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Abstract. We propose SHERLOCK - a novel problem-solving applica-
tion based on neuro-symbolic networks. The application takes a knowl-
edge base and rules in the form of a logic program, and compiles it into a
connectionist neural network that performs computations. The network’s
output signal is then translated back into logical form. SHERLOCK al-
lows to compile logic programs either to classical neuro-symbolic net-
works (the “core method”), or to inductive neural networks (CILP) —
the latter can be trained using back-propagation methods.
Key words: Neural Networks and Connectionist Models, Hybrid Neuro-
Symbolic Systems, Decision Support Systems, Reasoning Methods,
Knowledge Acquisition and Representation.

1 Introduction

Computational logic and Neurocomputing are the two different paradigms that
underly numerous attempts to expand and refine the qualities and capacities of
AI. Neuro-Symbolic Integration [2, 3, 6, 12] is the area of research that endeavors
to synthesize the best of the two worlds. The goal of neuro-symbolic computation
is to bridge the gap between robust machine learning based on neural networks
and expressive forms of reasoning normally implemented by symbolic computa-
tion. The neural networks provide the machinery for effective, massively-parallel
computation while symbolic reasoning provides a formal language and explana-
tion to the neural model. More generally, neuro-symbolic computation offers a
methodology for the creation of sound cognitive models of computation. The
Neuro-Symbolism has since developed different approaches to inductive, proba-
bilistic, and fuzzy logic programming; [6, 2, 3, 14].

In this paper, we take the ideas of neuro-symbolic integration to the level of
software engineering and design. That is, we do not consider theoretical aspects of
neuro-symbolic integration here, but take its synthetic principle to be our main
software engineering principle. So, which methods could software engineering
borrow from the area of neuro-symbolic integration? In this paper, we offer one
possible answer, but see also [1].

Declarative programming languages, and especially logic programming, have
one important underlying idea — they are designed to be syntactically similar
to the way people reason. Logic programming, for example, is one of the easiest
languages to teach students with non-technical background or general public



alike. Also, it is feasible to parse natural language into logic programming syntax.
Therefore, the strength of logic programming from the software engineering point
of view is that it makes for a general and easily accessible interface for users with
diverse backgrounds.

Neural networks, on the other hand, offer both massive parallelism and abil-
ity to adapt. However, it would seem almost impossible to imagine that a person
with non-technical background easily masters neural networks as part of his
working routine, alongside with a web-browser or a text editor. It is common
that industrial applications of neural networks are designed and maintained by
specialists, while non-specialist users do not have ways to edit the applications.
This is why neural network applications are often problem-specific. Such appli-
cations could be made more general and user-friendly if the users were given a
nice easy interface to manipulate neural networks at a level of natural language.

Example 1. Consider a police officer who has just come to a crime scene and
wishes to record all evidence available. To be efficient, the police officer uses a
small portable computer that has a problem-solving assistant. What should this
assistant be like? Neural network software would come in handy, because it can
be trained as new evidence is obtained; also – it can be fast due to parallelism. On
top of this neural software, though, it is best to have an easy interface allowing
the officer to enter data in the form of a natural language.

In this paper, we propose SHERLOCK — an application that allows the user
to type in the knowledge base in the language close to the natural language, and
then rely on the compiler that transforms the problem into a suitable neural
network. The network will attempt to solve the problem; and once the solution is
found — it outputs the answer in a logical form. Thus, SHERLOCK successfully
implements the full neuro-symbolic cycle, [6, 3]. Additionally, as we explain in
Section 4, SHERLOCK can be embedded into a bigger knowledge-refining cycle.

Our results relate to the work of [4] proposing a neural compiler for PASCAL;
and the programming languages AEL, NETDEF designed to be compiled by
neural networks, [13]. SHERLOCK differs from the previous similar work in two
respects. It is the first fully automated neural compiler for declarative languages
we know of. Also, unlike [4], where the main emphasis was on building a fully
functional complier for a programming language; here our emphasis is not on
creating a neural compiler for PROLOG per se; but building a compiler sufficient
to handle knowledge bases and reason over them.

