
Can statistical machine learning advance mechanised
proof technology?

Katya Komendantskaya, joint work with Jonathan Heras
(Funded by EPSRC First Grant Scheme)

University of Dundee

19 June 2013

Katya (Dundee) Machine Learning for Proof General 19 June 2013 1 / 50

Outline

1 Motivation: machine-learning for automated theorem proving?

2 Two main trends: ATP and ITP
Proof pattern recognition in ATPs
Proof pattern recognition in ITPs

3 More Examples
The bigop library
The CoqEAL library

4 Conclusions and Further work

Katya (Dundee) Machine Learning for Proof General 19 June 2013 2 / 50

Outline

1 Motivation: machine-learning for automated theorem proving?

2 Two main trends: ATP and ITP
Proof pattern recognition in ATPs
Proof pattern recognition in ITPs

3 More Examples
The bigop library
The CoqEAL library

4 Conclusions and Further work

Katya (Dundee) Machine Learning for Proof General 19 June 2013 2 / 50

Outline

1 Motivation: machine-learning for automated theorem proving?

2 Two main trends: ATP and ITP
Proof pattern recognition in ATPs
Proof pattern recognition in ITPs

3 More Examples
The bigop library
The CoqEAL library

4 Conclusions and Further work

Katya (Dundee) Machine Learning for Proof General 19 June 2013 2 / 50

Outline

1 Motivation: machine-learning for automated theorem proving?

2 Two main trends: ATP and ITP
Proof pattern recognition in ATPs
Proof pattern recognition in ITPs

3 More Examples
The bigop library
The CoqEAL library

4 Conclusions and Further work

Katya (Dundee) Machine Learning for Proof General 19 June 2013 2 / 50

About myself

1998 – 2003 Undergraduate degree in Logic, Moscow State
University; (1st class honours, gold medal for excellency).

2004 – 2007 PhD in the UCC, Ireland. (The University (and
department!) of the famous George Boole)

2007 – 2008 First postdoc project with Yves Bertot in INRIA, France
- on guardedness of corecursive functions in Coq.

2008 – 2011 EPSRC TCS research fellowship first in St Andrews,
later transferred to the School of Computing in Dundee.

2010 – now – Senior Lecturer, School of Computing, University of
Dundee. We are growing a new “LiCS” group in Dundee...

Katya (Dundee) Machine Learning for Proof General 19 June 2013 3 / 50

About myself

1998 – 2003 Undergraduate degree in Logic, Moscow State
University; (1st class honours, gold medal for excellency).

2004 – 2007 PhD in the UCC, Ireland. (The University (and
department!) of the famous George Boole)

2007 – 2008 First postdoc project with Yves Bertot in INRIA, France
- on guardedness of corecursive functions in Coq.

2008 – 2011 EPSRC TCS research fellowship first in St Andrews,
later transferred to the School of Computing in Dundee.

2010 – now – Senior Lecturer, School of Computing, University of
Dundee. We are growing a new “LiCS” group in Dundee...

Katya (Dundee) Machine Learning for Proof General 19 June 2013 3 / 50

About myself

1998 – 2003 Undergraduate degree in Logic, Moscow State
University; (1st class honours, gold medal for excellency).

2004 – 2007 PhD in the UCC, Ireland. (The University (and
department!) of the famous George Boole)

2007 – 2008 First postdoc project with Yves Bertot in INRIA, France
- on guardedness of corecursive functions in Coq.

2008 – 2011 EPSRC TCS research fellowship first in St Andrews,
later transferred to the School of Computing in Dundee.

2010 – now – Senior Lecturer, School of Computing, University of
Dundee. We are growing a new “LiCS” group in Dundee...

Katya (Dundee) Machine Learning for Proof General 19 June 2013 3 / 50

About myself

1998 – 2003 Undergraduate degree in Logic, Moscow State
University; (1st class honours, gold medal for excellency).

2004 – 2007 PhD in the UCC, Ireland. (The University (and
department!) of the famous George Boole)

2007 – 2008 First postdoc project with Yves Bertot in INRIA, France
- on guardedness of corecursive functions in Coq.

2008 – 2011 EPSRC TCS research fellowship first in St Andrews,
later transferred to the School of Computing in Dundee.

2010 – now – Senior Lecturer, School of Computing, University of
Dundee. We are growing a new “LiCS” group in Dundee...

Katya (Dundee) Machine Learning for Proof General 19 June 2013 3 / 50

About myself

1998 – 2003 Undergraduate degree in Logic, Moscow State
University; (1st class honours, gold medal for excellency).

2004 – 2007 PhD in the UCC, Ireland. (The University (and
department!) of the famous George Boole)

2007 – 2008 First postdoc project with Yves Bertot in INRIA, France
- on guardedness of corecursive functions in Coq.

2008 – 2011 EPSRC TCS research fellowship first in St Andrews,
later transferred to the School of Computing in Dundee.

2010 – now – Senior Lecturer, School of Computing, University of
Dundee. We are growing a new “LiCS” group in Dundee...

Katya (Dundee) Machine Learning for Proof General 19 June 2013 3 / 50

Research interests

My research interests can be classified into four main themes:

1 Logic Programming and its applications (in AI, Automated reasoning,
Type Inference ...)

(PhD thesis)

2 Corecursion in Higher-order Interactive Theorem Provers

(Postdoc in
INRIA)

3 Merging Symbolic and Statistical (Machine Learning) methods

(PhD
Thesis, first EPSRC fellowship, EPSRC First Grant)

4 Categorical Semantics of Computations

(in parallel to the above, joint
with Edinburgh, Bath)

5 ... recently “Coalgebraic Logic Programming for Type Inference”
EPSRC grant (merging 1, 2, 4)

The work presented today is the result of the EPSRC First Grant.
(2012-2013)

Katya (Dundee) Machine Learning for Proof General 19 June 2013 4 / 50

Research interests

My research interests can be classified into four main themes:

1 Logic Programming and its applications (in AI, Automated reasoning,
Type Inference ...) (PhD thesis)

2 Corecursion in Higher-order Interactive Theorem Provers

(Postdoc in
INRIA)

3 Merging Symbolic and Statistical (Machine Learning) methods

(PhD
Thesis, first EPSRC fellowship, EPSRC First Grant)

4 Categorical Semantics of Computations

(in parallel to the above, joint
with Edinburgh, Bath)

5 ... recently “Coalgebraic Logic Programming for Type Inference”
EPSRC grant (merging 1, 2, 4)

The work presented today is the result of the EPSRC First Grant.
(2012-2013)

Katya (Dundee) Machine Learning for Proof General 19 June 2013 4 / 50

Research interests

My research interests can be classified into four main themes:

1 Logic Programming and its applications (in AI, Automated reasoning,
Type Inference ...) (PhD thesis)

2 Corecursion in Higher-order Interactive Theorem Provers (Postdoc in
INRIA)

3 Merging Symbolic and Statistical (Machine Learning) methods

(PhD
Thesis, first EPSRC fellowship, EPSRC First Grant)

4 Categorical Semantics of Computations

(in parallel to the above, joint
with Edinburgh, Bath)

5 ... recently “Coalgebraic Logic Programming for Type Inference”
EPSRC grant (merging 1, 2, 4)

The work presented today is the result of the EPSRC First Grant.
(2012-2013)

Katya (Dundee) Machine Learning for Proof General 19 June 2013 4 / 50

Research interests

My research interests can be classified into four main themes:

1 Logic Programming and its applications (in AI, Automated reasoning,
Type Inference ...) (PhD thesis)

2 Corecursion in Higher-order Interactive Theorem Provers (Postdoc in
INRIA)

3 Merging Symbolic and Statistical (Machine Learning) methods (PhD
Thesis, first EPSRC fellowship, EPSRC First Grant)

4 Categorical Semantics of Computations

(in parallel to the above, joint
with Edinburgh, Bath)

5 ... recently “Coalgebraic Logic Programming for Type Inference”
EPSRC grant (merging 1, 2, 4)

The work presented today is the result of the EPSRC First Grant.
(2012-2013)

Katya (Dundee) Machine Learning for Proof General 19 June 2013 4 / 50

Research interests

My research interests can be classified into four main themes:

1 Logic Programming and its applications (in AI, Automated reasoning,
Type Inference ...) (PhD thesis)

2 Corecursion in Higher-order Interactive Theorem Provers (Postdoc in
INRIA)

3 Merging Symbolic and Statistical (Machine Learning) methods (PhD
Thesis, first EPSRC fellowship, EPSRC First Grant)

4 Categorical Semantics of Computations (in parallel to the above, joint
with Edinburgh, Bath)

5 ... recently “Coalgebraic Logic Programming for Type Inference”
EPSRC grant (merging 1, 2, 4)

The work presented today is the result of the EPSRC First Grant.
(2012-2013)

Katya (Dundee) Machine Learning for Proof General 19 June 2013 4 / 50

Research interests

My research interests can be classified into four main themes:

1 Logic Programming and its applications (in AI, Automated reasoning,
Type Inference ...) (PhD thesis)

2 Corecursion in Higher-order Interactive Theorem Provers (Postdoc in
INRIA)

3 Merging Symbolic and Statistical (Machine Learning) methods (PhD
Thesis, first EPSRC fellowship, EPSRC First Grant)

4 Categorical Semantics of Computations (in parallel to the above, joint
with Edinburgh, Bath)

5 ... recently “Coalgebraic Logic Programming for Type Inference”
EPSRC grant (merging 1, 2, 4)

The work presented today is the result of the EPSRC First Grant.
(2012-2013)

Katya (Dundee) Machine Learning for Proof General 19 June 2013 4 / 50

Research interests

My research interests can be classified into four main themes:

1 Logic Programming and its applications (in AI, Automated reasoning,
Type Inference ...) (PhD thesis)

2 Corecursion in Higher-order Interactive Theorem Provers (Postdoc in
INRIA)

3 Merging Symbolic and Statistical (Machine Learning) methods (PhD
Thesis, first EPSRC fellowship, EPSRC First Grant)

4 Categorical Semantics of Computations (in parallel to the above, joint
with Edinburgh, Bath)

5 ... recently “Coalgebraic Logic Programming for Type Inference”
EPSRC grant (merging 1, 2, 4)

The work presented today is the result of the EPSRC First Grant.
(2012-2013)

Katya (Dundee) Machine Learning for Proof General 19 June 2013 4 / 50

Motivation: machine-learning for automated theorem proving?

Why Machine-Learning?

... Digital era means most of information (in science, industries, even
art!) is stored/handled in electronic form.

... Computer-generated data may not make much sense to human
users; or in fact, other computers!

The volumes of data make it unfeasible to be processed and
interpreted manually.

... the only hope is, our machine-learning algorithms become fast and
clever enough to do that dirty (pre-processing) work for us!

