem (Fundamental Lemma of Persistent Homology) $\beta_i^{j,k} : \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{Z}$

$$\beta_n^{k,l} - \beta_n^{k,m} = \sum_{1 \le i \le k} \sum_{l < j \le m} (\beta_n^{j,p-1} - \beta_n^{j,p}) - (\beta_n^{j-1,p-1} - \beta_n^{j-1,p})$$

$$\sum_{1 \leq i \leq k} \sum_{\substack{l < j \leq m \\ l \leq i \leq k}} (\beta_n^{j,i-1} - \beta_n^{j,i}) - (\beta_n^{j-1,i-1} - \beta_n^{j-1,i}) =$$

$$\sum_{1 \leq i \leq k} \underbrace{((\beta_n^{l+1,i-1} - \beta_n^{l+1,i}) - (\beta_n^{l,i-1} - \beta_n^{l,i}) + }_{(\beta_n^{l+2,i-1} - \beta_n^{l+2,i}) - (\beta_n^{l+1,i-1} - \beta_n^{l+1,i}) + }_{\dots} \\ (\beta_n^{m-1,i-1} - \beta_n^{m-1,i}) - (\beta_n^{m-2,i-1} - \beta_n^{m-2,i}) + \\ (\beta_n^{m,i-1} - \beta_n^{m,i}) - (\beta_n^{m-1,i-1} - \beta_n^{m-1,i}))$$

Theorem (Fundamental Lemma of Persistent Homology) $\beta_i^{j,k} : \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{Z}$

$$\beta_n^{k,l} - \beta_n^{k,m} = \sum_{1 \le i \le k} \sum_{l < j \le m} (\beta_n^{j,p-1} - \beta_n^{j,p}) - (\beta_n^{j-1,p-1} - \beta_n^{j-1,p})$$

$$\begin{split} \sum_{1 \le i \le k} \sum_{\substack{l < j \le m}} (\beta_n^{j,i-1} - \beta_n^{j,i}) - (\beta_n^{j-1,i-1} - \beta_n^{j-1,i}) &= \\ \sum_{1 \le i \le k} (\underbrace{(\beta_n^{l+1,i-1} - \beta_n^{l+1,i})}_{1 \le i \le k} - (\beta_n^{l,i-1} - \beta_n^{l,i}) + \\ \underbrace{(\beta_n^{l+2,i-1} - \beta_n^{l+2,i})}_{\dots} - (\underbrace{(\beta_n^{l+1,i-1} - \beta_n^{l+1,i})}_{n-1,i-1} + \underbrace{(\beta_n^{m-1,i-1} - \beta_n^{m-2,i-1})}_{(\beta_n^{m-1,i-1} - \beta_n^{m-1,i})} + \\ \underbrace{(\beta_n^{m,i-1} - \beta_n^{m,i}) - (\underbrace{(\beta_n^{m-1,i-1} - \beta_n^{m-1,i})}_{n-1,i-1} + \underbrace{(\beta_n^{m-1,i-1} - \beta_n^{m-1,i-1})}_{n-1,i-1} + \\ \underbrace{(\beta_n^{m,i-1} - \beta_n^{m,i}) - (\underbrace{(\beta_n^{m-1,i-1} - \beta_n^{m-1,i})}_{n-1,i-1} + \underbrace{(\beta_n^{m-1,i-1} - \beta_n^{m-1,i-1})}_{n-1,i-1} + \\ \underbrace{(\beta_n^{m,i-1} - \beta_n^{m,i-1}) - (\underbrace{(\beta_n^{m-1,i-1} - \beta_n^{m-1,i-1})}_{n-1,i-1} + \underbrace{(\beta_n^{m-1,i-1} - \beta_n^{m-1,i-1})}_{n-1,i-1} + \\ \underbrace{(\beta_n^{m,i-1} - \beta_n^{m,i-1}) - (\underbrace{(\beta_n^{m-1,i-1} - \beta_n^{m-1,i-1})}_{n-1,i-1} + \underbrace{(\beta_n^{m-1,i-1} -$$

