
Neural Networks, Secure by Construction

An Exploration of Refinement Types?

Wen Kokke1,2, Ekaterina Komendantskaya1, Daniel Kienitz1, Robert Atkey3,
and David Aspinall2

1 Heriot-Watt University, Edinburgh, UK {ek19,dk50}@hw.ac.uk
2 University of Edinburgh, Edinburgh, UK {wen.kokke,david.aspinall}@ed.ac.uk

3 Strathclyde University, Glasgow, UK robert.atkey@strath.ac.uk

Abstract. We present StarChild and Lazuli, two libraries which lever-
age refinement types to verify neural networks, implemented in F∗ and
Liquid Haskell. Refinement types are types augmented, or refined, with
assertions about values of that type, e.g., “integers greater than five”,
which are checked by an SMT solver. Crucially, these assertions are writ-
ten in the language itself. A user of our library can refine the type of
neural networks, e.g., “neural networks which are robust against adver-
sarial attacks”, and expect F∗ to handle the verification of this claim for
any specific network, without having to change the representation of the
network, or even having to learn about SMT solvers.
Our initial experiments indicate that our approach could greatly reduce
the burden of verifying neural networks. Unfortunately, they also show
that SMT solvers do not scale to the sizes required for neural network
verification.

Keywords: Neural Networks · Verification · Refinement Types

1 Introduction

Deep neural networks—or simply neural networks—is an umbrella term for a
range of machine learning algorithms that, given numeric data instances as an
input, construct a non-linear function or classifier that separates these data
instances into classes. When a suitable classifier is found, it can be used to classify
new, unseen data—or at least, that’s the hope. Data instances can be pixel data
for images, numeric encodings of the words from a lexicon for text analysis, or
generally any n features of interest, viewed as a point in an n-dimensional real
space. There are numerous applications of neural networks: in computer vision,
natural language processing, data mining, to name but a few. As neural networks
move into domains where safety and security are important—e.g., autonomous
cars, conversational agents, governance—the problem of their verification comes
to the forefront.

? The work was funded by the National Cyber Security Center, UK. Grant SecConn-
NN: Neural Networks with Security Contracts—towards lightweight, modular security
for neural networks.

Fig. 1: (Left) Image from MNIST [16] dataset, which is correctly classified as 0 by
a given neural network. (Center) A small perturbation applied to the image. (Right)
Resulting noisy image classified by the same neural network as a 3 with 92% confidence.

Neural network verification is a notoriously difficult problem. Firstly, neural
networks rely on data for training, testing, and often for verification. This data
may be incomplete, noisy, or deliberately poisoned. Secondly, finding a suitable
classifier is a mathematically complex task. There is a continuum of suitable
classifiers in a continuous real space, and the search space may be prohibitively
large, and an optimal classifier may not even exist. Finally, neural networks are
difficult to interpret. Even if a reasonably accurate classifier is found, we do not
understand all its latent properties. This is particularly true for classifiers that
work with data of high dimensionality.

The very features that we value in neural networks (adaptivity and the ability
to generalise from noisy data) becomes a source of safety and security threats.
Neural networks are known to be vulnerable to adversarial attacks [25, 10, 19,
21, 22] (specially crafted inputs that can create an unexpected and possibly dan-
gerous output) and suffer from catastrophic forgetting [20].

One approach to the verification of complex problems is lightweight verifica-
tion, which means to:

1. verify only the properties that matter [9],

2. embed verification in the implementation, and

3. employ proof automation where possible.

In neural network verification, one property that matters is adversarial robust-
ness, commonly characterised as the deviation in the neural network’s outputs
given perturbations of its inputs, checked for some set of inputs [23, 11, 13]. For
datasets with relatively low inner-class variation, like MNIST [16], we can pick
our sample images either randomly or by hand, and define perturbations using
some valid transformations like rotation, scaling, and translation. For example,
we could pick the image on the left of Figure 1 as a sample image for the class
zero, and verify whether, given a certain range of perturbations defined by a
suitable distance function, we can guarantee that the perturbed image is still
classified as 0. Such method would not cover unanticipated perturbations, e.g.,
since we did not think of noise, the image on the right of Figure 1 is not cov-
ered by our safety guarantees. This is not the only possible interpretation of the

x1 //wx1

&&
x2 //wx2

// +b // y

x1 x2 x1 ∧ x2

1 1 1
1 0 0
0 1 0
0 0 0 0

1 0

1
0

1

x1

x2

x
1
∧
x
2

Fig. 2: (Left) Perceptron shown graphically as a neural network. (Center) Dataset for
perceptron. (Right) Dataset as points in the three-dimensional space, with a linear clas-
sifier for the data.

“neural network verification problem”, but it is by far the most common. We
will therefore use it throughout the paper.

We are primarily interested in exploring the space of solutions for (2) and
(3). Since neural networks are “just” functions, we seek to embed verification
constraints on inputs and outputs in the types of these functions, and then use
the facilities of refinement type checking—with SMT solver integration—to au-
tomate all tedious proofs. In this paper, we explore this space using F∗ [24] and
Liquid Haskell [27] and test whether contemporary, off-the-shelf programming
language technologies are suitable for neural network verification, and to anal-
yse the benefits and limitations of using refinement types. We hope the reader
will find this study useful, by employing our ideas, avoiding the pitfalls we en-
countered, and perhaps filling the gaps in contemporary programming language
technologies.