Katya (Dundee) Machine Learning for Proof General 19 June 2013 5 / 50

Motivation: machine-learning for automated theorem proving?

Why Machine-Learning?

... Digital era means most of information (in science, industries, even
art!) is stored/handled in electronic form.

... Computer-generated data may not make much sense to human
users; or in fact, other computers!

The volumes of data make it unfeasible to be processed and
interpreted manually.

... the only hope is, our machine-learning algorithms become fast and
clever enough to do that dirty (pre-processing) work for us!

Katya (Dundee) Machine Learning for Proof General 19 June 2013 5 / 50

Motivation: machine-learning for automated theorem proving?

Why Machine-Learning?

... Digital era means most of information (in science, industries, even
art!) is stored/handled in electronic form.

... Computer-generated data may not make much sense to human
users; or in fact, other computers!

The volumes of data make it unfeasible to be processed and
interpreted manually.

... the only hope is, our machine-learning algorithms become fast and
clever enough to do that dirty (pre-processing) work for us!

Katya (Dundee) Machine Learning for Proof General 19 June 2013 5 / 50

Motivation: machine-learning for automated theorem proving?

Why Machine-Learning?

... Digital era means most of information (in science, industries, even
art!) is stored/handled in electronic form.

... Computer-generated data may not make much sense to human
users; or in fact, other computers!

The volumes of data make it unfeasible to be processed and
interpreted manually.

... the only hope is, our machine-learning algorithms become fast and
clever enough to do that dirty (pre-processing) work for us!

Katya (Dundee) Machine Learning for Proof General 19 June 2013 5 / 50

Motivation: machine-learning for automated theorem proving?

Why Machine-Learning?

... Digital era means most of information (in science, industries, even
art!) is stored/handled in electronic form.

... Computer-generated data may not make much sense to human
users; or in fact, other computers!

The volumes of data make it unfeasible to be processed and
interpreted manually.

... the only hope is, our machine-learning algorithms become fast and
clever enough to do that dirty (pre-processing) work for us!

Katya (Dundee) Machine Learning for Proof General 19 June 2013 5 / 50

Motivation: machine-learning for automated theorem proving?

So, why should we (logicians) care?

Katya (Dundee) Machine Learning for Proof General 19 June 2013 6 / 50

Motivation: machine-learning for automated theorem proving?

So, why should we (logicians) care?

Katya (Dundee) Machine Learning for Proof General 19 June 2013 6 / 50

Motivation: machine-learning for automated theorem proving?

The answer is...

Katya (Dundee) Machine Learning for Proof General 19 June 2013 7 / 50

Motivation: machine-learning for automated theorem proving?

The answer is...

Katya (Dundee) Machine Learning for Proof General 19 June 2013 7 / 50

Motivation: machine-learning for automated theorem proving?

The answer is...

Katya (Dundee) Machine Learning for Proof General 19 June 2013 7 / 50

Motivation: machine-learning for automated theorem proving?

The answer is...

Katya (Dundee) Machine Learning for Proof General 19 June 2013 7 / 50

Motivation: machine-learning for automated theorem proving?

No matter what your personal choice is, . . .

... increasingly, theorems [be it mathematics or software/hardware
verification] are proven IN automated provers.

Manual handling of various proofs, strategies, libraries, becomes
difficult.

... team-development is hard, especially that TPs are sensitive to
notation;

... comparison of proofs and proof similarities across libraries or even
within one big library are hard;

Katya (Dundee) Machine Learning for Proof General 19 June 2013 8 / 50

Motivation: machine-learning for automated theorem proving?

No matter what your personal choice is, . . .

... increasingly, theorems [be it mathematics or software/hardware
verification] are proven IN automated provers.

Manual handling of various proofs, strategies, libraries, becomes
difficult.

... team-development is hard, especially that TPs are sensitive to
notation;

... comparison of proofs and proof similarities across libraries or even
within one big library are hard;

Katya (Dundee) Machine Learning for Proof General 19 June 2013 8 / 50

Motivation: machine-learning for automated theorem proving?

No matter what your personal choice is, . . .

... increasingly, theorems [be it mathematics or software/hardware
verification] are proven IN automated provers.

Manual handling of various proofs, strategies, libraries, becomes
difficult.

... team-development is hard, especially that TPs are sensitive to
notation;

... comparison of proofs and proof similarities across libraries or even
within one big library are hard;

Katya (Dundee) Machine Learning for Proof General 19 June 2013 8 / 50

Motivation: machine-learning for automated theorem proving?

No matter what your personal choice is, . . .

... increasingly, theorems [be it mathematics or software/hardware
verification] are proven IN automated provers.

Manual handling of various proofs, strategies, libraries, becomes
difficult.

... team-development is hard, especially that TPs are sensitive to
notation;

... comparison of proofs and proof similarities across libraries or even
within one big library are hard;

Katya (Dundee) Machine Learning for Proof General 19 June 2013 8 / 50

Motivation: machine-learning for automated theorem proving?

Main applications in Automated Theorem Proving:

Where can we use ML?

Katya (Dundee) Machine Learning for Proof General 19 June 2013 9 / 50

Motivation: machine-learning for automated theorem proving?

ML in other areas of (Computer) Science:

Where data is abundant, and needs quick automated classification:

robotics (from space rovers to small apps in domestic appliances,
cars...);

image processing;

natural language processing;

web search;

computer network analysis;

Medical diagnostics;

etc, etc, ...

In all these areas, ML is a common tool-of-the-trade, additional to the
primary research specialisation.
Will this practice come to Automated theorem proving?

Katya (Dundee) Machine Learning for Proof General 19 June 2013 10 / 50

Motivation: machine-learning for automated theorem proving?

Automated reasoning does NOT need ML applications:

...where AR does not need help

verification (unlike in
Medical diagnosis)

language parsing (unlike in
NLP)

... where we do not trust them

new theoretical
break-troughs (formulation
of new theorems);

giving semantics to data (cf.
Deep learning).

Katya (Dundee) Machine Learning for Proof General 19 June 2013 11 / 50

Motivation: machine-learning for automated theorem proving?

Automated reasoning does NOT need ML applications:

...where AR does not need help

verification (unlike in
Medical diagnosis)

language parsing (unlike in
NLP)

... where we do not trust them

new theoretical
break-troughs (formulation
of new theorems);

giving semantics to data (cf.
Deep learning).

Katya (Dundee) Machine Learning for Proof General 19 June 2013 11 / 50

Motivation: machine-learning for automated theorem proving?

So,...

where do we both need ML-tools and trust them?

finding common proof-patterns in proofs across various scripts,
libraries, users, notations;

providing proof-hints, especially in (industrial) cases where routine
similar cases are frequent, and proof development is distributed across
several programmers.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 12 / 50

Motivation: machine-learning for automated theorem proving?

So,...

where do we both need ML-tools and trust them?

finding common proof-patterns in proofs across various scripts,
libraries, users, notations;

providing proof-hints, especially in (industrial) cases where routine
similar cases are frequent, and proof development is distributed across
several programmers.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 12 / 50

Motivation: machine-learning for automated theorem proving?

So,...

where do we both need ML-tools and trust them?

finding common proof-patterns in proofs across various scripts,
libraries, users, notations;

providing proof-hints, especially in (industrial) cases where routine
similar cases are frequent, and proof development is distributed across
several programmers.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 12 / 50

Two main trends: ATP and ITP

Outline

1 Motivation: machine-learning for automated theorem proving?

2 Two main trends: ATP and ITP
Proof pattern recognition in ATPs
Proof pattern recognition in ITPs

3 More Examples
The bigop library
The CoqEAL library

4 Conclusions and Further work

Katya (Dundee) Machine Learning for Proof General 19 June 2013 13 / 50

Two main trends: ATP and ITP

ATPs and ITPs

Automated Theorem Provers (ATPs) and SAT/SMT solvers are

. . . fast and efficient;

. . . applied in different contexts: program verification, scheduling, test
case generation, etc.

Interactive Theorem Provers (ITPs) have been

. . . enriched with dependent types, (co)inductive types, type classes and
provide rich programming environments;
. . . applied in formal mathematical proofs: Four Colour Theorem
(60, 000 lines), Kepler conjecture (325, 000 lines), Feit-Thompson
Theorem (170, 000 lines), etc.
. . . applied in industrial proofs: seL4 microkernel (200, 000 lines),
verified C compiler (50, 000 lines), ARM microprocessor (20, 000 lines),
etc.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 14 / 50

Two main trends: ATP and ITP

ATPs and ITPs

Automated Theorem Provers (ATPs) and SAT/SMT solvers are

. . . fast and efficient;

. . . applied in different contexts: program verification, scheduling, test
case generation, etc.

Interactive Theorem Provers (ITPs) have been

. . . enriched with dependent types, (co)inductive types, type classes and
provide rich programming environments;
. . . applied in formal mathematical proofs: Four Colour Theorem
(60, 000 lines), Kepler conjecture (325, 000 lines), Feit-Thompson
Theorem (170, 000 lines), etc.
. . . applied in industrial proofs: seL4 microkernel (200, 000 lines),
verified C compiler (50, 000 lines), ARM microprocessor (20, 000 lines),
etc.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 14 / 50

Two main trends: ATP and ITP

Challenges

. . . size of ATP and ITP libraries stand on the way of efficient
knowledge reuse;

. . . manual handling of various proofs, strategies, libraries becomes
difficult;

. . . team-development is hard, especially that TPs are sensitive to
notation;

. . . comparison of proof similarities is hard.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 15 / 50

Two main trends: ATP and ITP

Machine-Learning in the software verification cycle

Consider a sample software verification cycle

Where would we welcome statistical machine-learning assistance?

Katya (Dundee) Machine Learning for Proof General 19 June 2013 16 / 50

Two main trends: ATP and ITP

Running example

Java Virtual Machine (JVM) is a stack-based abstract machine which can
execute Java bytecode.

Goal

Model a subset of the JVM in (e.g.) Coq, defining an interpreter for
JVM programs,

Verify the correctness of JVM programs within Coq.

This work is inspired by:

H. Liu and J S. Moore. Executable JVM model for analytic reasoning: a study. Journal
Science of Computer Programming - Special issue on advances in interpreters, virtual
machines and emulators (IVME’03), 57(3):253–274, 2003.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 17 / 50

Two main trends: ATP and ITP

Running example

Java Virtual Machine (JVM) is a stack-based abstract machine which can
execute Java bytecode.

Goal

Model a subset of the JVM in (e.g.) Coq, defining an interpreter for
JVM programs,

Verify the correctness of JVM programs within Coq.

This work is inspired by:

H. Liu and J S. Moore. Executable JVM model for analytic reasoning: a study. Journal
Science of Computer Programming - Special issue on advances in interpreters, virtual
machines and emulators (IVME’03), 57(3):253–274, 2003.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 17 / 50

Two main trends: ATP and ITP

Running example

Java Virtual Machine (JVM) is a stack-based abstract machine which can
execute Java bytecode.