Theorem (Fundamental Lemma of Persistent Homology) $\beta_i^{j,k} : \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{Z}$

$$\beta_n^{k,l} - \beta_n^{k,m} = \sum_{1 \le i \le k} \sum_{1 < j \le m} (\beta_n^{j,p-1} - \beta_n^{j,p}) - (\beta_n^{j-1,p-1} - \beta_n^{j-1,p})$$

$$\sum_{\substack{1 \le i \le k}} \sum_{\substack{l < j \le m}} (\beta_n^{j,i-1} - \beta_n^{j,i}) - (\beta_n^{j-1,i-1} - \beta_n^{j-1,i}) =$$

$$\sum_{\substack{1 \le i \le k}} (\beta_n^{m,i-1} - \beta_n^{m,i}) - (\beta_n^{l,i-1} - \beta_n^{l,i}) = \dots$$

Lemma

If $g : \mathbb{N} \to \mathbb{Z}$, then

$$\sum_{0 \le i \le k} (g(i+1) - g(i)) = g(k+1) - g(0)$$
Lemma

If $g : \mathbb{N} \to \mathbb{Z}$, then

$$\sum_{0 \le i \le k} (g(i+1) - g(i)) = g(k+1) - g(0)$$

$$\sum_{0\leq i\leq k}(g(i+1)-g(i)) =$$

Lemma

If $g:\mathbb{N}\to\mathbb{Z}$, then

$$\sum_{0 \le i \le k} (g(i+1) - g(i)) = g(k+1) - g(0)$$

$$\frac{\sum_{0 \le i \le k} (g(i+1) - g(i))}{g(1) - g(0) + g(2) - g(1) + \ldots + g(k+1) - g(k)} =$$

Lemma

If $g:\mathbb{N}\to\mathbb{Z}$, then

$$\sum_{0 \le i \le k} (g(i+1) - g(i)) = g(k+1) - g(0)$$

$$\sum_{\substack{0 \le i \le k}} (g(i+1) - g(i)) = g(1) - g(0) + g(2) - g(1) + \dots + g(k+1) - g(k)$$

Lemma

If $g:\mathbb{N}\to\mathbb{Z}$, then

$$\sum_{0 \le i \le k} (g(i+1) - g(i)) = g(k+1) - g(0)$$

$$\sum_{\substack{0 \le i \le k \\ g(1) - g(0) + g(2) - g(1) + \dots + g(k+1) - g(k) \\ \end{array} } =$$