The paper is organised as follows. Section 2 contains background definitions.
Section 3 describes the interface and design of SHERLOCK. Section 4 shows the
knowledge refinement scheme with SHERLOCK. In Section 5, we conclude.

2 Preliminaries

2.1 Logic programs

In the standard formulations of logic programming, such as in Lloyd’s book [11],
a first-order logic program P consists of a finite set of clauses of the form



A ← L1, . . . , Ln, where A is an atom, and the Li’s are literals — that is, pos-
sibly negated atomic formulae, typically containing free variables, and where
L1, . . . , Ln is understood to mean the conjunction of the Li’s: note that n may
be 0. We assume that the reader is familiar with first-order logic, and the notions
of first-order terms and atomic formulae, as can be found e.g. in [11].

Example 2. Consider a detective story: A small bank was robbed. The bank safe
is found open. Footprints left on the floor belong to a person with a pair of small
feet; and burned cigarettes are found on the scene. The detective came up with
a deduction rule: “The offender had keys for bank safe, small feet and the habit
of smoking”. Then the detective found the following facts about the bank staff:
1) “Jane, Harry and Stephen had the keys.”
2) “Stephen and Jane have small feet.”
3) “Stephen has a habit of smoking.”
The detective drew the conclusion logically that Stephen was the criminal.

Here is a logic program which describes exactly this toy scenario:

Criminal(X)← HasKeys(X), SmallFeet(X), Smoke(X)

HasKeys(Harry)←
HasKeys(Jane)←

HasKeys(Stephen)←
SmallFeet(Stephen)←

SmallFeet(Jane)←
Smoke(Stephen)←

Models satisfying Logic programs can be characterised by the fixed-point
semantic operators; the one most commonly used is the TP -operator; see also
[11]. For the lack of space, we will not go into much of detail here, but we will
use the theorems relating the fixed point-operator TP and neural networks in
the latter sections; see also [8, 9, 2].

Example 3. Considering the logic program from Example 2: TP ↑ 0 = ∅;
TP ↑ 1 = { HasKeys(Harry), HasKeys(Jane), HasKeys(Stephen), Small-
Feet(Stephen), SmallFeet(Jane),Smoke(Stephen) };
TP ↑ 2 = { HasKeys(Harry), HasKeys(Jane), HasKeys(Stephen), Small-
Feet(Stephen), SmallFeet(Jane),Smoke(Stephen), Criminal(Stephen) }
TP ↑ 2 = TP ↑ 3 = lfp(TP ).

2.2 Neuro-Symbolic Networks

Here, we briefly describe two neuro-symbolic networks we use when designing
SHERLOCK. We assume the reader is familiar with basic definitions of neural
networks, as e.g. given in [7]. The first kind of networks we consider here are
called TP -neural networks for their correspondence to the semantic operator TP



[11], and were originally proposed in [8, 9]. The second kind is the Connectionist
Inductive Learning and Logic Programming (CILP) [2] — a massively paral-
lel computational model based on a feed-forward artificial neural network that
integrates inductive learning from examples and background knowledge with
deductive reasoning using logic programming.

Algorithm for constructing TP -neural networks.
Given a logic program P , we take all the ground instances of clauses in P —
that is, we make all possible substitutions of variable-free terms for variables in
P . Let p and q be the number of literals and the number of clauses occurring
in P , respectively. Without loss of generality, we may assume that the ground
atoms are numbered from 1 to p. The network N associated with P can now be
constructed as follows:

1. The input and output layer is a vector of p binary threshold neurons, where
the i-th neuron represents the atom Ai, 1 ≤ i ≤ p. The threshold of each
neuron occurring in the input or output layer is set to 0.5.