1.1 Example: Verifying the AND-gate

Let’s use a simple example to illustrate the use of our library: a perceptron for
the logical AND-gate [17]. It has two inputs, a single, fully-connected layer, and
one output, and its training set is the truth table for Boolean conjunction (see
Figure 2).

The perceptron is a gradient descent algorithm that approximates the linear
function:

neuron : (x1 : R)→ (x2 : R)→ (y : R)
neuron x1 x2 = b+ wx1 × x1 + wx2 × x2

that separates the data points into two classes, as shown in Figure 2. The con-
stants wx1

and wx2
are called the weights of the neuron, and b its bias. The

gradient descent algorithm searches for suitable values for these constants, e.g.:

neuron x1 x2 = −0.9 + 0.5x1 + 0.5x2

Often, perceptrons involve an activation function, which is applied to the result
of the linear function. Here, we use the threshold function S. We discuss other

activation functions in Section 4.

S x =

{
1, if x ≥ 0

0, otherwise

We can refine the output type of our new neuron function, as S only ever returns
0 or 1:

neuron : (x1 : R)→ (x2 : R)→ (y : R {y = 0 ∨ y = 1})
neuron x1 x2 = S (−0.9 + 0.5x1 + 0.5x2)

Let’s verify that the neural network returns the “correct” values for inputs which
lie within some distance ε of 1 and 0. Let’s call these values truthy and falsey :

truthy x = |1− x| ≤ ε
falsey x = |0− x| ≤ ε

We can request that F∗ checks whether our neural network is correct by refining
the type of neuron, e.g., by requiring that the output be 1 if both inputs are
truthy. If neuron does not satisfy this property, test will not type check:

test : (x1 : R {truthy x1})→ (x2 : R {truthy x2})→ (y : R {y = 1})
test = neuron

The user can implement the network directly in F∗. Alternatively, if they have
a pre-existing neural network in, e.g., Python, they can export the network to
F∗, as a Python library to export networks is included in both StarChild and
Lazuli. For instance, we can use a Python library to find a suitable function for
the data in Figure 2, and export our model to F∗ to obtain the following code:

val model : network (*with*) 2 (*inputs*) 1 (*output*) 1 (*layer*)
let model = NLast // ← makes single-layer network

{ weights = [[0.5R]; [0.5R]]
; biases = [−0.9R]
; activation = Threshold }

Let’s verify that it is correct for, e.g., ε = 0.1, in F∗:

let eps = 0.1R
let truthy x = 1.0R - eps ≤ x && x ≤ 1.0R + eps
let falsey x = 0.0R - eps ≤ x && x ≤ 0.0R + eps

val test : (x1 : R{truthy x1}) → (x2 : R{truthy x2})
→ (y : vector R 1 {y ≡ [1.0R]})

let test x1 x2 = run model [x1; x2]

Refinement types, used in this manner, seem to be a natural fit. The “burden” of
verifying the AND-gate in our approach is minuscule. Once written, the user can
reuse the code for test to verify different neural networks that use similar veri-
fication conditions, and develop a codebase of reusable verification conditions.

As a benefit of using F∗, any model specified using StarChild, and any other
F∗ program, is usable in refinements, and F∗ takes care of the translation to

the SMT logic for us! For instance, when F∗ checks the function test, it passes
the definition and the refinements on the inputs and output to the SMT solver,
and only accepts the function if the SMT solver does. It does not check the
networks output for all inputs within distance ε—this wouldn’t be feasible, as
there are uncountably many, and even accounting for the maximum precision of
floating-point numbers, the search space is vast.

F∗ translates programs to the SMT logic by normalising them, translating
constructs to their SMT equivalents where possible, and keeping the rest as
uninterpreted functions. For instance, test normalises to:

let test x1 x2 = if x1×0.5R + x2×0.5R − 0.9R ≥ 0.0R then 1.0R else 0.0R

The normalised version can be translated directly to the SMT logic, together
with the type refinements for test. This generates the following SMT query—
simplified for readability—in SMTLIB2 Lisp [5]:

(define-fun neuron ((x1 Real) (x2 Real)) Real
(ite (>= (- (+ (* x1 0.5) (* x2 0.5)) 0.9) 0.0) 1.0 0.0))

(define-fun truthy ((x Real)) Bool (and (<= 0.9 x) (<= x 1.1)))
(assert (∀ ((x1 Real) (x2 Real))

(=> (and (truthy x1) (truthy x2)) (= (neuron x1 x2) 1.0))))
(check-sat)

As it turns out, this particular query is satisfiable, which you can verify with your
favourite SMTLIB2-compatible solver. Therefore, our neural network is robust
around truthy inputs!

1.2 Contributions

We make several contributions:

– We introduce two libraries, StarChild 4 for F∗, and Lazuli5 for Liquid Haskell.
These libraries allow users to conveniently and modularly define and verify
neural networks (Section 2).

– We illustrate that both F∗ and Liquid Haskell are suitable for the lightweight
verification of neural networks (Section 2).

– We describe an approach for translating Keras [6] models, e.g., generated in
Python, to StarChild and Lazuli (Section 2.2).

– We describe an approach for automating proofs involving non-linear acti-
vation functions, by piecewise-linearisation. SMT queries using non-linear
functions such as the exponential function are not generally supported, and
problems involving such functions are generally undecidable. However, all
deep neural networks use non-linear activation functions, such as Sigmoid or
Softmax (Section 4)

– We show that both training and testing using piecewise-linear approxima-
tions of non-linear activation functions is possible, and results in only a
negligible decrease in performance (Section 4).