Lemma

If $g : \mathbb{N} \to \mathbb{Z}$, then

$$\sum_{0 \le i \le k} (g(i+1) - g(i)) = g(k+1) - g(0)$$

$$\sum_{0 \le i \le k} (g(i+1) - g(i)) = g(k+1) - g(0)$$

Lemma

Let M be a nilpotent matrix, then

$$(1-M) imes \sum_{0 \le i < n} M^i = 1$$

where *n* is such that $M^n = 0$

Lemma

Let M be a nilpotent matrix, then

$$(1-M) imes \sum_{0 \le i < n} M^i = 1$$

where *n* is such that $M^n = 0$

$$(1-M) \times \sum_{0 \le i < n} M^i =$$

Katya	(Dundee))
-------	----------	---

Lemma

Let M be a nilpotent matrix, then

$$(1-M) imes \sum_{0 \le i < n} M^i = 1$$

where *n* is such that $M^n = 0$

$$(1-M) \times \sum_{\substack{0 \le i < n \\ 0 \le i < n}} M^{i} - M^{i+1}$$

Katya (Dundee)
---------	---------

Lemma

Let M be a nilpotent matrix, then

$$(1-M) imes \sum_{0 \le i < n} M^i = 1$$

where *n* is such that $M^n = 0$

$$(1 - M) \times \sum_{\substack{0 \le i < n \\ 0 \le i < n}} M^{i} =$$

$$\sum_{\substack{0 \le i < n \\ 0 < i < n}} M^{i} - M^{i+1} =$$

$$M^{0} - M^{1} + M^{1} - M^{2} + \ldots + M^{n-1} - M^{n}$$

Lemma

Let M be a nilpotent matrix, then

$$(1-M) imes \sum_{0 \le i < n} M^i = 1$$

where *n* is such that $M^n = 0$

$$(1-M) \times \sum_{\substack{0 \le i < n \\ 0 \le i < n}} M^{i} =$$

$$\sum_{\substack{0 \le i < n \\ 0 \le i < n}} M^{i} - M^{i+1} =$$

$$M^{0} - M^{1} + M^{2} - M^{2} + \dots + M^{p-1} - M^{n}$$

Lemma

Let M be a nilpotent matrix, then

$$(1-M) imes \sum_{0 \le i < n} M^i = 1$$

where *n* is such that $M^n = 0$

$$\begin{array}{rcl} (1-M) \times \sum\limits_{\substack{0 \leq i < n \\ M^i - M^{i+1} \\ M^0 - M^n = M^0 = 1 \end{array}} M^i &= \end{array}$$

Lemma

Let M be a nilpotent matrix, then

$$(1-M) imes \sum_{0 \le i < n} M^i = 1$$

where *n* is such that $M^n = 0$

Proof

$$\begin{array}{rcl} (1-M) \times \sum\limits_{\substack{0 \leq i < n \\ M^i - M^{i+1} \end{array}} M^i &= \\ \sum\limits_{\substack{0 \leq i < n \\ M^0 - M^n = M^0 = 1 \end{array}} M^0 = 1 \end{array}$$

Lemma (Another ML4PG suggestion)

Let M be a nilpotent matrix, then there exists N such that N imes (1 - M) = 1

Katya (Dundee)

Machine Learning for Proof General

19 June 2013 45 / 50

M. Dénès and A. Mörtberg and V. Siles. A refinement-based approach to computational algebra in Coq. In: Proceedings Interactive Theorem Proving 2012 (ITP 2012). Lecture Notes in Computer Science 7406, 83–98. 2012.

M. Dénès and A. Mörtberg and V. Siles. A refinement-based approach to computational algebra in Coq. In: Proceedings Interactive Theorem Proving 2012 (ITP 2012). Lecture Notes in Computer Science 7406, 83–98. 2012.

A methodology, based on the notion of refinement to formalise efficient algorithms of Computer Algebra systems:

M. Dénès and A. Mörtberg and V. Siles. A refinement-based approach to computational algebra in Coq. In: Proceedings Interactive Theorem Proving 2012 (ITP 2012). Lecture Notes in Computer Science 7406, 83–98. 2012.

A methodology, based on the notion of refinement to formalise efficient algorithms of Computer Algebra systems:

Define the algorithm relying on rich dependent types

M. Dénès and A. Mörtberg and V. Siles. A refinement-based approach to computational algebra in Coq. In: Proceedings Interactive Theorem Proving 2012 (ITP 2012). Lecture Notes in Computer Science 7406, 83–98. 2012.

A methodology, based on the notion of refinement to formalise efficient algorithms of Computer Algebra systems:

- Define the algorithm relying on rich dependent types
- 2 Refine it to an efficient version described on high-level data structures

M. Dénès and A. Mörtberg and V. Siles. A refinement-based approach to computational algebra in Coq. In: Proceedings Interactive Theorem Proving 2012 (ITP 2012). Lecture Notes in Computer Science 7406, 83–98. 2012.

A methodology, based on the notion of refinement to formalise efficient algorithms of Computer Algebra systems:

- Define the algorithm relying on rich dependent types
- 2 Refine it to an efficient version described on high-level data structures
- Implement it on data structures closer to machine representations

The CoqEAL library

M. Dénès and A. Mörtberg and V. Siles. A refinement-based approach to computational algebra in Coq. In: Proceedings Interactive Theorem Proving 2012 (ITP 2012). Lecture Notes in Computer Science 7406, 83–98. 2012.

