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Solution’s Effect: Universal Productivity for Structural Resolution,
for free
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Proof inference methods

Abstracting from the details, all proof-search and
proof-inference methods can be classified as

more or less Structural...

Γ A`



Proof inference methods

Constructive Type theory

is more Structural...

Γ Ap :`

To prove Γ ` A, we need to show that type A has inhabitant p;
namely, we have to conSTRUCT it.

And hence the 3 related problems:
Γ ` p : A? – Type Checking Problem;
Γ ` p :? – Type Inference Problem;
Γ `? : A – Type Inhabitation Problem.
Usually, the latter is not decidable, hence we need Interactive
Theorem Provers (ITPs).
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Proof inference methods

Resolution-based first-order automated theorem provers
(ATPs)

are less Structural...

Γ A`
To prove Γ ` A, we need to assume A is false, and derive a
contradiction from Γ ∪ ¬A.

It only matters if resolution finitely succeeds; the proof
structure is irrelevant.



Two important remarks:

I ITPs use ATPs for type inference and type checking, so you
are not “safe” from the Unstructural even if you work only
with ITPs;

I it is often assumed that if we cannot impose types, we cannot
have structural approach to proofs in ATPs.

Is this true? May be we CAN discover new structural theory?
Analogy: discovery of atomic structures of particles

Γ A`
=⇒ `Γ A
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In search of a new theory

If a fundamental theory of Structures in ATPs is missing, we
should have noticed by now some irresolvable problems in our
old theory... Have we?

1. Recursion behaves badly with resolution, even structural
recursion (which can be handled easily in ITPs)!

2. Coinduction is clunky in ATPs, if at all possible (again,
problem “solved” in ITPs)!

3. Parallelism is very restricted, due to variable dependencies
(much worse state than in e.g. parallel Haskell).

In the rest of this talk, I’ll focus only on (1) and in (less detail) –
(2).
So, lets look under the bonnet...
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Inductive Types and Recursive Functions

Inductive list (A : Type) : Type :=

| nil : list A

| cons : A -> list A -> list A.

Recursive functions have arguments of inductive types.

Fixpoint length (A:Type) (l: list A) : nat :=

match l with

| nil => O

| cons l’ => S (length l’)

end.



Termination

We require all computations to terminate, because of:

I Curry-Howard Isomorphism (propositions as types; proofs as
programs): non-terminating proofs can lead to inconsistency.

I To decide type-checking, we need to reduce expressions to
normal form.

Universal Termination

A recursive function is terminating, if it terminates for all possible
(legal) inputs.



Semi-deciding universal termination: Structural recursion
As function input is of inductive type, we can use constructors to
reason about termination. Checking for structural recursion is one
elegant way to decide termination.

Fixpoint length (A:Type) (l: list A) : nat :=

match l with

| nil => O

| cons l’ => S (length l’)

end.

Fixpoint plus (n m:nat) : nat :=

match n with

| O => m

| S p => S (p + m)

end.

Semi-decision: If an inductive function is structurally recursive, it
terminates for any (legal) input.



Coinductive Types and Corecursive Functions

CoInductive stream (A:Set) : Set :=

SCons: A -> stream A -> stream A.

Corecursive functions have outputs of coinductive types. (Type of
input arguments is not important.)

CoFixpoint repeat (a: A): stream A :=

SCons a (repeat a).



Productivity

Values in co-inductive types are productive when all observations
of fragments made using recursive functions are guaranteed to be
computable in finite time.

The element of the stream at position n can be found by good old
nth:

{
nth 0 (SCons a tl) = a

nth (S n) (SCons a tl) = nth n tl

A given stream s is productive if the computation of nth n s is
guaranteed to terminate, whatever the value of n is.

Universal Productivity

We call a function productive, if, for any given input, it outputs a
productive value.
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Semi-deciding Universal Productivity: Guardedness

Guardedness checks:

I whether each corecursive call is made under at least one type
(co)constructor, and

I if a recursive call is under a (co)constructor, then it does not
appear as an argument of any function.

CoFixpoint repeat (a: A): str A :=

SCons a (repeat a).

Semi-decision: If a coinductive function is guarded, it is productive.



Elegant picture:

Recursive function

Terminating Non-terminating

Syntactic semi-decision:

e.g. structural recursion

Corecursive function

Productive Non-productive

Syntactic semi-decision:

e.g. guardedness

99gg gg 77

Note:

I The role of inductive and coinductive types in definition of
recursive and corecursive functions

I The role of constructors and (co)-pattern matching
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Logic Programming...

SLD resolution = Unification + Search



SLD-resolution + unification in LP derivations.

Program NatList:

Example

1.nat(0) ←
2.nat(s(x)) ← nat(x)

3.list(nil) ←
4.list(cons(x,y)) ←

nat(x), list(y)

← list(cons(x, y))
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SLD-resolution (+ unification) in LP derivations.