4 https://github.com/wenkokke/starchild
5 https://github.com/wenkokke/lazuli

– Finally, we describe several problems that we believe cannot be overcome
without substantial improvements in both the programming languages, e.g.,
F∗ and Liquid Haskell, and in SMT solvers. These are problems of scale, and
limitations that arise from the incomplete implementation of real-valued
expressions in F∗, and the lack of normalisation of refinements in Liquid
Haskell. We suggest possible solutions for the future (Section 5).

Neural network verification is a growing area of research, with several tools
on the market, e.g. Marabou [13], ERAN [23], DLV [11], PAROT [3], to name
a few. It is not our goal to produce another competing tool, hence the miss-
ing benchmarking against these. Instead, our goal is to establish programming
language principles for incorporating these tools into a more abstract frame-
work, which may open ways of embedding neural net verification into future
multi-component projects.

2 An Overview of StarChild

Neural networks are functions on vectors of real numbers. Hence, the StarChild
library consists mostly of an F∗ implementation of basic linear algebra (imple-
mented in StarChild.LinearAlgebra). A second module contains an implementa-
tion of dimension-safe neural networks, following Grenade6 and the “dependently-
typed” Haskell bindings for TensorFlow78 (implemented in StarChild.Network).

The linear algebra module defines the types of length-indexed real vectors and
matrices, using F∗’s implementation of real numbers (implemented in FStar.Real),
and using refinements of F∗’s implementation of lists for both vectors and ma-
trices, where the refinement adds a length-index.

The module further defines standard operations on vectors and matrices:
maps and folds, the dot product, and matrix multiplication (see Figure 3). We
reuse the list implementations of these functions when possible, but often F∗

needs us to redefine functions, e.g., map1, to verify the length-index.
Finally, the module defines common distance metrics on vectors, which can

be used in verification constraints. However, not all distance metrics can be
represented in the SMT logic. For instance, Euclidean distance uses the square
root function, which is non-linear. Instead, we opt to use the squared Euclidean
distance (see Figure 3).

The neural network module defines the structure of neural networks. A neural
network is a non-empty list of layers, where the number of outputs of each layer
matches the number of inputs of the next layer. The network type has three
parameters—the number of inputs, outputs, and layers. Just like with lists, there
are two ways to construct a network. NLast defines a single-layer network, whose
number of inputs and outputs correspond to those of the layer. NStep adds a layer
to the front of a network, where the number of inputs of new layer becomes the

6 https://github.com/HuwCampbell/grenade
7 https://hackage.haskell.org/package/tensor-safe
8 https://github.com/helq/tensorflow-haskell-deptyped

type vector 'a n = v:list 'a {length v ≡ n}
type matrix 'a r c = vector (vector 'a c) r

val dot : #n:N // Dot product
→ xs:vector R n → ys:vector R n → R

let dot #n xs ys = sum (map2 (fun x y → x × y) xs ys)

val vAv : #n:N // Vector addition
→ xs:vector R n → ys:vector R n → vector R n

let vAv #n xs ys = map2 (fun x y → x + y) xs ys

val vXm : #r:N → #c:N // Vector-matrix multiplication
→ xs:vector R r → yss:matrix R r c → vector R c

let rec vXm #r #c xs yss = match xs, yss with
| [], [] → replicate 0.0R
| (x :: xs), (ys :: yss) →

vAv #c (scale #c x ys) (vXm #(r - 1) #c xs yss)

val mXm : #i:N → #j:N → #k:N // Matrix-matrix multiplication
→ matrix R i j → matrix R j k → matrix R i k

let mXm #i #j #k xss yss = map (fun xs → vXm #j #k xs yss) xss

val sed : #n:N // Squared Euclidean distance
→ xs:vector R n → ys:vector R n → R≥0

let sed #n xs ys =
sum≥0 #n (map2 #R #R #R≥0 #n (fun x y → (x − y) × (x − y)) xs ys)

Fig. 3: Linear algebra functions in StarChild.

number of inputs of the network, and the number of outputs of the new layer
has to correspond to the old number of inputs of the network:

type network (i:N>0) (o:N>0) : n:N → Type =
| NLast : l:layer i o → network i o 1
| NStep : #n:N>0 → #h:N>0

→ l:layer i h → ls:network h o n → network i o (n + 1)

We use N>0 to denote the refined type of positive natural numbers, and similarly,
R>0 and R≥0 to denote the positive and non-negative real numbers.

Each fully-connected layer consists of a matrix of weights, whose dimensions
correspond to the number of inputs and outputs of the layer, a vector of biases,
whose length corresponds to the number of outputs of the layer, and the name
of an activation function:

type layer (i:N>0) (o:N>0) =
{ weights : matrix R i o
; biases : vector R o
; activation : activation }

val lsigmoid : R → R
let lsigmoid x = let v = 0.25R × x + 0.5R in

if v < 0.0R then 0.0R else
if 1.0R < v then 1.0R else v

val lexp : R → R>0

let lexp x = if x ≤ − 1.0R then 0.00001R else
if x ≥ 1.0R then 5.898R × x − 3.898R else x + 1.0R

val norm : #n:N>0 → vector R>0 n → vector R n
let norm #n xs = map1 #R>0 #R #n (fun x → x / sum≥0 #n xs) xs

val lsoftmax : #n:R>0 → vector R n → vector R n
let lsoftmax #n xs = norm (map1 #R #R>0 #n lexp xs)

Fig. 4: Naive piecewise-linear approximations of the Sigmoid and Softmax functions in
the StarChild library.

