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Motivation

Motivation

Automated Theorem Provers (ATPs) and SAT/SMT solvers
are

. . . fast and efficient;

. . . applied in different contexts: program verification,
scheduling, test case generation, etc.

Interactive Theorem Provers (ITPs) have been

. . . enriched with dependent types, (co)inductive types, type
classes and provide rich programming environments;
. . . applied in formal mathematical proofs: Four Colour
Theorem (60, 000 lines), Kepler conjecture (325, 000 lines),
Feit-Thompson Theorem (170, 000 lines), etc.
. . . applied in industrial proofs: seL4 microkernel (200, 000
lines), verified C compiler (50, 000 lines), ARM microprocessor
(20, 000 lines), etc.
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Motivation

Challenges

. . . size of ATPs and ITPs libraries stand on the way of
efficient knowledge reuse;

. . . manual handling of various proofs, strategies, libraries,
becomes difficult;

. . . team-development is hard, especially that ITPs are
sensitive to notation;

. . . comparison of proof similarities is hard.
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Motivation

Running example

Java Virtual Machine (JVM) is a stack-based abstract machine
which can execute Java bytecode.

Goal

Model a subset of the JVM in Coq, defining an interpreter
for JVM programs,

Verify the correctness of JVM programs within Coq.

This work is inspired by:

H. Liu and J S. Moore. Executable JVM model for analytical reasoning: a study.
Journal Science of Computer Programming - Special issue on advances in
interpreters, virtual machines and emulators (IVME’03), 57(3):253–274, 2003.
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Motivation

Running example

Java code:

static int factorial(int n)

{

int a = 1;

while (n != 0){

a = a * n;

n = n-1;

}

return a;

}

Goal (Factorial case)

∀n ∈ N, running the bytecode associated with the factorial program with n as input
produces a state which contains n! on top of the stack.
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Running example

Java code:

static int factorial(int n)

{

int a = 1;

while (n != 0){

a = a * n;

n = n-1;

}

return a;

}

Bytecode:
0 : iconst 1
1 : istore 1
2 : iload 0
3 : ifeq 13
4 : iload 1
5 : iload 0
6 : imul
7 : istore 1
8 : iload 0
9 : iconst 1

10 : isub
11 : istore 0
12 : goto 2
13 : iload 1
14 : ireturn
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. . .
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Proof pattern recognition in ATPs

Proof pattern recognition in ATPs

Given a proof goal, ATPs apply various lemmas to rewrite or simplify the

goal until it is proven.

Goal

Apply machine-learning techniques to improve the premise selection
procedure on the basis of previous experience.

References:

D. Kühlwein et al. MaSh: Machine Learning for Sledgehammer. In ITP’13, 2013

C. Kaliszyk and J. Urban. Learning-assisted Automated Reasoning with Flyspeck.
2012

D. Kühlwein et al. Overview and evaluation of premise selection techniques for
large theory mathematics. In IJCAR12, LNCS 7364, pages 378–392, 2012.

E. Tsivtsivadze et al. Semantic graph kernels for automated reasoning. In
SDM11, pages 795–803, 2011.
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Proof pattern recognition in ATPs

Application to ITPs

Several ITPs use ATPs to discharge proof obligations. Then, the
ATP approach can be used to speed up those proofs.

First-order fragments of:
Mizar, HOL, etc.

Supervised Learning:
SVMs, Naive Bayesian

Automated proof:
Vampire, CVC3, etc.

feature
extraction

premise hierarchyproof reconstruction
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Proof pattern recognition in ATPs

Intuitive idea

Goal

Determine the lemmas that can be useful to prove the equivalence
between the recursive and tail-recursive versions of factorial.
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Intuitive idea

Goal

Determine the lemmas that can be useful to prove the equivalence
between the recursive and tail-recursive versions of factorial.

A classifier for each lemma in the library.

. . .

. . .

. . .
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Proof pattern recognition in ATPs

Intuitive idea

Goal

Determine the lemmas that can be useful to prove the equivalence
between the recursive and tail-recursive versions of factorial.

