
Programming of Autonomous Vehicles with
Static Guarantees

Christoph Herrmann
University of St Andrews

http://www.cs.st-andrews.ac.uk/˜ch

June 17, 2011
Scottish Theorem Proving Meeting

Dundee

1 / 30

Motivation

Autonomous systems must have a very high reliability

Important: guarantees on maximum time / resource consumption

Solution: Programming in a DSL with dependent types

Time, fuel, location etc. become part of the operational
semantics of the programming language

User-defined types specify important system properties

programs which do not meet these properties simply do not
compile and are never executed

Advantages to a separate analysis

certificates come automatically with the program
compositionality of the design: trust that available components
are sufficient to build a system which meets the requirements
properties to verify might be so sophisticated that the design
of the program needs to support their proofs

2 / 30

Suggestions for autonomous vehicle programming

Layers

1 Strategic layer: instructions part of a global plan, interpreted
by each AV and translated to programs at the execution layer

2 Execution layer: instructions interpreted by controllers of the
AV, e.g. for motors and sensors

3 Operational layer: instructions are atomic device operations
with a clear operational semantics: e.g. make a step or a turn

Usage

Mission programs

written or generated at the strategic layer
high-level view of properties, no details

Translation between the layers certified to preserve properties

3 / 30

Research contributions

Methodology and prototype implementation

Domain-specific language (layers) embedded into Agda

Bottom-up construction of operational behaviour with the
according proofs of state changes (time, location)

Translation between the layers

Technical challenges

Verification of properties

with non-polynomial expressions
in several unbounded variables
for systems with an infinite state space

Compile-time guarantees for choices depending on run-time
values

4 / 30

Simple Agda example with static certificates: vectors

Vector definition

data Vec (a : Set) : N → Set where
[] : Vec a zero
:: : {n : N} → a → Vec a n → Vec a (suc n)

Note

Arguments of Vec a n

a is a polymorphic type variable, same for all elements of the
data structure
n is an index, can vary from element to element

Underscore denotes argument position of infix/mixfix
operators

Curly braces embrace implicit arguments (e.g. for delaration
of type variables)

5 / 30

Safe vector indexing

Implementation

! : {n : N} {a : Set} → Vec a n → Fin n → a
[] ! ()
(x :: xs) ! zero = x
(x :: xs) ! (suc i) = xs ! i

Note

Index out of bounds not possible, because index must be in
Fin n : numbers {0, .., n−1}
() : absurd pattern (roughly: no inhabitant for Fin n)

6 / 30

Basic AV operations

Setting

Vehicles can only be located at
points of a 2D integer grid

Example tour

E

turnTo E

turnI 1stepI 6

stepI 4

Start

Finish
N

W

S

Operations

Initialisation: the vehicle is
dropped at a particular
location

Step: the vehicle can move
to the next grid point

Turn: the vehicle can
change orientation by
turning left, i.e. (N → W,
W → S, S → E, E → N).

Wait: the vehicle can wait
for a given number of time
units

7 / 30

AV data type

Enumeration type for directions

data Direction : Set where
N W S E : Direction

Record type for AV state

record AV : Set where
constructor mkAV
field

time : N
dir : Direction
px : Z
py : Z

8 / 30

Turn operations

Turn operation

turn : Direction
→ Direction

turn N = W
turn W = S
turn S = E
turn E = N

Enumerating directions

dirNo : Direction
→ Fin 4

dirNo N =] 0
dirNo W =] 1
dirNo S =] 2
dirNo E =] 3

Repeated turn operation

turnN : {n : N} → Fin n → Direction → Direction
turnN zero d = d
turnN (suc n) d = turn (turnN n d)

9 / 30

We can turn to each direction within 3 units

Calculation of the number of turns with a proof

turnProof : {from to : Direction}
→ Σ (Fin 4) (λ c → to ≡ turnN c from)

turnProof {N} {N} = (turnCount N N, refl)
turnProof {N} {W} = (turnCount N W, refl)

... and 14 more combinations

Note

Σ delivers a dependent pair of the number of turns (∈ Fin 4)
and a certificate that this number satisfies the requirement

refl constructs a trivial equation, tells us that Agda can prove
the equation by evaluation of the two sides

The 16 refl’s are internally different and must be listed
separately even if the cases are enumerated automatically.