Our current implementation supports four common activation functions:

type activation : Type =
| Linear // linear(x) = x
| ReLU // relu(x) = max(0, x)
| Sigmoid // sigmoid(x) = 1

1+e−x

| Softmax // softmax(x̄)i = exi∑k
j=1 e

xj

The linear and ReLU functions are straightforward to define, although the
FStar.Real module is rather sparse, and lacks functions for, e.g., minimum, max-
imum, negation, etc.:

val linear : R → R
let linear x = x // i.e. identity function
val relu : R → R
let relu x = if x ≤ 0.0R then x else 0.0R

However, the Sigmoid and Softmax functions are non-linear functions, and can-
not be translated directly to the SMT logic. Our solution is to use piecewise-
linear approximations of these functions. Since F∗ does not allow us to fine-tune
the translation to the SMT logic, we implement these directly in F∗. In Fig-
ure 4, we present two naive implementations of piecewise-linear approximations
for the Sigmoid and Softmax functions. We discuss a more principled approach
to generating linear approximations in Section 4.

To run a StarChild network, we simply run each layer successively, feeding
the output of one layer into the next:

val run : #i:N>0 → #o:N>0 → #n:N>0

→ ls:network i o n → xs:vector R i
→ Tot (vector R o) (decreases n)

let rec run #i #o #n ls xs = match ls with

| NLast l → run_layer l xs
| NStep l ls → run ls (run_layer l xs)

We annotate the function with a totality annotation, which lets F∗ verify the
recursion terminates by checking that the number of layers decreases.

We run a layer by performing the computations described in Section 1.1: we
multiply the inputs by the weights, add the bias, and run the activation function:

val run_layer : #i:N>0 → #o:N>0

→ l:layer i o → xs:vector R i → vector R o
let run_layer #i #o l xs =

run_activation #o l.activation (vAv #o l.biases (vXm #i #o xs l.weights))

Finally, we run an activation function by matching the name, e.g., Sigmoid, up
with the appropriate definition, e.g., lsigmoid:

val run_activation : #n:pos → a:activation → xs:vector R n → vector R n
let run_activation #n a xs =

match a with
| Linear → xs
| ReLU → map1 relu xs
| Sigmoid → map1 lsigmoid xs
| Softmax → lsoftmax xs

2.1 A Note on Lazuli

The Liquid Haskell counterpart to StarChild, Lazuli, follows a similar architec-
ture, and shares the module and function names whenever possible. Any differ-
ences are due to quirks of F∗ or Liquid Haskell.

When implementing dimension-safe vector arithmetic in Liquid Haskell, it is
convenient to store the dimensions of a vector or matrix in the structure itself,
hence, in Lazuli, vectors and matrices are refined record types. For instance,
a vector is a record which stores a list and an integer, with a type refinement
requiring that that integer is exactly equal to the length of the list.

Liquid Haskell allows us to fine-tune the translation of functions to the SMT
language, hence, if the user wants to, they could translate the standard Soft-
max function to the linearised Softmax only during verification. This has con-
sequences for the safety guarantees, however, as the verified network no longer
corresponds exactly to the executed network.

Finally, Liquid Haskell does not support normalisation prior to the transla-
tion to the SMT logic. Instead, Liquid Haskell supports refinement reflection [28],
in which Haskell functions are translated to SMT equalities which encode their
reduction behaviour. This offloads the burden of normalisation to the SMT
solver. Unfortunately, SMT solvers perform exploratory search, in which they
use these equations in both directions, i.e., they expand as well as reduce. Hence,
they are much less efficient at reduction, and consequently, at the time of writing
Lazuli is significantly slower than StarChild.

2.2 The Convenience of Keras Models

We don’t have any illusions that training networks in F∗ or Liquid Haskell will
be the preferred method, or even feasible, in the near future. Therefore, it is
important to integrate our libraries with existing methods. For this reason, we
implemented a Python library for converting Keras [6] models to StarChild and
Lazuli, which we bundle with StarChild and Lazuli as convert.py.

3 Verifying a “Real” Example: MNIST

In this section, we describe our experiences using StarChild to verify a neural
network trained on MNIST.

The MNIST dataset contains 28×28 images of the handwritten digits “0” to
“9”. Hence, an input consists of 748 pixels, and an output is—conventionally—a
probability distribution over the 10 classes, created by the Softmax function.
This leaves us to determine the number of hidden layers, their sizes, and their
activation functions. For instance, we could opt for a 128-node hidden layer using
the ReLU activation function:

...

...
...

I1

I2

I3

I784

H1

H128

O1

O10

Input
layer

Hidden
layer

Output
layerReLU Softmax

Unfortunately, this model has 784×128+128+128×10+10 = 101770 constant
parameters and 784 input parameters. Worse, it has 3 fully-connected layers,
meaning that each input parameter occurs at least 128× 10 = 1280 times in the
SMT query, and constant parameters occur several times in accordance to the
layer they are in. This is a huge query from an SMT solving perspective, and it
would overwhelm any SMT solver. However, this is not a large network from a
machine learning perspective. We discuss this matter further in Section 5.