A methodology, based on the notion of refinement to formalise efficient algorithms of Computer Algebra systems:

- Define the algorithm relying on rich dependent types
- 2 Refine it to an efficient version described on high-level data structures
- Implement it on data structures closer to machine representations

Problem

Decipher the key results which can help us to solve our concrete problems

Suppose that we have defined a fast algorithm to compute the inverse of triangular matrices over a field called fast_invmx

Suppose that we have defined a fast algorithm to compute the inverse of triangular matrices over a field called fast_invmx

Problems:

• Prove the equivalence with the invmx algorithm of SSReflect

Suppose that we have defined a fast algorithm to compute the inverse of triangular matrices over a field called fast_invmx

Problems:

- Prove the equivalence with the invmx algorithm of SSReflect
- Executability of the algorithm

Fast inverse for triangular matrices

Suppose that we have defined a fast algorithm to compute the inverse of triangular matrices over a field called fast invmx

Problems:

- Prove the equivalence with the invmx algorithm of SSReflect
- Executability of the algorithm

Suppose that we have defined a fast algorithm to compute the inverse of triangular matrices over a field called fast_invmx

Problems:

- Prove the equivalence with the invmx algorithm of SSReflect
- Executability of the algorithm

- Clustering with matrix library of SSReflect and CoqEAL library (~ 1000)
- 10 suggestions
- Instead of proving:

```
      Lemma \ fast_invm x E \ : \ for all \ m \ (M \ : \ 'M[R]_m) \ , \ lower1 \ M \ -> \\ fast_invm x \ M = \ invm x \ M.
```

Suppose that we have defined a fast algorithm to compute the inverse of triangular matrices over a field called fast_invmx

Problems:

- Prove the equivalence with the invmx algorithm of SSReflect
- Executability of the algorithm

- Clustering with matrix library of SSReflect and CoqEAL library (~ 1000)
- 10 suggestions
- Prove:

```
Lemma fast_invmxE : forall m (M : 'M[R]_m), lower1 M -\!\!> M *m fast_invmx M = 1%:M.
```

```
    Key suggestion:
    Lemma invmx_is_uniq : forall m (M1 M2 : 'M[R]_m), M1 *m M2 = 1%:M -:
M2 = invmx M1.
```

Suppose that we have defined a fast algorithm to compute the inverse of triangular matrices over a field called fast_invmx

Problems:

- Prove the equivalence with the invmx algorithm of SSReflect
- Executability of the algorithm

- CoqEAL suggestion: refine the algorithm to work with sequences instead of matrices
- Clustering with CoqEAL library (~ 700)
- 7 suggestions all of them related to the refinement from matrices to sequences

Table of Contents

- Motivation: machine-learning for automated theorem proving?
- Two main trends: ATP and ITP
- More Examples
- 4 Conclusions and Further work

Conclusions and Further work

- We can, and perhaps should, apply statistical machine-learning in theorem proving;
- The general task is to use it to process "big data", or for distributed/collaborative proving.
- I would personally avoid "brute-force" methods for feature extraction, and would generally prefer an adaptable, perhaps genetic, algorithms for this purpose.
- Conceptualisation of ML4PG output is a challenge.

Conclusions and Further work

- We can, and perhaps should, apply statistical machine-learning in theorem proving;
- The general task is to use it to process "big data", or for distributed/collaborative proving.
- I would personally avoid "brute-force" methods for feature extraction, and would generally prefer an adaptable, perhaps genetic, algorithms for this purpose.
- Conceptualisation of ML4PG output is a challenge.

Dissemination

- Industrial applications: software and hardware verification (Centaur Technology, Rockwell Collins)
- Among peers (researchers, mathematicians, programmers)?

Can statistical machine learning advance mechanised proof technology?

Katya Komendantskaya, joint work with Jonathan Heras (Funded by EPSRC First Grant Scheme)

University of Dundee

19 June 2013