Goal

Model a subset of the JVM in (e.g.) Coq, defining an interpreter for
JVM programs,

Verify the correctness of JVM programs within Coq.

This work is inspired by:

H. Liu and J S. Moore. Executable JVM model for analytic reasoning: a study. Journal
Science of Computer Programming - Special issue on advances in interpreters, virtual
machines and emulators (IVME’03), 57(3):253–274, 2003.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 17 / 50

Two main trends: ATP and ITP

Running example

Java code:

s t a t i c i n t f a c t o r i a l (i n t n)
{

i n t a = 1 ;
w h i l e (n != 0){

a = a ∗ n ;
n = n−1;
}

r e t u r n a ;
}

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 18 / 50

Two main trends: ATP and ITP

Running example

Java code:

s t a t i c i n t f a c t o r i a l (i n t n)
{

i n t a = 1 ;
w h i l e (n != 0){

a = a ∗ n ;
n = n−1;
}

r e t u r n a ;
}

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 18 / 50

Two main trends: ATP and ITP

Running example

Java code:

s t a t i c i n t f a c t o r i a l (i n t n)
{

i n t a = 1 ;
w h i l e (n != 0){

a = a ∗ n ;
n = n−1;
}

r e t u r n a ;
}

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
0

stack:
. . .

local variables:
5 . . .

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 18 / 50

Two main trends: ATP and ITP

Running example

Java code:

s t a t i c i n t f a c t o r i a l (i n t n)
{

i n t a = 1 ;
w h i l e (n != 0){

a = a ∗ n ;
n = n−1;
}

r e t u r n a ;
}

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
1

stack:
1 . . .

local variables:
5 . . .

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 18 / 50

Two main trends: ATP and ITP

Running example

Java code:

s t a t i c i n t f a c t o r i a l (i n t n)
{

i n t a = 1 ;
w h i l e (n != 0){

a = a ∗ n ;
n = n−1;
}

r e t u r n a ;
}

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
2

stack:
. . .

local variables:
5 1 . . .

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 18 / 50

Two main trends: ATP and ITP

Running example

Java code:

s t a t i c i n t f a c t o r i a l (i n t n)
{

i n t a = 1 ;
w h i l e (n != 0){

a = a ∗ n ;
n = n−1;
}

r e t u r n a ;
}

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
3

stack:
5 . . .

local variables:
5 1 . . .

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 18 / 50

Two main trends: ATP and ITP

Running example

Java code:

s t a t i c i n t f a c t o r i a l (i n t n)
{

i n t a = 1 ;
w h i l e (n != 0){

a = a ∗ n ;
n = n−1;
}

r e t u r n a ;
}

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
4

stack:
. . .

local variables:
5 1 . . .

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 18 / 50

Two main trends: ATP and ITP

Running example

Java code:

s t a t i c i n t f a c t o r i a l (i n t n)
{

i n t a = 1 ;
w h i l e (n != 0){

a = a ∗ n ;
n = n−1;
}

r e t u r n a ;
}

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
5

stack:
1 . . .

local variables:
5 1 . . .

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 18 / 50

Two main trends: ATP and ITP

Running example

Java code:

s t a t i c i n t f a c t o r i a l (i n t n)
{

i n t a = 1 ;
w h i l e (n != 0){

a = a ∗ n ;
n = n−1;
}

r e t u r n a ;
}

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
6

stack:
5 1 . . .

local variables:
5 1 . . .

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 18 / 50

Two main trends: ATP and ITP

Running example

Java code:

s t a t i c i n t f a c t o r i a l (i n t n)
{

i n t a = 1 ;
w h i l e (n != 0){

a = a ∗ n ;
n = n−1;
}

r e t u r n a ;
}

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
7

stack:
5 . . .

local variables:
5 1 . . .

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 18 / 50

Two main trends: ATP and ITP

Running example

Java code:

s t a t i c i n t f a c t o r i a l (i n t n)
{

i n t a = 1 ;
w h i l e (n != 0){

a = a ∗ n ;
n = n−1;
}

r e t u r n a ;
}

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
8

stack:
. . .

local variables:
5 5 . . .

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 18 / 50

Two main trends: ATP and ITP

Running example

Java code:

s t a t i c i n t f a c t o r i a l (i n t n)
{

i n t a = 1 ;
w h i l e (n != 0){

a = a ∗ n ;
n = n−1;
}

r e t u r n a ;
}

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
9

stack:
5 . . .

local variables:
5 5 . . .

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 18 / 50

Two main trends: ATP and ITP

Running example

Java code:

s t a t i c i n t f a c t o r i a l (i n t n)
{

i n t a = 1 ;
w h i l e (n != 0){

a = a ∗ n ;
n = n−1;
}

r e t u r n a ;
}

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
10

stack:
1 5 . . .

local variables:
5 5 . . .

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 18 / 50

Two main trends: ATP and ITP

Running example

Java code:

s t a t i c i n t f a c t o r i a l (i n t n)
{

i n t a = 1 ;
w h i l e (n != 0){

a = a ∗ n ;
n = n−1;
}

r e t u r n a ;
}

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
11

stack:
4 . . .

local variables:
5 5 . . .

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 18 / 50

Two main trends: ATP and ITP

Running example

Java code:

s t a t i c i n t f a c t o r i a l (i n t n)
{

i n t a = 1 ;
w h i l e (n != 0){

a = a ∗ n ;
n = n−1;
}

r e t u r n a ;
}

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
12

stack:
. . .

local variables:
4 5 . . .

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 18 / 50

Two main trends: ATP and ITP

Running example

Java code:

s t a t i c i n t f a c t o r i a l (i n t n)
{

i n t a = 1 ;
w h i l e (n != 0){

a = a ∗ n ;
n = n−1;
}

r e t u r n a ;
}

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
2

stack:
. . .

local variables:
4 5 . . .

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 18 / 50

Two main trends: ATP and ITP

Running example

Java code:

s t a t i c i n t f a c t o r i a l (i n t n)
{

i n t a = 1 ;
w h i l e (n != 0){

a = a ∗ n ;
n = n−1;
}

r e t u r n a ;
}

Bytecode:

. . . JVM model:
. . .

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 18 / 50

Two main trends: ATP and ITP

Running example

Java code:

s t a t i c i n t f a c t o r i a l (i n t n)
{

i n t a = 1 ;
w h i l e (n != 0){

a = a ∗ n ;
n = n−1;
}

r e t u r n a ;
}

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
13

stack:
0 . . .

local variables:
0 120 . . .

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 18 / 50

Two main trends: ATP and ITP

Running example

Java code:

s t a t i c i n t f a c t o r i a l (i n t n)
{

i n t a = 1 ;
w h i l e (n != 0){

a = a ∗ n ;
n = n−1;
}

r e t u r n a ;
}

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
14

stack:
120 . . .

local variables:
0 120 . . .

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 18 / 50

Two main trends: ATP and ITP

Running example

Java code:

s t a t i c i n t f a c t o r i a l (i n t n)
{

i n t a = 1 ;
w h i l e (n != 0){

a = a ∗ n ;
n = n−1;
}

r e t u r n a ;
}

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
15

stack:
120 . . .

local variables:
0 120 . . .

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 18 / 50

Two main trends: ATP and ITP

Running example

Java code:

s t a t i c i n t f a c t o r i a l (i n t n)
{

i n t a = 1 ;
w h i l e (n != 0){

a = a ∗ n ;
n = n−1;
}

r e t u r n a ;
}

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn

JVM model:

counter:
15

stack:
120 . . .

local variables:
0 120 . . .

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 18 / 50

Two main trends: ATP and ITP

Formalisation of Java bytecode in Coq

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack

Methodology:

1 Write the specification of the
function

2 Write the algorithm (tail
recursive function)

3 Prove that the algorithm
satisfies the specification

4 Write the JVM program

5 Define the function that
schedules the program

6 Prove that the code implements
the algorithm

7 Prove total correctness

Katya (Dundee) Machine Learning for Proof General 19 June 2013 19 / 50

Two main trends: ATP and ITP

Formalisation of Java bytecode in Coq

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack

Methodology:

1 Write the specification of the
function

2 Write the algorithm (tail
recursive function)

3 Prove that the algorithm
satisfies the specification

4 Write the JVM program

5 Define the function that
schedules the program

6 Prove that the code implements
the algorithm

7 Prove total correctness

D e f i n i t i o n t h e t a f a c t (n : nat) := n ‘ ! .

Katya (Dundee) Machine Learning for Proof General 19 June 2013 19 / 50

Two main trends: ATP and ITP

Formalisation of Java bytecode in Coq

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack

Methodology:

1 Write the specification of the
function

2 Write the algorithm (tail
recursive function)

3 Prove that the algorithm
satisfies the specification

4 Write the JVM program

5 Define the function that
schedules the program

6 Prove that the code implements
the algorithm

7 Prove total correctness

F i x p o i n t h e l p e r f a c t (n a : nat) :=
match n w i t h
| 0 => a
| S p => h e l p e r f a c t p (n ∗ a)
end .

D e f i n i t i o n f n f a c t (n : nat) :=
h e l p e r f a c t n 1 .

Katya (Dundee) Machine Learning for Proof General 19 June 2013 19 / 50

Two main trends: ATP and ITP

Formalisation of Java bytecode in Coq

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack

Methodology:

1 Write the specification of the
function

2 Write the algorithm (tail
recursive function)

3 Prove that the algorithm
satisfies the specification

4 Write the JVM program

5 Define the function that
schedules the program

6 Prove that the code implements
the algorithm

7 Prove total correctness

Lemma f n f a c t i s t h e t a n :
f n f a c t n = t h e t a f a c t n .

Katya (Dundee) Machine Learning for Proof General 19 June 2013 19 / 50

Two main trends: ATP and ITP

Formalisation of Java bytecode in Coq

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack

Methodology:

1 Write the specification of the
function

2 Write the algorithm (tail
recursive function)

3 Prove that the algorithm
satisfies the specification

4 Write the JVM program

5 Define the function that
schedules the program

6 Prove that the code implements
the algorithm

7 Prove total correctness

D e f i n i t i o n p i f a c t :=
[: : (ICONST,1%Z) ;

(ISTORE,1%Z) ;
(ILOAD,0%Z) ;
(IFEQ ,10%Z) ;
(ILOAD,1%Z) ;
(ILOAD,0%Z) ;
(IMUL , 0%Z) ;
(ISTORE , 1%Z) ;
(ILOAD , 0%Z) ;
(ICONST , 1%Z) ;
(ISUB , 0%Z) ;
(ISTORE , 0%Z) ;
(GOTO, (−10)%Z) ;
(ILOAD , 1%Z) ;
(HALT, 0%Z)] .