For now, we seek to make verification with an SMT solver tractable. One
option is to reduce the dimensionality of the input, and reduce the size of the
network. If used with care, this usually only leads to modest decreases in model
accuracy. We use principal component analysis (PCA) to reduce the size of the
input vectors to 25, and reduce the size of the hidden layer to 10. This model
has far fewer parameters, 25× 10 + 10 + 10× 10 + 10 = 370, yet it only suffers
a loss of 2 percentage points in test accuracy (see Table 9). Note that verifying
the correctness of the smaller model gives us no formal guarantees about the
correctness of the larger model. Hence, using this approach, we are forced to
deploy the smaller, less accurate model. Figure 5 shows the F∗ code for the
smaller MNIST network, imported from Keras using the library described in
Section 2.2.

Unlike in Section 1.1, vectors in Figure 5 are wrapped in an assertion (let v

= ... in assert_norm (length v = n); v). There are two assertion keywords, assert
and assert_norm. These assertions have no runtime significance. Instead, one can
think of them as functions with the refined type (b:bool {b ≡ true}) → ().
That is to say, assertions take an argument of type bool and verify, using an
SMT solver, that it is true.

By default, terms are translated to the SMT logic unnormalised, similar to
Liquid Haskell (see Section 2.1). After all, terms may grow enormously through
normalisation. Using assert_norm forces F∗ to normalise terms before querying
the SMT solver. Without it, F∗ offloads the burden of term reduction to the
SMT solver. Unfortunately, SMT solvers do exploratory search, and are much
less efficient at reduction. Worse, F∗ encodes a notion of fuel into translated
terms, meaning function definitions can only be unfolded a set number of times,
determined by the command-line argument --max-fuel (default 8). Beyond that,
programs fail to type check.

Let’s verify the model is robust for class “0” in an ε-ball B(x̂) around a sam-
ple input x̂, B(x̂, r) = {x ∈ Rn : ||x̂− x||2 ≤ r}. First, we pick an input vector
representing the digit “0”, and convert it to F∗:

val sample_in : vector R 25
let sample_in = let v = [7.394R; −0.451R; ...; 0.199R]

in assert_norm (length v = 25); v

Then, we run the Keras model on the input, and convert the output to F∗:

val sample_out: vector R 10
let sample_out = let v = [0.998R; 0.000R; ...; 0.000R]

in assert_norm (length v = 10); v

For readability, we elide several elements from each vector, and limit the precision
of the floating-point numbers.

With these two definitions in hand, we can define our verification condition.
The idea is that, for all inputs within a certain distance ε1 from our sample
input, the neural network output should be within a certain ε2 from the sample
output. Let ε1 = 0.01 and ε2 = 1:

let _ = assert_norm (∀ (x:vector R 25). (sed #25 sample_in x < 0.01R)
=⇒ (sed #10 sample_out (run m x) < 1.0R))

Note that the function sed (squared Euclidean distance) is defined in Figure 3.
While type checking, F∗ verifies that our verification condition holds. Crucially,
it wouldn’t be possible to verify this by testing.

Once again, the “burden” of verification in our approach is rather small, as
it takes only a handful of lines of code to formulate the verification conditions,
and the code which checks them. Unfortunately, even for this modest model,
verification of complex conditions takes an infeasibly long amount of time. We
address this problem in Section 5.

val layer_0 : layer 25 10
let layer_0 =

{ weights = (let v = [(let v = [−0.64R; 0.19R; ...; 0.54R; 0.78R]
in assert_norm (length v = 10); v)

; (let v = [0.79R; 0.53R; ...; −1.00R; 0.82R]
in assert_norm (length v = 10); v)

...
; (let v = [−0.33R; −0.44R; ...; −0.20R; −0.04R]

in assert_norm (length v = 10); v)]
in assert_norm (length v = 25); v)

; biases = (let v = [0.15R; 1.28R; ...; 1.03R; 0.32R]
in assert_norm (length v = 10); v)

; activation = ReLU }

val layer_1 : layer 10 10
let layer_1 =

{ weights = (let v = [(let v = [0.00R; −0.87R; ...; −0.99; 0.26R]
in assert_norm (length v = 10); v)

; (let v = [−0.50R; −1.28R; ...; 0.65R; 0.62R]
in assert_norm (length v = 10); v)

...
; (let v = [0.50R; −0.49R; ...; −0.73R; −0.34R]

in assert_norm (length v = 10); v)]
in assert_norm (length v = 10); v)

; biases = (let v = [−0.41R; −0.41R; ...; 1.08R; 0.15R]
in assert_norm (length v = 10); v)

; activation = Softmax }

val model : network 25 10 2
let model = NStep layer_0 (NLast layer_1)

Fig. 5: StarChild model generated from Keras.

4 Piecewise-Linear Approximations Made Easy

In this section, we discuss non-linear activation functions, and automatic lin-
earisation. Deep neural networks require the use of non-linear functions between
each layer—the composition of two linear functions is itself a linear function,
and hence any deep neural network which uses only linear activation functions
is equivalent to a shallow neural network.

Unfortunately, SMT solvers do not generally support non-linear arithmetic,
and where they do, the solvers are slower and less reliable. At the time of writing,
F∗ uses the Z3 solver [18]. Z3 uses Dual Simplex [7] to solve linear real arith-
metic. It also supports a fragment of non-linear real arithmetic—specifically,
multiplications—and solves this using a conflict resolution procedure based on
cylindrical algebraic decomposition [12]. However, the addition of multiplication

Fig. 6: Linearisation of the Sigmoid function over the interval I = [−5, 5] with n = 1,
n = 5, and n = 25 line segments.

is not enough to cover the non-linear activation functions used in deep learn-
ing, which often use exponents, logarithms, and trigonometric functions. The
only solver we are aware of that supports these functions out of the box is
MetiTarski [2]. However, the MetiTarski documentation reads “Beyond 4 or 5
continuous variables, there is very little hope for MetiTarski in finding a proof.”
Since our smallest possible “real” problem involves 25 continuous variables, we
have very little hope that MetiTarski will prove useful to us.