Example

1.nat(0) ←
2.nat(s(x)) ← nat(x)

3.list(nil) ←
4.list(cons(x,y)) ←

nat(x), list(y)

← list(cons(x, y))

← nat(x), list(y)

← list(y)

← �

The answer is “Yes”, NatList ` list(cons(x , y)) if x/0, y/nil , but
we can get more substitutions by backtracking.
SLD-refutation = finite successful SLD-derivation. SLD-refutations
are sound and complete.



Problem

LP has never received a coherent, uniform theory of Universal
Termination.

the program P is terminating, if, given any term A, a derivation for
P ` A returns an answer in a finite number of derivation steps.

I The survey [deSchreye, 1994] lists some 119 approaches to
termination in LP, neither using universal termination.

I The consensus has not been reached to this day.

Reasons? – The lack of structural theory, namely:
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Reason-1. Non-determinism of proof-search in LP: –
termination depends on the searching strategy and order of
clauses.

NatList2:

Example

1.nat(0) ←
2.nat(s(x)) ← nat(x)

3.list(cons(x,y)) ←

nat(x), list(y)

4.list(nil) ←

← list(cons(x, y))

← nat(x), list(y)

← list(cons(x′, y′))

. . .

Alas, unlike ITP/FPs, the “function definition” is not localised,
any clause can recursively call any other, in any order.
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Reason 2. Termination and (deciding) entailment are
closely connected in LP.

This creates an obstacle on the way to reasoning about coinductive
programs, that do not assume finite success in derivations.

Program Stream:

Example

1.bit(0) ←
2.bit(1) ←
3.stream(scons(x,y)) ←

bit(x), stream(y)

No answer, as derivation never
terminates. Neverthless, the
program could be given a coin-
dutive meaning...

← stream(scons(x, y))

← bit(x), stream(y)

← stream(y)

← bit(x1), stream(y1)

← stream(y1)

...

No distinction between type, function definition, and proof that
could help to separate the issues...
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Reason 3. “Lack of directionality” in LP:
Structurally recursive addition:

1.add(0, Y, Y) ←
2.add(s(X), Y, s(Z)) ← add(X, Y, Z)

If the third argument in add is “thought of” as the “output”, and
the other arguments – as “inputs”, then, giving queries with
variable-free “inputs” will guarantee termination by structural
recursion on the first argument. But otherwise, there will be
non-terminating derivations for queries to add.
There is a range of solutions:

I use “modes” to distinguish termination cases for annotated
input and output arguments.

I impose measures of reduction on terms, in order to formulate
termination conditions in derivations.

As a consequence, in LP, it is common to talk about existential
termination (only for some derivations, for queries of certain kinds,
or satisfying certain conditions/measures), not programs in general.



Problems...

This unstructured approach to ` gives us too little formal
support to analyse termination

What does it mean if your program does not terminate?

I May be it is a corecursive program, like Stream...

I May be it is a recursive program, but badly ordered, like
NatList2...

I Or may be it is a recursive program with coinductive
interpretation? (again, NatList2)

I Or may be it is just some bad loop without particular
computational meaning:

badstream(scons(x , y))← badstream(scons(x , y))

We are missing a theory, a language, to talk about such
things...
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Coalgebraic Logic programming...

[AMAST2010, CSL2011, JLC2014], with John Power et al.

Finite
SLD-derivations

Least fixed
point

(Herbrand) model

Algebraic
fibrational
semantics

Finite and Infinite
SLD-derivations

Greatest fixed
point

(Herbrand) model

Coalgebraic
fibrational
semanticsCC

��

[[

��

[[ CC

��

Noticed: There is more structure in this fibrational coalgebraic
semantics than in SLD-resolution!

After a few years of study,

we propose to completely reform resolution in ATPs!
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Defining structural resolution from first principles...

We now work on a new Three-tier Calculus of LP, providing a new
structural approach to automated proofs.

At the start, there is a first-order signature Σ...

Γ A`
=⇒

Σ

`Γ A

Example

1.bit(0) ←
2.bit(1) ←
3.stream(scons(x,y)) ← bit(x), stream(y)
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Σ

`Γ A

Example

1.bit(0) ←
2.bit(1) ←
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Tier-1: Term-trees, given Σ:

Let N∗ denote the set of all finite words (sequences) over N.
A set L ⊆ N∗ is a (finitely branching) tree language, subject to
prefix closedness.
A term tree is a map L→ Σ, satisfying term arity restrictions.

ε

0

0 0 0 1

→
stream

scons

x y

Arity: given by Σ
Operation: – first-order substitution
Calculus: – first-order unification and term-matching.

Notation:
Term(Σ) finite term trees over Σ

Term∞(Σ) infinite term trees over Σ
Termω(Σ) finite and infinite term trees over Σ
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Constructing the structural resolution from first principles...

I At the start, there is a first-order signature Σ.

I First tier of Terms builds on it...