Katya (Dundee) Machine Learning for Proof General 19 June 2013 19 / 50

Two main trends: ATP and ITP

Formalisation of Java bytecode in Coq

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack

Methodology:

1 Write the specification of the
function

2 Write the algorithm (tail
recursive function)

3 Prove that the algorithm
satisfies the specification

4 Write the JVM program

5 Define the function that
schedules the program

6 Prove that the code implements
the algorithm

7 Prove total correctness

F i x p o i n t l o o p s c h e d f a c t (n : nat) :=
match n w i t h
| 0 => nseq 3 0
| S p => nseq 11 0 ++ l o o p s c h e d f a c t p
end .

D e f i n i t i o n s c h e d f a c t (n : nat) :=
nseq 2 0 ++ l o o p s c h e d f a c t n .

Katya (Dundee) Machine Learning for Proof General 19 June 2013 19 / 50

Two main trends: ATP and ITP

Formalisation of Java bytecode in Coq

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack

Methodology:

1 Write the specification of the
function

2 Write the algorithm (tail
recursive function)

3 Prove that the algorithm
satisfies the specification

4 Write the JVM program

5 Define the function that
schedules the program

6 Prove that the code implements
the algorithm

7 Prove total correctness

Lemma p r o g r a m i s f n f a c t n :
run (s c h e d f a c t n)

(m a k e s t a t e 0 [: : n] [: :] p i f a c t) =
(m a k e s t a t e 14 [: : 0 ; f n f a c t n]

(push (f n f a c t n) [: :]) p i f a c t) .

Katya (Dundee) Machine Learning for Proof General 19 June 2013 19 / 50

Two main trends: ATP and ITP

Formalisation of Java bytecode in Coq

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input produces a
state which contains n! on top of the stack

Methodology:

1 Write the specification of the
function

2 Write the algorithm (tail
recursive function)

3 Prove that the algorithm
satisfies the specification

4 Write the JVM program

5 Define the function that
schedules the program

6 Prove that the code implements
the algorithm

7 Prove total correctness

Theorem t o t a l c o r r e c t n e s s f a c t n s f :
s f = run (s c h e d f a c t n)
(m a k e s t a t e 0 [: : n] [: :] p i f a c t) −>
n e x t i n s t s f = (HALT,0%Z) /\
top (s t a c k s f) = (n ‘ !) .

Katya (Dundee) Machine Learning for Proof General 19 June 2013 19 / 50

Two main trends: ATP and ITP

Introducing machine-learning...

Where and how it is best to apply machine-learning in such cycles is a
research question on its own.

... Your own ideas/suggestions are welcome
It what follows, I’ll explain a few existing approaches.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 20 / 50

Two main trends: ATP and ITP

Introducing machine-learning...

Where and how it is best to apply machine-learning in such cycles is a
research question on its own.

... Your own ideas/suggestions are welcome

It what follows, I’ll explain a few existing approaches.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 20 / 50

Two main trends: ATP and ITP

Introducing machine-learning...

Where and how it is best to apply machine-learning in such cycles is a
research question on its own.

... Your own ideas/suggestions are welcome
It what follows, I’ll explain a few existing approaches.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 20 / 50

Two main trends: ATP and ITP Proof pattern recognition in ATPs

Outline

1 Motivation: machine-learning for automated theorem proving?

2 Two main trends: ATP and ITP
Proof pattern recognition in ATPs
Proof pattern recognition in ITPs

3 More Examples
The bigop library
The CoqEAL library

4 Conclusions and Further work

Katya (Dundee) Machine Learning for Proof General 19 June 2013 21 / 50

Two main trends: ATP and ITP Proof pattern recognition in ATPs

Proof pattern recognition in ATPs

Given a proof goal, ATPs apply various lemmas to rewrite or simplify the goal

until it is proven.

Goal

Apply machine-learning techniques to improve the premise selection procedure on
the basis of previous experience.

References:

D. Kühlwein et al. MaSh: Machine Learning for Sledgehammer. In ITP’13, 2013

C. Kaliszyk and J. Urban. Learning-assisted Automated Reasoning with Flyspeck. 2012

D. Kühlwein et al. Overview and evaluation of premise selection techniques for large theory
mathematics. In IJCAR12, LNCS 7364, pages 378–392, 2012.

E. Tsivtsivadze et al. Semantic graph kernels for automated reasoning. In SDM11, pages
795–803, 2011.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 22 / 50

Two main trends: ATP and ITP Proof pattern recognition in ATPs

Proof pattern recognition in ATPs

Given a proof goal, ATPs apply various lemmas to rewrite or simplify the goal

until it is proven.

Goal

Apply machine-learning techniques to improve the premise selection procedure on
the basis of previous experience.

References:

D. Kühlwein et al. MaSh: Machine Learning for Sledgehammer. In ITP’13, 2013

C. Kaliszyk and J. Urban. Learning-assisted Automated Reasoning with Flyspeck. 2012

D. Kühlwein et al. Overview and evaluation of premise selection techniques for large theory
mathematics. In IJCAR12, LNCS 7364, pages 378–392, 2012.

E. Tsivtsivadze et al. Semantic graph kernels for automated reasoning. In SDM11, pages
795–803, 2011.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 22 / 50

Two main trends: ATP and ITP Proof pattern recognition in ATPs

Proof pattern recognition in ATPs

Given a proof goal, ATPs apply various lemmas to rewrite or simplify the goal

until it is proven.

Goal

Apply machine-learning techniques to improve the premise selection procedure on
the basis of previous experience.

References:

D. Kühlwein et al. MaSh: Machine Learning for Sledgehammer. In ITP’13, 2013

C. Kaliszyk and J. Urban. Learning-assisted Automated Reasoning with Flyspeck. 2012

D. Kühlwein et al. Overview and evaluation of premise selection techniques for large theory
mathematics. In IJCAR12, LNCS 7364, pages 378–392, 2012.

E. Tsivtsivadze et al. Semantic graph kernels for automated reasoning. In SDM11, pages
795–803, 2011.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 22 / 50

Two main trends: ATP and ITP Proof pattern recognition in ATPs

Application to ITPs

Several ITPs use ATPs to discharge proof obligations. Then, the ATP
approach can be used to speed up those proofs.

First-order fragments of:
Mizar, HOL, etc.

Supervised Learning:
SVMs, Naive Bayesian

Automated proof:
Vampire, CVC3, etc.

feature
extraction

premise hierarchyproof reconstruction

Katya (Dundee) Machine Learning for Proof General 19 June 2013 23 / 50

Two main trends: ATP and ITP Proof pattern recognition in ATPs

Application to ITPs

Several ITPs use ATPs to discharge proof obligations. Then, the ATP
approach can be used to speed up those proofs.

First-order fragments of:
Mizar, HOL, etc.

Supervised Learning:
SVMs, Naive Bayesian

Automated proof:
Vampire, CVC3, etc.

feature
extraction

premise hierarchyproof reconstruction

Katya (Dundee) Machine Learning for Proof General 19 June 2013 23 / 50

Two main trends: ATP and ITP Proof pattern recognition in ATPs

Intuitive idea

Example Goal

Determine the lemmas that can be useful to prove the equivalence between the
recursive and tail-recursive versions of factorial.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 24 / 50

Two main trends: ATP and ITP Proof pattern recognition in ATPs

Intuitive idea

Example Goal

Determine the lemmas that can be useful to prove the equivalence between the
recursive and tail-recursive versions of factorial.

A classifier for each lemma in the library.

. . .

. . .

. . .

Katya (Dundee) Machine Learning for Proof General 19 June 2013 24 / 50

Two main trends: ATP and ITP Proof pattern recognition in ATPs

Intuitive idea

Example Goal

Determine the lemmas that can be useful to prove the equivalence between the
recursive and tail-recursive versions of factorial.

Training phase:

lemma A is used in the proof of lemma B =⇒ < A > (B) = 1;

otherwise =⇒ < A > (B) = 0;

Katya (Dundee) Machine Learning for Proof General 19 June 2013 24 / 50

Two main trends: ATP and ITP Proof pattern recognition in ATPs

Intuitive idea

Example Goal

Determine the lemmas that can be useful to prove the equivalence between the
recursive and tail-recursive versions of factorial.

Testing phase:

CmulnA

factorial n = factorialtail n

. . .1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

.

.

. . .

[0, 1]

Katya (Dundee) Machine Learning for Proof General 19 June 2013 24 / 50

Two main trends: ATP and ITP Proof pattern recognition in ATPs

Features of this approach

1 Feature extraction:

features are extracted from all first-order formulas of the library;
sparse feature vectors (106 features);
classifier for every lemma of the library.

First-order fragments of:
Mizar, HOL, etc.

Supervised Learning:
SVMs, Naive Bayesian

Automated proof:
Vampire, CVC3, etc.

feature
extraction

premise hierarchyproof reconstruction

Katya (Dundee) Machine Learning for Proof General 19 June 2013 25 / 50

Two main trends: ATP and ITP Proof pattern recognition in ATPs

Features of this approach

2 Machine-learning tools:

work with supervised learning;
algorithms range from SVMs to Naive Bayes learning;
sparse methods; using software such as SNoW.

First-order fragments of:
Mizar, HOL, etc.

Supervised Learning:
SVMs, Naive Bayesian

Automated proof:
Vampire, CVC3, etc.

feature
extraction

premise hierarchyproof reconstruction

Katya (Dundee) Machine Learning for Proof General 19 June 2013 26 / 50

Two main trends: ATP and ITP Proof pattern recognition in ATPs

Features of this approach

3 Main improvement:

the number of goals proven automatically increases by up to 20% –
40%

First-order fragments of:
Mizar, HOL, etc.

Supervised Learning:
SVMs, Naive Bayesian

Automated proof:
Vampire, CVC3, etc.

feature
extraction

premise hierarchyproof reconstruction

Katya (Dundee) Machine Learning for Proof General 19 June 2013 27 / 50

Two main trends: ATP and ITP Proof pattern recognition in ITPs

Outline

1 Motivation: machine-learning for automated theorem proving?

2 Two main trends: ATP and ITP
Proof pattern recognition in ATPs
Proof pattern recognition in ITPs

3 More Examples
The bigop library
The CoqEAL library

4 Conclusions and Further work

Katya (Dundee) Machine Learning for Proof General 19 June 2013 28 / 50

Two main trends: ATP and ITP Proof pattern recognition in ITPs

Proof pattern recognition in ITPs

In ITPs, the proof development is interactive (via tactics).

Goal: make machine-learning a part of interactive proof development

Apply machine-learning methods to:

find common proof-patterns in proofs across various scripts, libraries, users
and notations;

and provide proof-hints;

assist the user, not the prover.