2. For each clause of the form A ← A1, . . . , Am,∼ Am+1, . . . ,∼ An(0 ≤ m ≤
n),occurring in P do the following:

3. Add a binary threshold unit c to the hidden layer of N .
4. Connect c to the unit representing A in the output layer with weight 1.
5. For each Ai, 1 ≤ i ≤ m, connect the unit representing Ai in the input layer

of N to c, and set the connection weight to 1. For each Ai, m + 1 ≤ i ≤ n,
connect the unit representing Ai in the input layer of N to c, and set the
connection weight to −1. Set the threshold θc of c to m− 0.5.

Theorem 1. There exists a single hidden layer recurrent network such that each
computation starting with an arbitrary initial input I converges to a stable state
and yields the unique fixpoint of TP .

Here is the algorithm to compute the least Herbrand Model of P in a TP -
neural network.

Massively Parallel Deduction Algorithm for TP -networks.
Let p be the number of input neurons and the number of output neurons in
TP -neural network N . The input is defined by a vector I = (I1, . . . , Ip) and the
output is given by a vector O = (O1, . . . , Op).

1. Initialize I = [0, 0, . . . , 0].
2. Loop:

– Calculate O = feed-forward(I);
– If I is equal to O, then terminate;
– If I is not equal to O, then for j in (1, . . . , p), replace the value of Ij

with the value of Oj in O.

Example 4. Consider the logic program from Example 2. The network N for it
will be recurrently connected, its output vector feeds the input vector at every
iteration of TP . Let the initial input vector I = (0, 0, 0, 0, 0). So the deduction
process would be as follows:



TP ↑ 0 = [0, 0, 0, 0, 0];
TP ↑ 1 = [0, 1, 0, 0, 0];
TP ↑ 2 = [1, 1, 0, 0, 0];
TP ↑ 2 = TP ↑ 3 = lfp(TP ).

To embed the propositional knowledge of a general logic program P in a
neural network N , CILP [2] uses an approach similar to TP -Neural Networks.
However, a CILP-neural network N deploys a semi-linear function as its activa-
tion function:

f(x) =
2

(1 + e−βx)
− 1.

The function f(x) has the real numbers as domain and [−1, 1] as codomain.
For each propositional general program P , there exists a feed-forward arti-

ficial neural network N (CILP) with one hidden layer and semi-linear neurons
such that N computes TP , see e.g. [2] for more details.

3 Design of SHERLOCK

The neural-symbolic systems can do deduction. However, it is very difficult for
users to use such systems because they would have to embed the symbolic knowl-
edge into a neural network by setting up weights and thresholds and then in-
terpret the outcome of the neural network. This is why, a convenient interface
between users and neural-symbolic systems is required, and we propose one such
interface in this section.

Example 5. The Figure 1 shows SHERLOCK’s interface together with the logic
program from Example 2.

Fig. 1. SHERLOCK’s interface together with Logic program from Example 2



SHERLOCK consist of the following components:

1. A code editor, in which the users can write a general logic program in a
prolog-like declarative language;

2. A translator, which can analyse syntax and semantics of the logic program
to set up neural-symbolic systems according to the logic program;

3. A model of TP -neural networks, and a model of CILP-neural networks;
4. An interpreter;
5. An output reader.

First, we implement the code editor, see also Figure 1. The code editor
for SHERLOCK is a simple text editor, in which users write logic programs.
Once the data is entered, it allows the user to choose to which neuro-symbolic
network the problem will be compiled by using the “Deduction” button from
the drop-out menu; and then choosing “TP -network” or “CILP network”.

A logic program consists of facts, rules and questions. In order to represent
these, the code editor for SHERLOCK is designed to have four sections Domains,
Predicates, Goals, and Rules.

We design a simple grammar by defining the following language L as follows:

– Domains format: < domain name >= {< list of terms >}.
– Predicate format: < predicate name >= (< list of domain >).
– Goal format: ? < predicate name > (< list of terms or variables >).

Rules divide into facts and clauses.
– Facts format: < predicate name > (< list of terms >).
– Clauses format: < predicate name > (< list of terms or variables >) : − <

predicate name > (< list of terms or variables >){< predicate name > (<
list of terms or variables >)}.