We approximate non-linear activation functions using piecewise-linear ap-
proximations, i.e., several connected line segments. We refer to this as “lin-
earisation”. For instance, in Figure 4 we used two handwritten piecewise-linear
approximations for the Sigmoid and the exponential functions. This approach
is a little crude, and manual linearisation is time consuming. Instead, we have
developed an algorithm for automatic linearisation of a function σ : R→ R over
an interval I using n line segments:

1. We split the interval I into n equal-sized sub-intervals I1, . . . , In.
2. For each sub-interval Ii:

(a) Let li = min Ii and ui = max Ii.
(b) We draw a line segment of the form fi(x) = mix+ bi, with slope mi and

y-intercept bi, from the minimum (li, σ(li)) to the maximum (ui, σ(ui)).
3. Finally, we connect all line segments fi. The result is a piecewise-linear

approximation for σ over the interval I.

The parameter n determines the granularity. In Figure 6, we show the linear
approximation of the Sigmoid function for different values of n.

How should a piecewise-linear approximation behave outside of the interval
I? We have three simple options:

1. We can extrapolate the first and last line segments beyond the interval
boundaries.

2. We can return the minimum point, σ(min I), for inputs below the interval,
and return the maximum point, σ(max I), for inputs above the interval.

3. We can combine (1) and (2). We start by extrapolating, following (1), and al-
low the user to specify lower and upper bounds, where we switch to returning
the constant minimum and maximum, following (2).

Fig. 7: Linearisation of the tanh-function over the interval [−1, 1] with n = 10 with
three different bounding methods: extrapolation, constant values, and the user-defined
combination.

The first option is unsound, as it may result in cases where the codomain of
the piecewise-linear approximation is not a subset of the codomain of the ap-
proximated function. For instance, the piecewise-linear approximation of the
exp-function may return values < 0 for a sufficiently small input. The second
option is sound, albeit a bit crude. The third option combines the best of (1)
and (2), but requires manual tweaking. In Figure 7, we show examples of these
methods for the tanh-function.

Piecewise-linear functions are not continuously differentiable, as they are
non-differentiable at each point where two line segments meet. For instance, the
ReLU function relu(x) is not differentiable at x = 0, since the left derivative
at x = 0 is 0, and the right derivative at x = 0 is 1. The same applies to our
linearised functions. However, ReLUs are widely used, and are differentiated by
arbitrarily choosing the derivative at x = 0 as either 0 or 1. Therefore, we have
two options for training our networks:

1. We train our network with non-linear activation functions, but verify it and
run it with piecewise-linear approximations.

2. We train our network with piecewise-linear approximations.

The first option has the advantage that we train with smooth, continuously
differentiable activation functions. However, we train and verify with different
architectures. As long as we verify and run the same object, this is not a problem
for safety. It does raise a question: what is the effect of running a model trained
with non-linear functions on a linearised architecture?

Fig. 8: Loss from weight transfer (tanh).

In Figure 8, we present the loss
in test accuracy, as a result of
transferring weights trained with the
precise tanh function to networks
with piecewise-linear approximations.
If the tanh function is approximated
with at least 3 line segments, the drop
in accuracy is marginal.

The second option has the advantage that we train and verify with the same
architecture. Therefore, we do not incur the drop in accuracy which we expect

Hidden
activation

Output
activation

Training
accuracy

Test
accuracy

Training
time (sec.)

Fully-connected network trained on MNIST (with PCA 25)

relu softmax 0.973 0.968 7.6
tanh softmax 0.968 0.963 7.7

linear tanh linear softmax 0.964 0.960 18.1

Convolutional network trained on MNIST

relu softmax 0.999 0.991 50.7
linear tanh linear softmax 0.993 0.985 106.8

Convolutional network trained on CIFAR-10

tanh softmax 0.811 0.704 115.6
relu softmax 0.925 0.782 115.1

linear tanh linear softmax 0.769 0.702 243.9

Fig. 9: Performance for two networks trained on MNIST and one on CIFAR-10. For
the linearised hidden activations, we use 3 segments. For the exp-function in piecewise-
linear softmax, we use 10 segments. We extrapolate the first and last line segments.

from option (1). However, it does raise a different question: what is the effect of
training with linearised activation functions, which have non-smooth gradients?
We train a fully-connected and a convolutional neural network on the MNIST
dataset and a convolutional neural network on the CIFAR-10 dataset [14]. Each
architecture is trained with either the precise tanh and Softmax functions, or
with their piecewise-linear approximations (n = 5). Since we did not observe any
difference with respect to the different bounding methods, we only report the
result for the extrapolation method. In Table 9, we show the results for these
experiments. The drop in train and test accuracy of the fully-connected neural
network trained and tested with linearised activation functions is marginal. For
comparison we also train a convolutional neural network, and we observe that
this model with linearised activations functions performs only slightly worse than
a state-of-the-art model with ReLU activations.