ML4PG:

Proof General extension which applies machine learning methods to

Coq/SSReflect proofs. [Now available in standard Proof General
distribution!!!]

E. Komendantskaya, J. Heras and G. Grov. Machine learning in Proof General: interfacing
interfaces. EPTCS Post-proceedings of User Interfaces for Theorem Provers. 2013.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 29 / 50

Two main trends: ATP and ITP Proof pattern recognition in ITPs

Proof pattern recognition in ITPs

In ITPs, the proof development is interactive (via tactics).

Goal: make machine-learning a part of interactive proof development

Apply machine-learning methods to:

find common proof-patterns in proofs across various scripts, libraries, users
and notations;

and provide proof-hints;

assist the user, not the prover.

ML4PG:

Proof General extension which applies machine learning methods to

Coq/SSReflect proofs. [Now available in standard Proof General
distribution!!!]

E. Komendantskaya, J. Heras and G. Grov. Machine learning in Proof General: interfacing
interfaces. EPTCS Post-proceedings of User Interfaces for Theorem Provers. 2013.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 29 / 50

Two main trends: ATP and ITP Proof pattern recognition in ITPs

Proof pattern recognition in ITPs

In ITPs, the proof development is interactive (via tactics).

Goal: make machine-learning a part of interactive proof development

Apply machine-learning methods to:

find common proof-patterns in proofs across various scripts, libraries, users
and notations;

and provide proof-hints;

assist the user, not the prover.

ML4PG:

Proof General extension which applies machine learning methods to

Coq/SSReflect proofs. [Now available in standard Proof General
distribution!!!]

E. Komendantskaya, J. Heras and G. Grov. Machine learning in Proof General: interfacing
interfaces. EPTCS Post-proceedings of User Interfaces for Theorem Provers. 2013.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 29 / 50

Two main trends: ATP and ITP Proof pattern recognition in ITPs

Overall architecture of ML4PG

user
Proof General

ML4PG

ML engines

. . .

Proof engines

. . .

Interaction with ML4PG:

User interacts with Proof General as usual,

User gets stuck in a proof,

User configures ML4PG,

User calls for a statistical hint,

ML4PG informs the user of arising proof patterns.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 30 / 50

Two main trends: ATP and ITP Proof pattern recognition in ITPs

Overall architecture of ML4PG

user
Proof General

ML4PG

ML engines

. . .

Proof engines

. . .

Interaction with ML4PG:

User interacts with Proof General as usual,

User gets stuck in a proof,

User configures ML4PG,

User calls for a statistical hint,

ML4PG informs the user of arising proof patterns.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 30 / 50

Two main trends: ATP and ITP Proof pattern recognition in ITPs

Overall architecture of ML4PG

user
Proof General

ML4PG

ML engines

. . .

Proof engines

. . .

Interaction with ML4PG:

User interacts with Proof General as usual,

User gets stuck in a proof,

User configures ML4PG,

User calls for a statistical hint,

ML4PG informs the user of arising proof patterns.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 30 / 50

Two main trends: ATP and ITP Proof pattern recognition in ITPs

Overall architecture of ML4PG

user
Proof General

ML4PG

ML engines

. . .

Proof engines

. . .

Interaction with ML4PG:

User interacts with Proof General as usual,

User gets stuck in a proof,

User configures ML4PG,

User calls for a statistical hint,

ML4PG informs the user of arising proof patterns.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 30 / 50

Two main trends: ATP and ITP Proof pattern recognition in ITPs

Overall architecture of ML4PG

user
Proof General

ML4PG

ML engines

. . .

Proof engines

. . .

Interaction with ML4PG:

User interacts with Proof General as usual,

User gets stuck in a proof,

User configures ML4PG,

User calls for a statistical hint,

ML4PG informs the user of arising proof patterns.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 30 / 50

Two main trends: ATP and ITP Proof pattern recognition in ITPs

Overall architecture of ML4PG

user
Proof General

ML4PG

ML engines

. . .

Proof engines

. . .

Interaction with ML4PG:

User interacts with Proof General as usual,

User gets stuck in a proof,

User configures ML4PG,

User calls for a statistical hint,

ML4PG informs the user of arising proof patterns.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 30 / 50

Two main trends: ATP and ITP Proof pattern recognition in ITPs

Overall architecture of ML4PG

user
Proof General

ML4PG

ML engines

. . .

Proof engines

. . .

Interaction with ML4PG:

User interacts with Proof General as usual,

User gets stuck in a proof,

User configures ML4PG,

User calls for a statistical hint,

ML4PG informs the user of arising proof patterns.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 30 / 50

Two main trends: ATP and ITP Proof pattern recognition in ITPs

A proof in Coq/SSReflect

Lemma f a c t t a i l a u x l e m m a :
f o r a l l (a n : nat) , f a c t t a i l a u x n a = a ∗ n ‘ ! .
Pr oo f .

1 s u b g o a l s , s u b g o a l 1 (ID 13)

============================
f o r a l l n a : nat , f a c t t a i l a u x n a = a ∗ n ‘ !

Katya (Dundee) Machine Learning for Proof General 19 June 2013 31 / 50

Two main trends: ATP and ITP Proof pattern recognition in ITPs

A proof in Coq/SSReflect

Lemma f a c t t a i l a u x l e m m a :
f o r a l l (a n : nat) , f a c t t a i l a u x n a = a ∗ n ‘ ! .
Pr oo f .
move => n .

1 s u b g o a l s , s u b g o a l 1 (ID 14)

n : nat
============================

f o r a l l a : nat , f a c t t a i l a u x n a = a ∗ n ‘ !

Katya (Dundee) Machine Learning for Proof General 19 June 2013 31 / 50

Two main trends: ATP and ITP Proof pattern recognition in ITPs

A proof in Coq/SSReflect

Lemma f a c t t a i l a u x l e m m a :
f o r a l l (a n : nat) , f a c t t a i l a u x n a = a ∗ n ‘ ! .
Pr oo f .
move => n . e l i m : n => [a | n IH a /=].

2 s u b g o a l s , s u b g o a l 1 (ID 24)

a : nat
============================

f a c t t a i l a u x 0 a = a ∗ 0 ‘ !

s u b g o a l 2 (ID 28) i s :
f a c t t a i l a u x n (n.+1 ∗ a) = a ∗ (n . + 1) ‘ !

Katya (Dundee) Machine Learning for Proof General 19 June 2013 31 / 50

Two main trends: ATP and ITP Proof pattern recognition in ITPs

A proof in Coq/SSReflect

Lemma f a c t t a i l a u x l e m m a :
f o r a l l (a n : nat) , f a c t t a i l a u x n a = a ∗ n ‘ ! .

Pr oo f .
move => n . e l i m : n => [a | n IH a /=].

by r e w r i t e / t h e t a f a c t f a c t 0 muln1 .

1 s u b g o a l s , s u b g o a l 1 (ID 28)

n : nat
IH : f o r a l l a : nat , f a c t t a i l a u x n a = a ∗ n ‘ !
a : nat
============================

f a c t t a i l a u x n (n.+1 ∗ a) = a ∗ (n . + 1) ‘ !

Katya (Dundee) Machine Learning for Proof General 19 June 2013 31 / 50

Two main trends: ATP and ITP Proof pattern recognition in ITPs

Feature extraction mechanism

Lemma f a c t t a i l a u x l e m m a :
f o r a l l (a n : nat) , f a c t t a i l a u x n a = a ∗ n ‘ ! .

Pr oo f .

tactics N tactics arg type tactic arg is hypothesis? top symbol subgoals

g1
g2
g3
g4
g5

Katya (Dundee) Machine Learning for Proof General 19 June 2013 32 / 50

Two main trends: ATP and ITP Proof pattern recognition in ITPs

Feature extraction mechanism

Lemma f a c t t a i l a u x l e m m a :
f o r a l l (a n : nat) , f a c t t a i l a u x n a = a ∗ n ‘ ! .

Pr oo f .
move => n .

tactics N tactics arg type tactic arg is hypothesis? top symbol subgoals

g1 move 1 nat no forall 1
g2
g3
g4
g5

Katya (Dundee) Machine Learning for Proof General 19 June 2013 32 / 50

Two main trends: ATP and ITP Proof pattern recognition in ITPs

Feature extraction mechanism

Lemma f a c t t a i l a u x l e m m a :
f o r a l l (a n : nat) , f a c t t a i l a u x n a = a ∗ n ‘ ! .

Pr oo f .
move => n . e l i m : n => [a | n IH a /=].

tactics N tactics arg type tactic arg is hypothesis? top symbol subgoals

g1 move 1 nat no forall 1
g2 elim, move 2 nat, [nat | nat Prop nat] yes forall 2
g3
g4
g5

Katya (Dundee) Machine Learning for Proof General 19 June 2013 32 / 50

Two main trends: ATP and ITP Proof pattern recognition in ITPs

Feature extraction mechanism

Lemma f a c t t a i l a u x l e m m a :
f o r a l l (a n : nat) , f a c t t a i l a u x n a = a ∗ n ‘ ! .

Pr oo f .
move => n . e l i m : n => [a | n IH a /=].

by r e w r i t e / t h e t a f a c t f a c t 0 muln1 .

tactics N tactics arg type tactic arg is hypothesis? top symbol subgoals

g1 move 1 nat no forall 1
g2 elim, move 2 nat, [nat | nat Prop nat] yes forall 2
g3 rewrite 1 Prop, Prop, Prop EL1, EL2, EL3 equal 1
g4
g5

Katya (Dundee) Machine Learning for Proof General 19 June 2013 32 / 50

Two main trends: ATP and ITP Proof pattern recognition in ITPs

ML4PG

ML4PG assists the user providing similar lemmas as proof hints.

Proof General MATLAB/WekaML4PG

feature extraction

proof families

Interactive Prover:
Coq, SSReflect

Clustering:
K-means, Gaussian, . . .

Katya (Dundee) Machine Learning for Proof General 19 June 2013 33 / 50

Two main trends: ATP and ITP Proof pattern recognition in ITPs

Features of this approach

1 Feature extraction:

features are extracted from higher-order propositions and proofs;
feature extraction is built on the method of proof-traces;
the feature vectors are fixed at the size of 30;
longer proofs are analysed by means of the proof-patch method.

Proof General MATLAB/WekaML4PG

feature extraction

proof families

Interactive Prover:
Coq, SSReflect

Clustering:
K-means, Gaussian, . . .

Katya (Dundee) Machine Learning for Proof General 19 June 2013 34 / 50

Two main trends: ATP and ITP Proof pattern recognition in ITPs

Features of this approach

2 Machine-learning tools:

work with unsupervised learning (clustering) algorithms implemented in
MATLAB and Weka;
use algorithms such as Gaussian, K-means, and farthest-first.

Proof General MATLAB/WekaML4PG

feature extraction

proof families

Interactive Prover:
Coq, SSReflect

Clustering:
K-means, Gaussian, . . .