10 / 30

Lifting turn operations to the AV state

Single turn

turnAV : AV → AV
turnAV (mkAV t d x y) = mkAV (suc t) (turn d) x y

The turnAV operation necessarily increments the time counter

Iteration of turns

turnAVI : N → AV → AV
turnAVI zero x = x
turnAVI (suc n) x = turnAV (turnAVI n x)

These functions lift the semantics between the layers, they are not
(necessarily) evaluated during the operation of the system.

11 / 30

Step operation

Effect on location

step : Direction → (Z × Z) → (Z × Z)
step N (x , y) = (x , y +Z (+ 1))
step W (x , y) = (x −Z (+ 1), y)
step S (x , y) = (x , y −Z (+ 1))
step E (x , y) = (x +Z (+ 1), y)

Note: representation of integers

let n ∈ N
(+ n) lifts n

(−[1+ n]) represents −(suc n)

12 / 30

Lifting step operation to AV state

Lifting it to AV state

stepAV : AV → AV
stepAV (mkAV t d x y) with step d (x , y)
... | (x1 , y1) = mkAV (suc t) d x1 y1

Note

with permits pattern matching after evaluation

Pattern matching is the principal way to gain type information

Repeated step operations

stepAVI : N → AV → AV
stepAVI zero x = x
stepAVI (suc n) x = stepAV (stepAVI n x)

13 / 30

OpLang: embedded DSL for atomic AV operations

Encapsulation to achieve safety

So far there was no protection against arbitrary changes of
state entries

Encapsulation into a data type with state changes associated
with constructor application achieves consistency

data OpLang : AV → AV → Set where
Id : {s : AV} → OpLang s s
Wait : {t : N} {d : Direction} {x y : Z} (k : N)

→ OpLang (mkAV t d x y) (mkAV (k +N t) d x y)
Turn : {s : AV} → OpLang s (turnAV s)
Step : {s : AV} → OpLang s (stepAV s)
>>= : {s1 s2 s3 : AV}

→ OpLang s1 s2 → OpLang s2 s3 → OpLang s1 s3
IfDir : {s1 s2 : AV} (d : Direction) → OpLang s1 s2

→ OpLang s1 s2 → OpLang s1 s2

14 / 30

Operational semantics of OpLang

interp : {s1 s2 : AV} → OpLang s1 s2 → AV → AV
interp Id x = x
interp (Wait) x = x
interp Turn x = turnAV x
interp Step x = stepAV x
interp (r >>= f) x = interp f (interp r x)
interp (IfDir d x y) s with eqDir (AV .dir s) d
... | true = interp x s
... | false = interp y s

Note

Here all information is already available in the state changes,
but one could imagine that extended behaviour is
implemented which does not need static guarantees

Likewise code (e.g. in C) could be generated for OpLang
programs

15 / 30

ExLang: embedded DSL at the execution layer

data ExLang : AV → AV → Set where
Emb : {s1 s2 : AV} → OpLang s1 s2 → ExLang s1 s2
>>>= : {s1 s2 s3 : AV}

→ ExLang s1 s2 → ExLang s2 s3 → ExLang s1 s3
StepI : {s : AV} (n : N) → ExLang s (stepAVI n s)
TurnI : {s : AV} (k : N) → ExLang s (turnAVI k s)
TurnTo : {t : N} {from : Direction} (to : Direction) {x y : Z}

→ ExLang (mkAV t from x y) (mkAV (3 +N t) to x y)

Note

TurnTo gives a static guarantee in presence of a dynamic
argument (to)

The semantics will be defined by a translation to OpLang

It makes sense to generate code from this language directly,
provided the specified behaviour (which is still simple) is
established

16 / 30

Translation from ExLang to OpLang

Auxiliary functions

genNSteps : {s : AV} (n : N) → OpLang s (stepAVI n s)
genNSteps zero = Id
genNSteps (suc n) = genNSteps n >>= Step

genNTurns : (n : N) {s : AV} → OpLang s (turnAVI n s)
genNTurns zero = Id
genNTurns (suc n) = genNTurns n >>= Turn

Translation

translate1 : {s1 s2 : AV} → ExLang s1 s2 → OpLang s1 s2
translate1 (Emb x) = x
translate1 (x >>>= y) = translate1 x >>= translate1 y
translate1 (StepI n) = genNSteps n
translate1 (TurnI n) = genNTurns n

17 / 30

Bounded static variation (the ”trick” in partial evaluation)

Problem

Turning into a certain direction without assumption about
previous direction

Comparison with a non-static value yields a non-static value

Solution

Jones, Gomard, Sestoft [1993]: Partial Evaluation and
Automatic Program Generation, Section 4.8.3: Variables of
bounded static variation:
”It often happens in partial evaluation that a variable seems
dynamic since it depends on dynamic input, but only takes on
finitely many values. In such cases a bit of reprogramming can
yield much better results from partial evaluation. This kind of
reprogramming, or program transformation, which does not alter
the standard meaning of the program but leads to better residual
programs is called a binding-time improvement.”