5 Lessons Learned

Refinement types for neural network verification StarChild and Lazuli are flex-
ible and lightweight libraries. They support the dimension-safe construction of
neural networks. They support the lightweight verification of neural networks, in
which neural networks and their verification conditions be written in the same
language. Finally, they provide us with a user-friendly interface to SMT solvers,
which means that merely stating the verification conditions is enough—the host
language does the verification as part of type checking.

Training and verification in the same language We hope to extend our libraries
with the ability to train as well as verify networks. However, there are several
barriers to this. For F∗, the main barrier is that code cannot be executed, but
instead must be extracted to OCaml or F#. For Haskell, there already exist

several Haskell-bindings for TensorFlow. However, at the time of writing, Liquid
Haskell only verifies Haskell source, and not runtime objects such as neural
network models. Hence, we would have to either extend Liquid Haskell with the
ability to verify runtime objects, or convert the trained models to Haskell code.
The former would constitute a significant contribution to Liquid Haskell, and
the latter, while much simpler to implement, has very few advantages over our
current approach.

Training networks using Keras made our work significantly easier, and im-
porting the models to our libraries was an easy task. There is already existing
work importing pre-trained models to theorem provers for the purposes of ver-
ification, e.g., MLCert in Coq [4]. Our approach to importing models differs
from MLCert: we translate floating-point numbers to F∗ reals, whereas MLCert
translates them to bit-vectors.

Whether or not we integrate training into our libraries in the future, we
believe that interfacing with the Python machine learning ecosystem will remain
important for the foreseeable future.

Linearisation The method presented for scalable automatic linearisation in Sec-
tion 4 works remarkably well. Our experiments show that it is possible to use
piecewise-linear approximations of non-linear functions both during training and
at runtime without a serious loss in accuracy. This is important, as non-linear
real arithmetic with exponentials, logarithms, and trigonometric functions is un-
decidable, and therefore, it is unlikely that any future SMT solver will be able
to efficiently decide problems of this sort.

Our current method of linearisation is crude, in that it splits the interval into
sub-intervals of equal length. Often, a much better approximation is possible by
varying the lengths of the sub-intervals.

Scalability and size reduction F∗ and Liquid Haskell offer to translate any pro-
gram to the SMT logic. Unfortunately, this generality comes with a cost. In
Figure 10, we present a benchmark for the verification of the n-ary AND gate,
i.e., the network which returns 1 if, and only if, each of its n inputs is 1. The
verification task is to check whether the network returns the correct answer for
each of four sample inputs. There are two curves for StarChild. One in which
we use assert, and one in which we use assert_norm. Both are exponential. On
the contrary, the line for Z3 does not exceed 1s. Hence, it seems F∗ introduces
an exponential factor in its encoding.

Unfortunately, while the curve for Z3 is encouraging, it does not scale to
more complex conditions, such as the robustness conditions discussed in Sec-
tion 3. Most solvers for linear real arithmetic simply do not scale to the size
and complexity needed to check robustness conditions for even modest neural
networks. There are several existing lines of work which attempt to address
this problem. Marabou [13] uses a modification of the Simplex algorithm which
more efficiently decides problems with piecewise-linear functions (such as ReLU).
DeepPoly [23] uses abstract interpretations. Kwiatkowska [15] gives an overview
of the progress in this area.

Fig. 10: Verification time for n-ary AND.

However, we consider the
problem of scalable verifica-
tion somewhat orthogonal to
our goals. We seek to in-
tegrate existing solvers with
programming languages in
ways which make neural net-
work verification as lightweight
as possible. We used Z3 and
other SMTLIB2-compatible solvers
because these solvers have ex-
isting integration with pro-
gramming languages. For fu-
ture work, we plan to look
into integrating Marabou with a dependently-typed programming language, and
abandon generality in favour of generating efficient queries specific to the neural
network domain.

Soundness of the proposed approach We did not prove, or attempt to prove,
that neural network transformations, such as size reduction (Section 3) or lin-
earisation (Section 4) preserves the semantics of the network. Our assumption
is that the verified network is deployed in practice, and we do not extend safety
guarantees to the full precision network.

Whether or not this approach is practically feasible deserves further atten-
tion. There are multiple papers in the machine learning community that show
that reduced size networks are feasible, and even desirable. There are a rising
number of implementations of neural networks on special purpose hardware,
e.g., using FPGAs [26]), mobile phones [1], and special-purpose robotics hard-
ware that require compression techniques. Ensuring that reduced-size networks
perform sufficiently similar to the original networks is an optimisation problem
that has been considered in the literature, and is beyond the limits of this study.
However, we do provide a more detailed discussion of effects of linearisation in
Section 4, as it is less well-studied in the literature.

Continuous training and verification In Section 1, we discussed why lightweight
verification is appropriate for neural network verification. However, there is one
novel feature of neural network verification, as opposed to the verification of
conventional programs. Usually, we assume that the object we verify is uniquely
defined, often hand-written, and therefore needs to be verified as-is. Neural net-
works are different—often there is a continuum of models that can serve as suit-
able classifiers. Given the task of verifying a neural network, we are no longer
required to think of the object as immutable. This opens up new possibilities,
where we can feed information from the verification process back into the train-
ing process. In fact, some papers in machine learning have already started to
explore this fact [8].

Seen from this angle, methods such as dimensionality reduction and lineari-
sation do not pose a threat to the soundness of our verification methods, but
instead are a part of the conversation between the training and the verification
mechanism in the search for a suitable, safe classifier.