Katya (Dundee) Machine Learning for Proof General 19 June 2013 35 / 50

Two main trends: ATP and ITP Proof pattern recognition in ITPs

ML4PG approach to proof-clustering

We have integrated Proof General with a variety of clustering algorithms:

Unsupervised machine learning technique:

Katya (Dundee) Machine Learning for Proof General 19 June 2013 36 / 50

Two main trends: ATP and ITP Proof pattern recognition in ITPs

ML4PG approach to proof-clustering

We have integrated Proof General with a variety of clustering algorithms:

Unsupervised machine learning technique:

Katya (Dundee) Machine Learning for Proof General 19 June 2013 36 / 50

Two main trends: ATP and ITP Proof pattern recognition in ITPs

ML4PG approach to proof-clustering

We have integrated Proof General with a variety of clustering algorithms:

Unsupervised machine learning technique:

Engines: Matlab, Weka, Octave, R, . . .

Algorithms: K-means, Gaussian Mixture models, simple Expectation

Maximisation, . . .

Katya (Dundee) Machine Learning for Proof General 19 June 2013 36 / 50

Two main trends: ATP and ITP Proof pattern recognition in ITPs

ML4PG approach to proof-clustering

We have integrated Proof General with a variety of clustering algorithms:

Unsupervised machine learning technique:

Engines: Matlab, Weka, Octave, R, . . .

Algorithms: K-means, Gaussian Mixture models, simple Expectation

Maximisation, . . .

Katya (Dundee) Machine Learning for Proof General 19 June 2013 36 / 50

Two main trends: ATP and ITP Proof pattern recognition in ITPs

ML4PG approach to proof-clustering

We have integrated Proof General with a variety of clustering algorithms:

Unsupervised machine learning technique:

Engines: Matlab, Weka, Octave, R, . . .

Algorithms: K-means, Gaussian Mixture models, simple Expectation

Maximisation, . . .

Katya (Dundee) Machine Learning for Proof General 19 June 2013 36 / 50

Two main trends: ATP and ITP Proof pattern recognition in ITPs

A proof in Coq/SSReflect with ML4PG help

Lemma f a c t t a i l a u x l e m m a :
f o r a l l (a n : nat) , f a c t t a i l a u x n a = a ∗ n ‘ ! .

Pr oo f .
move => n . e l i m : n => [a | n IH a /=].

by r e w r i t e / t h e t a f a c t f a c t 0 muln1 .

n : nat
IH : f o r a l l a : nat ,

f a c t t a i l a u x n a = a ∗ n ‘ !
a : nat
============================
f a c t t a i l a u x n (n.+1 ∗ a) =

a ∗ (n . + 1) ‘ !

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

This lemma i s s i m i l a r to lemmas :
− m u l t t a i l a u x l e m m a
− p o w e r t a i l a u x l e m m a
− e x p t t a i l a u x l e m m a

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Katya (Dundee) Machine Learning for Proof General 19 June 2013 37 / 50

Two main trends: ATP and ITP Proof pattern recognition in ITPs

Where is our tool useful?

Methodology:

1 Write the specification of the function

2 Write the algorithm (tail recursive function)

3 Prove that the algorithm satisfies the specification

4 Write the JVM program

5 Define the function that schedules the program

6 Prove that the code implements the algorithm

7 Prove total correctness

Katya (Dundee) Machine Learning for Proof General 19 June 2013 38 / 50

Two main trends: ATP and ITP Proof pattern recognition in ITPs

Where is our tool useful?

Methodology:

1 Write the specification of the function

2 Write the algorithm (tail recursive function)

3 Prove that the algorithm satisfies the specification

4 Write the JVM program

5 Define the function that schedules the program

6 Prove that the code implements the algorithm

7 Prove total correctness

Suggestions for fn fact is theta :
fn expt is theta , fn mult is theta , fn power is theta

Katya (Dundee) Machine Learning for Proof General 19 June 2013 38 / 50

Two main trends: ATP and ITP Proof pattern recognition in ITPs

Where is our tool useful?

Methodology:

1 Write the specification of the function

2 Write the algorithm (tail recursive function)

3 Prove that the algorithm satisfies the specification

4 Write the JVM program

5 Define the function that schedules the program

6 Prove that the code implements the algorithm

7 Prove total correctness

Suggestions for program is fn fact :
program is fn expt , program is fn mult , program is fn power

Katya (Dundee) Machine Learning for Proof General 19 June 2013 38 / 50

Two main trends: ATP and ITP Proof pattern recognition in ITPs

Where is our tool useful?

Methodology:

1 Write the specification of the function

2 Write the algorithm (tail recursive function)

3 Prove that the algorithm satisfies the specification

4 Write the JVM program

5 Define the function that schedules the program

6 Prove that the code implements the algorithm

7 Prove total correctness

Suggestions for total correctness fact :
total correctness expt , total correctness mult , total correctness power

Katya (Dundee) Machine Learning for Proof General 19 June 2013 38 / 50

Two main trends: ATP and ITP Proof pattern recognition in ITPs

Benefits of this approach:

ML4PG statistical tool can be switched on/off on user’s demand;

ML4PG does not assume any knowledge of machine-learning
interfaces from the user;

modular: allows the user to make choices regarding approach to levels
of proofs and particular statistical algorithms;

tolerant to mixing and matching different proof libraries and different
notation used in proofs across different users.

easily extendable: e.g. from Coq to SSReflect and ACL2.

Most amazingly...

it really works!!!!

Katya (Dundee) Machine Learning for Proof General 19 June 2013 39 / 50

Two main trends: ATP and ITP Proof pattern recognition in ITPs

Benefits of this approach:

ML4PG statistical tool can be switched on/off on user’s demand;

ML4PG does not assume any knowledge of machine-learning
interfaces from the user;

modular: allows the user to make choices regarding approach to levels
of proofs and particular statistical algorithms;

tolerant to mixing and matching different proof libraries and different
notation used in proofs across different users.

easily extendable: e.g. from Coq to SSReflect and ACL2.

Most amazingly...

it really works!!!!

Katya (Dundee) Machine Learning for Proof General 19 June 2013 39 / 50

Two main trends: ATP and ITP Proof pattern recognition in ITPs

Benefits of this approach:

ML4PG statistical tool can be switched on/off on user’s demand;

ML4PG does not assume any knowledge of machine-learning
interfaces from the user;

modular: allows the user to make choices regarding approach to levels
of proofs and particular statistical algorithms;

tolerant to mixing and matching different proof libraries and different
notation used in proofs across different users.

easily extendable: e.g. from Coq to SSReflect and ACL2.

Most amazingly...

it really works!!!!

Katya (Dundee) Machine Learning for Proof General 19 June 2013 39 / 50

Two main trends: ATP and ITP Proof pattern recognition in ITPs

Benefits of this approach:

ML4PG statistical tool can be switched on/off on user’s demand;

ML4PG does not assume any knowledge of machine-learning
interfaces from the user;

modular: allows the user to make choices regarding approach to levels
of proofs and particular statistical algorithms;

tolerant to mixing and matching different proof libraries and different
notation used in proofs across different users.

easily extendable: e.g. from Coq to SSReflect and ACL2.

Most amazingly...

it really works!!!!

Katya (Dundee) Machine Learning for Proof General 19 June 2013 39 / 50

Two main trends: ATP and ITP Proof pattern recognition in ITPs

Benefits of this approach:

ML4PG statistical tool can be switched on/off on user’s demand;

ML4PG does not assume any knowledge of machine-learning
interfaces from the user;

modular: allows the user to make choices regarding approach to levels
of proofs and particular statistical algorithms;

tolerant to mixing and matching different proof libraries and different
notation used in proofs across different users.

easily extendable: e.g. from Coq to SSReflect and ACL2.

Most amazingly...

it really works!!!!

Katya (Dundee) Machine Learning for Proof General 19 June 2013 39 / 50

Two main trends: ATP and ITP Proof pattern recognition in ITPs

Benefits of this approach:

ML4PG statistical tool can be switched on/off on user’s demand;

ML4PG does not assume any knowledge of machine-learning
interfaces from the user;

modular: allows the user to make choices regarding approach to levels
of proofs and particular statistical algorithms;

tolerant to mixing and matching different proof libraries and different
notation used in proofs across different users.

easily extendable: e.g. from Coq to SSReflect and ACL2.

Most amazingly...

it really works!!!!

Katya (Dundee) Machine Learning for Proof General 19 June 2013 39 / 50

Two main trends: ATP and ITP Proof pattern recognition in ITPs

Benefits of this approach:

ML4PG statistical tool can be switched on/off on user’s demand;

ML4PG does not assume any knowledge of machine-learning
interfaces from the user;

modular: allows the user to make choices regarding approach to levels
of proofs and particular statistical algorithms;

tolerant to mixing and matching different proof libraries and different
notation used in proofs across different users.

easily extendable: e.g. from Coq to SSReflect and ACL2.

Most amazingly...

it really works!!!!

Katya (Dundee) Machine Learning for Proof General 19 June 2013 39 / 50

More Examples

Table of Contents

1 Motivation: machine-learning for automated theorem proving?

2 Two main trends: ATP and ITP

3 More Examples

4 Conclusions and Further work

Katya (Dundee) Machine Learning for Proof General 19 June 2013 40 / 50

More Examples The bigop library

The bigop library

SSReflect library about indexed big “operations”

Examples:

∑
0≤i<2n|odd i

i = n2,
∏

0≤i≤n
i = n!,

⋃
i∈I

f (i), . . .

Applications:

Definition of matrix multiplication
Binomials
Union of sets
. . .

Katya (Dundee) Machine Learning for Proof General 19 June 2013 41 / 50

More Examples The bigop library

The bigop library

SSReflect library about indexed big “operations”

Examples:∑
0≤i<2n|odd i

i = n2,
∏

0≤i≤n
i = n!,

⋃
i∈I

f (i), . . .

Applications:

Definition of matrix multiplication
Binomials
Union of sets
. . .

Katya (Dundee) Machine Learning for Proof General 19 June 2013 41 / 50

More Examples The bigop library

The bigop library

SSReflect library about indexed big “operations”

Examples:∑
0≤i<2n|odd i

i = n2,
∏

0≤i≤n
i = n!,

⋃
i∈I

f (i), . . .

Applications:

Definition of matrix multiplication
Binomials
Union of sets
. . .

Katya (Dundee) Machine Learning for Proof General 19 June 2013 41 / 50

More Examples The bigop library

Application of ML4PG: Inverse of nilpotent matrices

Definition

Let M be a square matrix, M is nilpotent if it exists an n such that Mn = 0

Lemma

Let M be a nilpotent matrix, then

(1−M)×
∑

0≤i<n

M i = 1

where n is such that Mn = 0

Lemma i n v e r s e I m i n u s M b i g (M : ’M m) : (e x i s t s n , Mˆn = 0) −>
(1 − M) ∗m (\ sum (0<=i<n) Mˆ i) = 1 .