18 / 30

Translation of TurnTo operations

Function turnProof revisited

turnProof : {from to : Direction}
→ Σ (Fin 4) (λ c → to ≡ turnN c from)

Translation Note: case distinction remains in executable!

translate1 {mkAV from } (TurnTo to)
with turnProof {from} {to}

... | (c , proof) with c

... | zero rewrite proof = Wait 3

... | (suc zero) rewrite proof = Turn >>= Wait 2

... | (suc (suc zero))
rewrite proof = (Turn >>= Turn) >>= Wait 1

... | (suc (suc (suc zero)))
rewrite proof = (Turn >>= Turn) >>= Turn

... | (suc (suc (suc (suc ()))))

19 / 30

Certificate for a complex AV task

To show

There is a program in OpLang (or ExLang) that for any given start
location (xS , yS) and final location (xF , yF) it makes the vehicle
move from start to final location within |xF−xS |+|yF−yS |+4 units
of time.

Idea for implementation and proof

Walk in one direction, turn left, walk in the other direction

Initial turn takes at most three units

Walk into one direction takes |xF−xS | or |yF−yS | units

Intermediate turn left takes one unit

Note

The idea makes the tight connection between the design of the
algorithm and its proof obvious!

20 / 30

Proving resource property for walking towards North

Walking north m steps

walkNorth : {t : N} (m : N) {x y : Z} →
ExLang (mkAV t N x y) (mkAV (m +N t) N x (y +Z (+ m)))

walkNorth {t } m {x } {y }
rewrite lawNorth { m } {t } {x } {y } = StepI m

rewrite lawNorth makes the type of walkNorth fit stepI

Auxiliary law

lawNorth : {m t : N} {x y : Z}
→ (mkAV (m +N t) N x (y +Z (+ m))
≡ stepAVI m (mkAV t N x y))

21 / 30

Proof of auxiliary law (base case)

lawNorth : {m t : N} {x y : Z}
→ (mkAV (m +N t) N x (y +Z (+ m))
≡ stepAVI m (mkAV t N x y))

lawNorth {0} {t } {x } {y } =
begin

mkAV (0 +N t) N x (y +Z (+ 0))
≡ 〈 refl 〉

mkAV t N x (y +Z (+ 0))

≡ 〈 cong (λ z → mkAV t N x z) (+Z − identity {y }) 〉
mkAV t N x y

≡ 〈 refl 〉
stepAVI 0 (mkAV t N x y)

�

Agda recognises inductive proofs

Have shown above: lawNorth {0}
Next we will show: lawNorth {m} ⇒ lawNorth {suc m}

22 / 30

Proof of auxiliary law (inductive case)

lawNorth : {m t : N} {x y : Z}
→ (mkAV (m +N t) N x (y +Z (+ m)) ≡ stepAVI m (mkAV t N x y))

lawNorth {suc m} {t } {x } {y } =
begin

mkAV ((suc m) +N t) N x (y +Z (+ (suc m)))
≡ 〈 refl 〉

mkAV (suc (m +N t)) N x (y +Z (+ (suc m)))

≡ 〈 cong (λ z → mkAV (suc (m +N t)) N x z)
(z + sn = z + n + 1 {y } {m}) 〉
mkAV (suc (m +N t)) N x ((y +Z (+ m)) +Z (+ 1))

≡ 〈 refl 〉
stepAV (mkAV (m +N t) N x (y +Z (+ m)))

≡ 〈 cong (λ x → stepAV x) (lawNorth {m} {t } {x } {y }) 〉 -- IND ASS
stepAV (stepAVI m (mkAV t N x y))

≡ 〈 refl 〉
stepAVI (suc m) (mkAV t N x y)

�
23 / 30

Compositions of turns and walks

Initial turn and single dimension walk (one of four cases)

turnWalkNorth : {d : Direction} (m : N) → {t : N} {x y : Z}
→ ExLang (mkAV t d x y)

(mkAV (m +N (3 +N t)) N x (y +Z (+ m)))
turnWalkNorth m = TurnTo N >>>= walkNorth m