Example 6. For an example how this grammar is applied in SHERLOCK, see
Figure 1. We propose yet another example here. We continue the scenario of Ex-
ample 2. After concluding that Stephen was the offender, the detective notices
that Stephen’s feet are bigger than the footprints left at the crime scene. He
needs to find out who might have smaller feet than Stephen’s. For this, another
piece of data could be added:
Domains

Suspect={Harry, Jane, Stephen}.
Predicates

smaller=(Suspect, Suspect).

Goals

? smaller(X, Stephen).

Clauses

smaller(Jane, Hurry).

smaller(Hurry, Stephen).

smaller(X,Y):-smaller(X,Z); smaller(Z,Y).

For the lack of space, we use a simplified version of what could be the real situa-
tion. If the real-life database is sufficiently big, one might well use SHERLOCK
to handle it. In real-life situation, the program may contain feet sizes for each
staff member, here we included “smaller” instead.



Next, we define models for neuro-symbolic networks.

Definition 1. Given a logic program P , a Model for a TP -neural network is
a tuple (n, q,W1,W2), with q being the number of clauses, n being the number
of all propositional variables, W1 an n-by-q matrix describing weights between
the input layer and the hidden layer; and W2 a q-by-n matrix describing weights
between the hidden layer and the output layer. In the output layer, there are k
thresholds, whose values are set 0.5. In the hidden layer there are q thresholds,
whose values are determined by W1. The q thresholds θl (l ∈ [1, . . . , q]) in the
hidden layer are calculated as follows: for l ∈ [1, . . . , q], let pl be the positive
value of the l-th column of W1. Then

θl = pl − 0.5

Similarly, we define a model for the CILP-neural network; modulo the changes
in the transfer functions. The model of the CILP-neural network will also be
defined by a tuple (n, q,W1,W2).

A translator is a necessary component which connects the symbolic logic
programming component to the connectionist computing systems. It transforms
a logic program written in the language L into a tuple (n, q,W1,W2) which is
either the model of a TP -neural network or the model of a CILP-neural network
— depending on the user’s choice.

The translator is very similar to a single pass compiler which consists of
two stages. In the first stage, the translator performs lexical analysis, syntactic
analysis and creates a token table. In the second stage, it performs intermediate
representation generation and creates the target tuple (n, q,W1,W2).

Syntax analysis is a phase in which the overall structure of a program is
identified, and involves an understanding of the order in which the symbols in
a program may appear. According to the declarative language L, there are four
sections in the problem specification given to SHERLOCK - Domains, Predicates
and Goals. Each section has a label to mark it and there is a piece of syntax
which is used to define its contents, see Appendix A.

According to these grammars, the syntax analyser (or parser) can fit a se-
quence of tokens into a specified syntax. A parsing problem consists of finding
a derivation (if one exists) of a particular sentence using the given grammar. In
this translator, the parser is a left to right bottom-up parser with one symbol
lookahead LR (1). The LR (1) is a very common algorithm in complier design,
which will not be introduced here, see [5, 10].

Intermediate representation generation is a phase to transform each state-
ment in the original code of a logic program to intermediate data according to
a particular syntax.

Given a logic program P , the translator generates appropriate intermediate
data which it can use to create the target tuple to construct a neural-symbolic
network representing P .

Target tuple creation is a simple phase to create a model tuple (n, q,W1,W2)
according to the syntax, see also Section 2.2. The neural-symbolic system could



be either a TP -neural network or a CILP neural network, which depends on the
choice of users.

Interpreter and Output reader.
An interpreter is a component that interprets the execution result of a neural-
symbolic system into truth values and gives symbolic answers to the goals in
P .

According to the record of the model of the neurons in the output layer, it
is easy to judge a propositional variable truth value. For a TP -neural network,
if the value of a neuron is greater than or equal to 0.5, then its corresponding
propositional variable is assigned true; otherwise the propositional variable is
assigned false. For a CILP- neural network, if the value of a neuron is greater
than or equal to Amin, then its corresponding propositional variable is assigned
true.