Katya (Dundee) Machine Learning for Proof General 19 June 2013 42 / 50

More Examples The bigop library

Application of ML4PG: Inverse of nilpotent matrices

Definition

Let M be a square matrix, M is nilpotent if it exists an n such that Mn = 0

Lemma

Let M be a nilpotent matrix, then

(1−M)×
∑

0≤i<n

M i = 1

where n is such that Mn = 0

Lemma i n v e r s e I m i n u s M b i g (M : ’M m) : (e x i s t s n , Mˆn = 0) −>
(1 − M) ∗m (\ sum (0<=i<n) Mˆ i) = 1 .

Katya (Dundee) Machine Learning for Proof General 19 June 2013 42 / 50

More Examples The bigop library

Suggestions provided by ML4PG

Theorem (Fundamental Lemma of Persistent Homology)

βj,k
i : N× N× N→ Z

βk,l
n − βk,m

n =
∑

1≤i≤k

∑
l<j≤m

(βj,p−1
n − βj,p

n)− (βj−1,p−1
n − βj−1,p

n)

Proof

Katya (Dundee) Machine Learning for Proof General 19 June 2013 43 / 50

More Examples The bigop library

Suggestions provided by ML4PG

Theorem (Fundamental Lemma of Persistent Homology)

βj,k
i : N× N× N→ Z

βk,l
n − βk,m

n =
∑

1≤i≤k

∑
l<j≤m

(βj,p−1
n − βj,p

n)− (βj−1,p−1
n − βj−1,p

n)

Proof ∑
1≤i≤k

∑
l<j≤m(βj,i−1

n − βj,i
n)− (βj−1,i−1

n − βj−1,i
n) =

Katya (Dundee) Machine Learning for Proof General 19 June 2013 43 / 50

More Examples The bigop library

Suggestions provided by ML4PG

Theorem (Fundamental Lemma of Persistent Homology)

βj,k
i : N× N× N→ Z

βk,l
n − βk,m

n =
∑

1≤i≤k

∑
l<j≤m

(βj,p−1
n − βj,p

n)− (βj−1,p−1
n − βj−1,p

n)

Proof ∑
1≤i≤k

∑
l<j≤m

(βj,i−1
n − βj,i

n)− (βj−1,i−1
n − βj−1,i

n) =∑
1≤i≤k

((βl+1,i−1
n − βl+1,i

n)− (βl,i−1
n − βl,i

n)+

(βl+2,i−1
n − βl+2,i

n)− (βl+1,i−1
n − βl+1,i

n)+
. . .

(βm−1,i−1
n − βm−1,i

n)− (βm−2,i−1
n − βm−2,i

n)+

(βm,i−1
n − βm,i

n)− (βm−1,i−1
n − βm−1,i

n))

Katya (Dundee) Machine Learning for Proof General 19 June 2013 43 / 50

More Examples The bigop library

Suggestions provided by ML4PG

Theorem (Fundamental Lemma of Persistent Homology)

βj,k
i : N× N× N→ Z

βk,l
n − βk,m

n =
∑

1≤i≤k

∑
l<j≤m

(βj,p−1
n − βj,p

n)− (βj−1,p−1
n − βj−1,p

n)

Proof ∑
1≤i≤k

∑
l<j≤m

(βj,i−1
n − βj,i

n)− (βj−1,i−1
n − βj−1,i

n) =∑
1≤i≤k

(((((
((((βl+1,i−1

n − βl+1,i
n)− (βl,i−1

n − βl,i
n)+

(βl+2,i−1
n − βl+2,i

n)−((((
((((βl+1,i−1

n − βl+1,i
n)+

. . .

(βm−1,i−1
n − βm−1,i

n)− (βm−2,i−1
n − βm−2,i

n)+

(βm,i−1
n − βm,i

n)− (βm−1,i−1
n − βm−1,i

n))

Katya (Dundee) Machine Learning for Proof General 19 June 2013 43 / 50

More Examples The bigop library

Suggestions provided by ML4PG

Theorem (Fundamental Lemma of Persistent Homology)

βj,k
i : N× N× N→ Z

βk,l
n − βk,m

n =
∑

1≤i≤k

∑
l<j≤m

(βj,p−1
n − βj,p

n)− (βj−1,p−1
n − βj−1,p

n)

Proof ∑
1≤i≤k

∑
l<j≤m

(βj,i−1
n − βj,i

n)− (βj−1,i−1
n − βj−1,i

n) =∑
1≤i≤k

(((((
((((βl+1,i−1

n − βl+1,i
n)− (βl,i−1

n − βl,i
n)+

((((
((((βl+2,i−1

n − βl+2,i
n)−((((

((((βl+1,i−1
n − βl+1,i

n)+
. . .

((((
(((((βm−1,i−1

n − βm−1,i
n)−((((

(((((βm−2,i−1
n − βm−2,i

n)+

(βm,i−1
n − βm,i

n)−((((
(((((βm−1,i−1

n − βm−1,i
n))

Katya (Dundee) Machine Learning for Proof General 19 June 2013 43 / 50

More Examples The bigop library

Suggestions provided by ML4PG

Theorem (Fundamental Lemma of Persistent Homology)

βj,k
i : N× N× N→ Z

βk,l
n − βk,m

n =
∑

1≤i≤k

∑
l<j≤m

(βj,p−1
n − βj,p

n)− (βj−1,p−1
n − βj−1,p

n)

Proof ∑
1≤i≤k

∑
l<j≤m

(βj,i−1
n − βj,i

n)− (βj−1,i−1
n − βj−1,i

n) =∑
1≤i≤k

(βm,i−1
n − βm,i

n)− (βl,i−1
n − βl,i

n) = . . .

Katya (Dundee) Machine Learning for Proof General 19 June 2013 43 / 50

More Examples The bigop library

Suggestions provided by ML4PG

Lemma
If g : N→ Z, then ∑

0≤i≤k

(g(i + 1)− g(i)) = g(k + 1)− g(0)

Proof

Katya (Dundee) Machine Learning for Proof General 19 June 2013 44 / 50

More Examples The bigop library

Suggestions provided by ML4PG

Lemma
If g : N→ Z, then ∑

0≤i≤k

(g(i + 1)− g(i)) = g(k + 1)− g(0)

Proof ∑
0≤i≤k (g(i + 1)− g(i)) =

Katya (Dundee) Machine Learning for Proof General 19 June 2013 44 / 50

More Examples The bigop library

Suggestions provided by ML4PG

Lemma
If g : N→ Z, then ∑

0≤i≤k

(g(i + 1)− g(i)) = g(k + 1)− g(0)

Proof ∑
0≤i≤k (g(i + 1)− g(i)) =

g(1)− g(0) + g(2)− g(1) + . . .+ g(k + 1)− g(k)

Katya (Dundee) Machine Learning for Proof General 19 June 2013 44 / 50

More Examples The bigop library

Suggestions provided by ML4PG

Lemma
If g : N→ Z, then ∑

0≤i≤k

(g(i + 1)− g(i)) = g(k + 1)− g(0)

Proof ∑
0≤i≤k (g(i + 1)− g(i)) =

��g(1)− g(0) + g(2)−��g(1) + . . .+ g(k + 1)− g(k)

Katya (Dundee) Machine Learning for Proof General 19 June 2013 44 / 50

More Examples The bigop library

Suggestions provided by ML4PG

Lemma
If g : N→ Z, then ∑

0≤i≤k

(g(i + 1)− g(i)) = g(k + 1)− g(0)

Proof ∑
0≤i≤k (g(i + 1)− g(i)) =

��g(1)− g(0) +��g(2)−��g(1) + . . .+ g(k + 1)−��g(k)

Katya (Dundee) Machine Learning for Proof General 19 June 2013 44 / 50

More Examples The bigop library

Suggestions provided by ML4PG

Lemma
If g : N→ Z, then ∑

0≤i≤k

(g(i + 1)− g(i)) = g(k + 1)− g(0)

Proof ∑
0≤i≤k (g(i + 1)− g(i)) = g(k + 1)− g(0)

Katya (Dundee) Machine Learning for Proof General 19 June 2013 44 / 50

More Examples The bigop library

Suggestions provided by ML4PG

Lemma
Let M be a nilpotent matrix, then

(1−M)×
∑

0≤i<n

M i = 1

where n is such that Mn = 0

Proof

Lemma (Another ML4PG suggestion)

Let M be a nilpotent matrix, then there exists N such that N × (1−M) = 1

Katya (Dundee) Machine Learning for Proof General 19 June 2013 45 / 50

More Examples The bigop library

Suggestions provided by ML4PG

Lemma
Let M be a nilpotent matrix, then

(1−M)×
∑

0≤i<n

M i = 1

where n is such that Mn = 0

Proof

(1−M)×
∑

0≤i<n
M i =

Lemma (Another ML4PG suggestion)

Let M be a nilpotent matrix, then there exists N such that N × (1−M) = 1

Katya (Dundee) Machine Learning for Proof General 19 June 2013 45 / 50

More Examples The bigop library

Suggestions provided by ML4PG

Lemma
Let M be a nilpotent matrix, then

(1−M)×
∑

0≤i<n

M i = 1

where n is such that Mn = 0

Proof

(1−M)×
∑

0≤i<n
M i =∑

0≤i<n
M i −M i+1

Lemma (Another ML4PG suggestion)

Let M be a nilpotent matrix, then there exists N such that N × (1−M) = 1

Katya (Dundee) Machine Learning for Proof General 19 June 2013 45 / 50

More Examples The bigop library

Suggestions provided by ML4PG

Lemma
Let M be a nilpotent matrix, then

(1−M)×
∑

0≤i<n

M i = 1

where n is such that Mn = 0

Proof

(1−M)×
∑

0≤i<n
M i =∑

0≤i<n
M i −M i+1 =

M0 −M1 + M1 −M2 + . . .+ Mn−1 −Mn

Lemma (Another ML4PG suggestion)

Let M be a nilpotent matrix, then there exists N such that N × (1−M) = 1

Katya (Dundee) Machine Learning for Proof General 19 June 2013 45 / 50

More Examples The bigop library

Suggestions provided by ML4PG

Lemma
Let M be a nilpotent matrix, then

(1−M)×
∑

0≤i<n

M i = 1

where n is such that Mn = 0

Proof

(1−M)×
∑

0≤i<n
M i =∑

0≤i<n
M i −M i+1 =

M0 −��M1 +��M1 −��M2 + . . .+���Mn−1 −Mn

Lemma (Another ML4PG suggestion)

Let M be a nilpotent matrix, then there exists N such that N × (1−M) = 1

Katya (Dundee) Machine Learning for Proof General 19 June 2013 45 / 50

More Examples The bigop library

Suggestions provided by ML4PG

Lemma
Let M be a nilpotent matrix, then

(1−M)×
∑

0≤i<n

M i = 1

where n is such that Mn = 0

Proof

(1−M)×
∑

0≤i<n
M i =∑

0≤i<n
M i −M i+1 =

M0 −Mn = M0 = 1

Lemma (Another ML4PG suggestion)

Let M be a nilpotent matrix, then there exists N such that N × (1−M) = 1

Katya (Dundee) Machine Learning for Proof General 19 June 2013 45 / 50

More Examples The bigop library

Suggestions provided by ML4PG

Lemma
Let M be a nilpotent matrix, then

(1−M)×
∑

0≤i<n

M i = 1

where n is such that Mn = 0

Proof

(1−M)×
∑

0≤i<n
M i =∑

0≤i<n
M i −M i+1 =

M0 −Mn = M0 = 1

Lemma (Another ML4PG suggestion)

Let M be a nilpotent matrix, then there exists N such that N × (1−M) = 1

Katya (Dundee) Machine Learning for Proof General 19 June 2013 45 / 50

More Examples The CoqEAL library

The CoqEAL library

M. Dénès and A. Mörtberg and V. Siles. A refinement-based approach to computational
algebra in Coq. In: Proceedings Interactive Theorem Proving 2012 (ITP 2012). Lecture
Notes in Computer Science 7406, 83–98. 2012.