Complete task (one of four cases)

walkNorthWest : {d : Direction} (m n : N)
→ {t : N} {x y : Z}
→ ExLang (mkAV t d x y)

(mkAV (t +N m +N n +N 4) W (x −Z (+ m)) (y +Z (+ n)))
walkNorthWest { } m n {t } rewrite LawMoveYX {t } {m} {n}

= turnWalkNorth n >>>= TurnI 1 >>>= walkWest m

24 / 30

Simple arithmetic equalities proven automatically

Example

LawMoveYX : {t m n : N}
→ (t +N m +N n +N 4 ≡ m +N (1 +N (n +N (3 +N t))))

LawMoveYX {t } {m} {n}
= solve 3 (λ t m n → t : + m : + n : + con 4

:= m : + (con 1 : + (n : + (con 3 : + t)))) refl t m n

Note

Agda can prove the equivalence of two (equivalent) expressions for
instances of commutative rings automatically, involving only
variables, the ring constants and ring operations + and *.

25 / 30

Proof almost finished, case distinction based on directions

Bounded static variation again!

Unbounded number of coordinate distances

But a bounded number of signs for their differences

moveDelta : (dx dy : Z) {s : AV}
→ ExLang s (mkAV (AV .time s +N dx +N dy +N 4)

(finalDir dx dy) (AV .px s +Z dx) (AV .py s +Z dy))
moveDelta dx dy {mkAV t d xS yS }

with dx | dy
... | + idx | + idy rewrite abs1 {xS } { idx } | abs1 {yS } { idy }

= walkEastNorth idx idy
... | + idx | − [1 + idy] rewrite abs1 {xS } { idx } | abs2 {yS } { idy }

= walkSouthEast idx (suc idy)
... | − [1 + idx] | + idy rewrite abs2 {xS } { idx } | abs1 {yS } { idy }

= walkNorthWest (suc idx) idy
... | − [1 + idx] | − [1 + idy] rewrite abs2 {xS } { idx } | abs2 {yS } { idy }

= walkWestSouth (suc idx) (suc idy)

26 / 30

Expressing implementation in terms of final coordinates
and current state

Mapping of the AV state, includes certificate

finalStateMoveTo : Z → Z → AV → AV
finalStateMoveTo xFin yFin s

with (xFin −Z AV .px s) | (yFin −Z AV .py s)
... | dx | dy =

mkAV (AV .time s +N dx +N dy +N 4) (finalDir dx dy)

(AV .px s +Z dx) (AV .py s +Z dy)

From distances to absolute coordinates

moveTo : (xFin yFin : Z) {s : AV}
→ ExLang s (finalStateMoveTo xFin yFin s)

moveTo xFin yFin {mkAV t d xStart yStart }
= moveDelta (xFin −Z xStart) (yFin −Z yStart)

27 / 30

StLang: embedded DSL at the strategic level

Language Definition

data StLang : AV → AV → Set where
MoveTo : {s : AV} (xFin yFin : Z)
→ StLang s (finalStateMoveTo xFin yFin s)

Translation to ExLang

translate2 : {s1 s2 : AV} → StLang s1 s2 → ExLang s1 s2
translate2 (MoveTo {s } xFin yFin) = moveTo xFin yFin {s }

Note

The operations and certificates are expressed concisely,
although the implementation and proofs are quite complex

The translation preserves the mapping between start state s1
and final state s2 , so the properties are actually implemented

28 / 30

Conclusions

Main contributions

Methodology: certified translation between layers of a
domain-specific language, bridging the gap between low-level
operations and user interface

Generation of a non-trivial AV program with unbounded
parameters that comes with static guarantees

General experiences gained

Simpler to prove simple functions than larger ones, so
construct your program using many simple functions.

Proof and implementation should go along with each other.

Use data types to encapsulate certificates in indices and
intermediate representations (here DSLs) to match against.

Pattern matching can exploit bounded static variation.

Automatic solvers beyond the ring solver are desirable.

29 / 30

Work in progress

Challenge

What can be done if the run-time choices are unbounded, e.g.
by using an external optimisation function?

It is not useful if external functions need to anticipate the
required certificates, but they must implement the desired
behaviour, including resource consumption.

Our ongoing approach

Provide a simple but safe default strategy with a certificate

The external function is applied when desired

its result is tested algorithmically trying to build up the
representation of a certificate
if test successful then certificate permits use of the result,
otherwise default strategy is used

30 / 30

	Introduction
	AV Programming
	State Transformations
	OpLang
	ExLang
	Main Proof
	StLang

	Conclusions