The interpreter “understands” the meaning of goals in a logic program as
follows. It searches for answers and then formats answers in a symbolic way.
There are two types of goals: one has no variables and the other does. A goal
with no variables requires an answer to be the truth value. A goal with variables
requires an answer that presents the sets of substitutions that make the goal
true. SHERLOCK allows multiple goals and relational goals, see Appendix B.

Example 7. Figure 2 shows the answer to the logic program from Figure 1.

Fig. 2. SHERLOCK’s answer to the goal Criminal(X) for the logic program from
Example 2.

In case of multiple goals and multiple possible answers, SHERLOCK outputs
all answers that satisfy the model specification, see Figure 3. This feature is useful
in crime investigation applications, as it may help to form new hypotheses.

4 Knowledge Refining using SHERLOCK

Knowledge refining is one of the important feature in human reasoning, and crime
investigation is not an exception. We wish to insert background (or “coarse”)
knowledge into a neural network and obtain refined knowledge by learning with
example data. One kind of Neural-symbolic systems CILP is very suitable to
do knowledge refining. Not only CILP has the capability to present background
knowledge into neural networks, but also it can use back-propagation to get net-
works trained with examples. We propose a novel approach to build knowledge
refining systems based on SHERLOCK:



1. Coarse knowledge is obtained from the trained neural network using one of
the standard extraction techniques.

2. Then it is expressed in the first order language in SHERLOCK.

3. A CILP neural network is obtained.

4. CILP is trained with the data, and the embedded knowledge is refined.

We test this model on the famous cancer data set from the UCI Machine
Learning Repository. The final neural network has a performance of 96.7%. The
performance of the final neural network cannot be improved by setting a better
training goal while a general neural network can. This implies the knowledge
embedded in the CILP neural network is sensitive to certain kinds of data.

We summarise the properties of this model as follows:

1. It provides a methodology to obtain knowledge in any domain by using both
induction and deduction.

2. If the knowledge obtained in Step 1 is reasonable, the final neural network
will remain a clear structure, which could be interpreted to symbolic knowl-
edge. Otherwise, the neural network is just an ordinary supervised trained
neural network.

3. The final neural network has a very good performance in terms of learning.
Besides, it seems that the neural network owns an ability to detect some
fault data due to the knowledge embedded in it.



5 Evaluation, Conclusions and Future Work

We successfully tested SHERLOCK on several more challenging examples, no-
tably on the famous Einstein’s riddle known for its hardness, and cancer data
sets. For more tested examples and SHERLOCK software see [15].

SHERLOCK performs the full neuro-symbolic cycle — starting from the
knowledge base in its logical form, then translating it into a chosen kind of
neural networks and then interpreting the output of the neural network in a
logical form. It can additionally be embedded into a bigger machine-learning
cycle as explained in Section 4.

We see SHERLOCK’s future as a handy application for researchers in the
field of Neuro-Symbolic Integration [2, 3, 6] or data mining, but also in real-life
situations, where fast parallel computations, knowledge revision and training
from data are important components of the information management. We have
presented one such application here in the area of crime detection, but the design
and interface of SHERLOCK accepts a very general language, and can have a
wide range of applications.
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A Syntax analysis in SHERLOCK

Example 8. We include some parts of the syntax analysis included in the SHER-
LOCK designed below.

– Labels/Key words: Domains, Predicates, Goals, Rules. Its syntax is
defined as follows:
S → Domains | Predicates | Goals | Rules

– Domains:

S → DOMAIN = {B}
B → TERM
T → TERM, B
DOMAIN → [a-zA-Z]
DOMAIN → [a-zA-Z]DOMAIN
TERM → [a-z] [a-zA-Z]∗

– Predicates

S → PREDICATE = ( B ) .
B → DOMAIN
B → DOMAIN, B
PREDICATE → [a-zA-Z] [a-zA-Z]*
DOMAIN → [a-zA-Z] [a-zA-Z]*

– Goals
...

B Answer to Einstein’s riddle



Fig. 3. SHERLOCK’s answer to Einstein’s riddle.