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,
J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J.,
Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V.,
Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng,
X.: TensorFlow: Large-scale machine learning on heterogeneous distributed systems
(2016)

2. Akbarpour, B., Paulson, L.C.: MetiTarski: An automatic theorem prover for real-
valued special functions. Journal of Automated Reasoning 44(3), 175–205 (Aug
2009)

3. Ayers, E.W., Eiras, F., Hawasly, M., Whiteside, I.: Parot: A practical framework
for robust deep neural network training. In: Lee, R., Jha, S., Mavridou, A. (eds.)
NASA Formal Methods - 12th International Symposium, NFM 2020, Moffett Field,
CA, USA, May 11-15, 2020, Proceedings. LNCS, vol. 12229, pp. 63–84. Springer
(2020)

4. Bagnall, A., Stewart, G.: Certifying true error: Machine learning in Coq with ver-
ified generalisation guarantees. AAAI (2019)

5. Barrett, C., Stump, A., Tinelli, C., et al.: The smt-lib standard: Version 2.0. In:
Proceedings of the 8th international workshop on satisfiability modulo theories
(Edinburgh, England). vol. 13, p. 14 (2010)

6. Chollet, F., et al.: Keras. https://keras.io (2015)

7. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(t). In: Com-
puter Aided Verification, pp. 81–94. Springer Berlin Heidelberg (2006)

8. Fischer, M., Balunovic, M., Drachsler-Cohen, D., Gehr, T., Zhang, C., Vechev,
M.T.: DL2: training and querying neural networks with logic. In: Proc. of the 36th
Int. Conf. Machine Learning, ICML 2019. vol. 97, pp. 1931–1941. PMLR (2019)

9. Fisher, K., Launchbury, J., Richards, R.: The HACMS program: using formal meth-
ods to eliminate exploitable bugs. Phil. Trans. Royal Society (2017)

10. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572 (2014)

11. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: CAV 2017. vol. LNCS 10426, pp. 3–29. Springer (2017)

12. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. ACM Communications
in Computer Algebra 46(3/4), 104 (Jan 2013)

13. Katz, G., Huang, D.A., Ibeling, D., Julian, K., Lazarus, C., Lim, R., Shah, P.,
Thakoor, S., Wu, H., Zeljic, A., Dill, D.L., Kochenderfer, M.J., Barrett, C.W.: The
Marabou framework for verification and analysis of deep neural networks. In: CAV
2019, Part I. LNCS, vol. 11561, pp. 443–452. Springer (2019)

14. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images. Tech. rep., Citeseer (2009)

15. Kwiatkowska, M.Z.: Safety verification for deep neural networks with provable
guarantees (invited paper). In: Fokkink, W., van Glabbeek, R. (eds.) CONCUR
2019,. LIPIcs, vol. 140, pp. 1:1–1:5. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik (2019)

16. LeCun, Y., Cortes, C., Burges, C.: Mnist handwritten digit database. ATT Labs
[Online]. Available: http://yann.lecun.com/exdb/mnist 2 (2010)

17. McCulloch, W., Pitts, W.: A logical calculus of the ideas immanent in nervous
activity. Bulletin of Math. Bio. 5, 115–133 (1943)

18. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: TACAS’08. LNCS,
vol. 4963, pp. 337–340 (2008)

19. Papernot, N., McDaniel, P.D., Swami, A., Harang, R.E.: Crafting adversarial input
sequences for recurrent neural networks. In: Brand, J., Valenti, M.C., Akinpelu, A.,
Doshi, B.T., Gorsic, B.L. (eds.) 2016 IEEE Military Communications Conference,
MILCOM 2016, Baltimore, MD, USA, November 1-3, 2016. pp. 49–54. IEEE (2016)

20. Parisi, G., et al.: Continual lifelong learning with neural networks: A review. Neural
Networks 113, 54 – 71 (2019)

21. Pertigkiozoglou, S., Maragos, P.: Detecting adversarial examples
in convolutional neural networks. CoRR abs/1812.03303 (2018),
http://arxiv.org/abs/1812.03303

22. Serban, A.C., Poll, E.: Adversarial examples - A complete characterisation of the
phenomenon. CoRR abs/1810.01185 (2018), http://arxiv.org/abs/1810.01185

23. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract domain for certifying
neural networks. PACMPL 3(POPL), 41:1–41:30 (2019)

24. Swamy, N., Kohlweiss, M., Zinzindohoue, J.K., Zanella-Béguelin, S., Hriţcu, C.,
Keller, C., Rastogi, A., Delignat-Lavaud, A., Forest, S., Bhargavan, K., Fournet,
C., Strub, P.Y.: Dependent types and multi-monadic effects in F∗. In: Proceed-
ings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages - POPL 2016. ACM Press (2016)

25. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fer-
gus, R.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199
(2013)

26. Umuroglu, Y., Fraser, N.J., Gambardella, G., Blott, M., Leong, P.H.W., Jahre,
M., Vissers, K.A.: FINN: A framework for fast, scalable binarized neural network
inference. In: Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, FPGA 2017, Monterey, CA, USA, February 22-
24, 2017. pp. 65–74 (2017)

27. Vazou, N.: Liquid Haskell: Haskell as a Theorem Prover. Ph.D. thesis, University
of California, San Diego, USA (2016)

28. Vazou, N., Tondwalkar, A., Choudhury, V., Scott, R.G., Newton, R.R., Wadler,
P., Jhala, R.: Refinement reflection: complete verification with SMT. Proceedings
of the ACM on Programming Languages 2(POPL), 1–31 (Jan 2018)