Γ A`
=⇒

Σ

`Γ A

Term(Σ)



Tier-2: Coinductive trees

A coinductive tree is a map L→ Term(Σ), subject to conditions.

stream(scons(x, y))

X1 X2 3

bit(x)

X3 X4 X5

stream(y)

X6 X7 X8

↙Note the size!

Arity: Number of clauses in the program and number of terms in clauses
(modulo term-matching)
Operation: – coinductive tree substitution via mgu with clauses
Calculus: – coinductive derivations.

Notation:

CTree(Σ) all finite coinductive trees over Term(Σ)
CTree∞(Σ) all infinite coinductive trees over Term(Σ)
CTreeω(Σ) all finite and infinite coinductive trees over Term(Σ)
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Constructing the structural resolution from first principles...

I At the start, there is a first-order signature Σ.

I First tier of Terms builds on it...

I Term-trees gave rise to a new tier of Coinductive trees...

Γ A`
=⇒

Σ

`Γ A

Term(Σ)

CTree(Σ)



Tier-3: Derivation trees

A derivation tree is a map L→ CTree(Σ).

?← stream(scons(y, z))

stream(scons(y, z))

X1 X2 3

bit(y)

X3 X4 X5

bitstream(z)

X6 X7 X8

↓X3 ↓X4 ↓X8

?← stream(sc(0, z))

stream(sc(0, z))
...

...
...

?← stream(sc(1, z))

stream(sc(y, z))
...

...
...

?← stream(sc(y, sc(y1, z1)))

stream(sc(y, sc(y1, z1)))
...

...
...



Tier-3 laws and notation

Arity: Number of Coinductive tree variables (modulo unification
with program clauses)
Operation: – coinductive observations
Calculus: – Guardedness checks.

Notation:
CDer(Σ) all finite derivation trees over (CTree(Σ)))
CDer∞(Σ) all infinite derivation trees over (CTree(Σ))
CDerω(Σ) all finite and infinite derivation trees over (CTree(Σ))
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with program clauses)
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Constructing the structural resolution from first principles...

I At the start, there is a first-order signature Σ.

I First tier of Terms builds on it...

I Term-trees gave rise to a new tier of Coinductive trees...

I And then, derivations by Structural resolution emerged!

Σ

`Γ A

Term(Σ)

Der(Σ)
Der∞(Σ)

Derω(Σ)
CTree(Σ)



Formal results

New structural resolution can perform the same computations as
SLD-resolution.

Theorem

Structural resolution is sound and complete, inductively: every
finite successful branch of a derivation tree for A and program P
corresponds to SLD-refutation for P ` A.
...and vice versa...

Importantly, we have discovered plenty of structure to allow
automated proof and program analysis.
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Outline

Big Picture: Proofs and structures

Problem evidence: Structural Recursion without structure
Structural Recursion in ITPs: Types give Structure
Structural Recursion without structure in LP?

Solution: New Structural Resolution for ATP

Solution’s Effect: Universal Productivity for Structural Resolution,
for free



Theory of Universal Productivity, for free

A first-order logic program P is productive if

for any term t ∈ Term(Σ), the coinductive tree with the root t
belongs to CTree(Σ).

In the class of Productive LPs, we can further distinguish:

I finite LP that give rise to derivations in CDer(Σ),
E.g. bit.

I inductive LPs all derivations for which are in CDerω(Σ);
E.g. NatList.

I coinductive LPs all derivations for which are in CDer∞(Σ)
E.g. Stream.
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Theory of universal Productivity in LP, at last!

Logic Programs

Non-productive Productive

Coinductively
-defined

Inductively
-defined

Finitely
-defined

YY 66
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))

Compare with ITPs:

Recursive function

Terminating Non-terminating

Corecursive function

Productive Non-productive>>gg cc 99
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Deciding Productivity: Guardedness

I Tier 1. Measures of reduction on term trees;

I Tier 2. Use Tier-1 measures of reduction to identify
unguarded coinductive tree loops;

I Tier 3. Use observation subtrees of derivation trees for
semi-decidable search for unguarded coinductive trees and
measures of reductions arising in the program.

Semi-deciding Universal Productivity: if a program is guarded, it is
productive.



Current and future work

1. Coinduction by structured resolution.

2. Coinductive Soundness and completeness of the 3-Tier
calculus relative to models based on CTreeω(Σ).

3. Extensions, implementation, applications: structural resolution
for type inference in functional languages

... join us, there is a lot more to it!
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Thank you!

Download your copy of CoALP today:

CoALP webpage:
http://staff.computing.dundee.ac.uk/katya/CoALP/

CoALP authors and contributors:

I John Power

I Martin Schmidt

I Jonathan Heras

I Vladimir Komendantskiy

I Patty Johann

I Andrew Pond


	Big Picture: Proofs and structures
	Problem evidence: Structural Recursion without structure
	Structural Recursion in ITPs: Types give Structure
	Structural Recursion without structure in LP?

	Solution: New Structural Resolution for ATP
	Solution's Effect: Universal Productivity for Structural Resolution, for free