A methodology, based on the notion of refinement to formalise efficient
algorithms of Computer Algebra systems:

1 Define the algorithm relying on rich dependent types

2 Refine it to an efficient version described on high-level data structures

3 Implement it on data structures closer to machine representations

Problem

Decipher the key results which can help us to solve our concrete problems

Katya (Dundee) Machine Learning for Proof General 19 June 2013 46 / 50

More Examples The CoqEAL library

The CoqEAL library

M. Dénès and A. Mörtberg and V. Siles. A refinement-based approach to computational
algebra in Coq. In: Proceedings Interactive Theorem Proving 2012 (ITP 2012). Lecture
Notes in Computer Science 7406, 83–98. 2012.

A methodology, based on the notion of refinement to formalise efficient
algorithms of Computer Algebra systems:

1 Define the algorithm relying on rich dependent types

2 Refine it to an efficient version described on high-level data structures

3 Implement it on data structures closer to machine representations

Problem

Decipher the key results which can help us to solve our concrete problems

Katya (Dundee) Machine Learning for Proof General 19 June 2013 46 / 50

More Examples The CoqEAL library

The CoqEAL library

M. Dénès and A. Mörtberg and V. Siles. A refinement-based approach to computational
algebra in Coq. In: Proceedings Interactive Theorem Proving 2012 (ITP 2012). Lecture
Notes in Computer Science 7406, 83–98. 2012.

A methodology, based on the notion of refinement to formalise efficient
algorithms of Computer Algebra systems:

1 Define the algorithm relying on rich dependent types

2 Refine it to an efficient version described on high-level data structures

3 Implement it on data structures closer to machine representations

Problem

Decipher the key results which can help us to solve our concrete problems

Katya (Dundee) Machine Learning for Proof General 19 June 2013 46 / 50

More Examples The CoqEAL library

The CoqEAL library

M. Dénès and A. Mörtberg and V. Siles. A refinement-based approach to computational
algebra in Coq. In: Proceedings Interactive Theorem Proving 2012 (ITP 2012). Lecture
Notes in Computer Science 7406, 83–98. 2012.

A methodology, based on the notion of refinement to formalise efficient
algorithms of Computer Algebra systems:

1 Define the algorithm relying on rich dependent types

2 Refine it to an efficient version described on high-level data structures

3 Implement it on data structures closer to machine representations

Problem

Decipher the key results which can help us to solve our concrete problems

Katya (Dundee) Machine Learning for Proof General 19 June 2013 46 / 50

More Examples The CoqEAL library

The CoqEAL library

M. Dénès and A. Mörtberg and V. Siles. A refinement-based approach to computational
algebra in Coq. In: Proceedings Interactive Theorem Proving 2012 (ITP 2012). Lecture
Notes in Computer Science 7406, 83–98. 2012.

A methodology, based on the notion of refinement to formalise efficient
algorithms of Computer Algebra systems:

1 Define the algorithm relying on rich dependent types

2 Refine it to an efficient version described on high-level data structures

3 Implement it on data structures closer to machine representations

Problem

Decipher the key results which can help us to solve our concrete problems

Katya (Dundee) Machine Learning for Proof General 19 June 2013 46 / 50

More Examples The CoqEAL library

The CoqEAL library

M. Dénès and A. Mörtberg and V. Siles. A refinement-based approach to computational
algebra in Coq. In: Proceedings Interactive Theorem Proving 2012 (ITP 2012). Lecture
Notes in Computer Science 7406, 83–98. 2012.

A methodology, based on the notion of refinement to formalise efficient
algorithms of Computer Algebra systems:

1 Define the algorithm relying on rich dependent types

2 Refine it to an efficient version described on high-level data structures

3 Implement it on data structures closer to machine representations

Problem

Decipher the key results which can help us to solve our concrete problems

Katya (Dundee) Machine Learning for Proof General 19 June 2013 46 / 50

More Examples The CoqEAL library

Fast inverse for triangular matrices

Suppose that we have defined a fast algorithm to compute the inverse of triangular matrices

over a field called fast invmx

Problems:

Prove the equivalence with the invmx algorithm of SSReflect

Executability of the algorithm

Suggestions:

Katya (Dundee) Machine Learning for Proof General 19 June 2013 47 / 50

More Examples The CoqEAL library

Fast inverse for triangular matrices

Suppose that we have defined a fast algorithm to compute the inverse of triangular matrices

over a field called fast invmx

Problems:

Prove the equivalence with the invmx algorithm of SSReflect

Executability of the algorithm

Suggestions:

Katya (Dundee) Machine Learning for Proof General 19 June 2013 47 / 50

More Examples The CoqEAL library

Fast inverse for triangular matrices

Suppose that we have defined a fast algorithm to compute the inverse of triangular matrices

over a field called fast invmx

Problems:

Prove the equivalence with the invmx algorithm of SSReflect

Executability of the algorithm

Suggestions:

Katya (Dundee) Machine Learning for Proof General 19 June 2013 47 / 50

More Examples The CoqEAL library

Fast inverse for triangular matrices

Suppose that we have defined a fast algorithm to compute the inverse of triangular matrices

over a field called fast invmx

Problems:

Prove the equivalence with the invmx algorithm of SSReflect

Executability of the algorithm

Suggestions:

Katya (Dundee) Machine Learning for Proof General 19 June 2013 47 / 50

More Examples The CoqEAL library

Fast inverse for triangular matrices

Suppose that we have defined a fast algorithm to compute the inverse of triangular matrices

over a field called fast invmx

Problems:

Prove the equivalence with the invmx algorithm of SSReflect

Executability of the algorithm

Suggestions:

Clustering with matrix library of SSReflect and CoqEAL library (˜ 1000)

10 suggestions

Instead of proving:

Lemma f a s t i n v m x E : f o r a l l m (M : ’M[R] m) , l o w e r 1 M −>
f a s t i n v m x M = invmx M.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 47 / 50

More Examples The CoqEAL library

Fast inverse for triangular matrices

Suppose that we have defined a fast algorithm to compute the inverse of triangular matrices

over a field called fast invmx

Problems:

Prove the equivalence with the invmx algorithm of SSReflect

Executability of the algorithm

Suggestions:

Clustering with matrix library of SSReflect and CoqEAL library (˜ 1000)

10 suggestions

Prove:

Lemma f a s t i n v m x E : f o r a l l m (M : ’M[R] m) , l o w e r 1 M −>
M ∗m f a s t i n v m x M = 1%:M.

Key suggestion:

Lemma i n v m x i s u n i q : f o r a l l m (M1 M2 : ’M[R] m) , M1 ∗m M2 = 1%:M −>
M2 = invmx M1.

Katya (Dundee) Machine Learning for Proof General 19 June 2013 47 / 50

More Examples The CoqEAL library

Fast inverse for triangular matrices

Suppose that we have defined a fast algorithm to compute the inverse of triangular matrices

over a field called fast invmx

Problems:

Prove the equivalence with the invmx algorithm of SSReflect

Executability of the algorithm

Suggestions:

CoqEAL suggestion: refine the algorithm to work with sequences instead of matrices

Clustering with CoqEAL library (˜ 700)

7 suggestions all of them related to the refinement from matrices to sequences

Katya (Dundee) Machine Learning for Proof General 19 June 2013 47 / 50

Conclusions and Further work

Table of Contents

1 Motivation: machine-learning for automated theorem proving?

2 Two main trends: ATP and ITP

3 More Examples

4 Conclusions and Further work

Katya (Dundee) Machine Learning for Proof General 19 June 2013 48 / 50

Conclusions and Further work

Conclusions and Further work

We can, and perhaps should, apply statistical machine-learning in
theorem proving;

The general task is to use it to process “big data”, or for
distributed/collaborative proving.

I would personally avoid “brute-force” methods for feature extraction,
and would generally prefer an adaptable, perhaps genetic, algorithms
for this purpose.

Conceptualisation of ML4PG output is a challenge.

Dissemination

Industrial applications: software and hardware verification (Centaur
Technology, Rockwell Collins)

Among peers (researchers, mathematicians, programmers)?

Katya (Dundee) Machine Learning for Proof General 19 June 2013 49 / 50

Conclusions and Further work

Conclusions and Further work

We can, and perhaps should, apply statistical machine-learning in
theorem proving;

The general task is to use it to process “big data”, or for
distributed/collaborative proving.

I would personally avoid “brute-force” methods for feature extraction,
and would generally prefer an adaptable, perhaps genetic, algorithms
for this purpose.

Conceptualisation of ML4PG output is a challenge.

Dissemination

Industrial applications: software and hardware verification (Centaur
Technology, Rockwell Collins)

Among peers (researchers, mathematicians, programmers)?

Katya (Dundee) Machine Learning for Proof General 19 June 2013 49 / 50

Thank you for your attention Questions?

Can statistical machine learning advance mechanised
proof technology?

Katya Komendantskaya, joint work with Jonathan Heras
(Funded by EPSRC First Grant Scheme)

University of Dundee

19 June 2013

Katya (Dundee) Machine Learning for Proof General 19 June 2013 50 / 50

	Motivation: machine-learning for automated theorem proving?
	Two main trends: ATP and ITP
	Proof pattern recognition in ATPs
	Proof pattern recognition in ITPs

	More Examples
	The bigop library
	The CoqEAL library

	Conclusions and Further work