Training phase:

lemma A is used in the proof of lemma B =⇒
< A > (B) = 1;

otherwise =⇒ < A > (B) = 0;
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Proof pattern recognition in ATPs

Intuitive idea

Goal

Determine the lemmas that can be useful to prove the equivalence
between the recursive and tail-recursive versions of factorial.

Testing phase:

CmulnA

factorial n = factorialtail n

. . .1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

. . .. . .

. . . . . .. . .

. . .

[0, 1]
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Proof pattern recognition in ATPs

Features of this approach

1 Feature extraction:

features are extracted from first-order formulas;
sparse feature vectors (106 features);
classifier for every lemma of the library.

First-order fragments of:
Mizar, HOL, etc.

Supervised Learning:
SVMs, Naive Bayesian

Automated proof:
Vampire, CVC3, etc.

feature
extraction

premise hierarchyproof reconstruction
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Proof pattern recognition in ATPs

Features of this approach

2 Machine-learning tools:

work with supervised learning;
algorithms range from SVMs to Naive Bayes learning;
sparse methods; using software such as SNoW.

First-order fragments of:
Mizar, HOL, etc.

Supervised Learning:
SVMs, Naive Bayesian

Automated proof:
Vampire, CVC3, etc.

feature
extraction

premise hierarchyproof reconstruction
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Proof pattern recognition in ATPs

Features of this approach

3 Main improvement:

the number of goals proven automatically increases by up to
20% – 40%

First-order fragments of:
Mizar, HOL, etc.

Supervised Learning:
SVMs, Naive Bayesian

Automated proof:
Vampire, CVC3, etc.

feature
extraction

premise hierarchyproof reconstruction
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Proof pattern recognition in ITPs

Proof pattern recognition in ITPs

In ITPs, the proof steps are suggested by the user who guides the prover
by providing the tactics.

Goal

Apply machine-learning methods to:

find common proof-patterns in proofs across various scripts,
libraries, users and notations;

and provide proof-hints.

ML4PG:

Proof General extension which applies machine learning methods to

Coq/SSReflect proofs.

E. Komendantskaya, J. Heras and G. Grov. Machine learning in Proof General:
interfacing interfaces. EPTCS Post-proceedings of User Interfaces for Theorem
Provers. 2013.
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Proof pattern recognition in ITPs

A proof in Coq/SSReflect

Lemma fact_tail_aux_lemma : forall (a n : nat), fact_tail_aux n a = a

* n‘!.

Proof.

1 subgoals, subgoal 1 (ID 13)

============================

forall n a : nat, fact_tail_aux n a = a * n‘!
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Proof pattern recognition in ITPs

A proof in Coq/SSReflect

Lemma fact_tail_aux_lemma : forall (a n : nat), fact_tail_aux n a = a

* n‘!.

Proof.

move => n.

1 subgoals, subgoal 1 (ID 14)

n : nat

============================

forall a : nat, fact_tail_aux n a = a * n‘!
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Proof pattern recognition in ITPs

A proof in Coq/SSReflect

Lemma fact_tail_aux_lemma : forall (a n : nat), fact_tail_aux n a = a

* n‘!.

Proof.

move => n. elim : n => [a| n IH a /=].

2 subgoals, subgoal 1 (ID 24)

a : nat

============================

fact_tail_aux 0 a = a * 0‘!

subgoal 2 (ID 28) is:

fact_tail_aux n (n.+1 * a) = a * (n.+1)‘!
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Proof pattern recognition in ITPs

A proof in Coq/SSReflect

Lemma fact_tail_aux_lemma : forall (a n : nat), fact_tail_aux n a = a

* n‘!.

Proof.

move => n. elim : n => [a| n IH a /=].

by rewrite /theta_fact fact0 muln1.

1 subgoals, subgoal 1 (ID 28)

n : nat

IH : forall a : nat, fact_tail_aux n a = a * n‘!

a : nat

============================

fact_tail_aux n (n.+1 * a) = a * (n.+1)‘!
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Proof pattern recognition in ITPs

ML4PG

ML4PG assists the user providing similar lemmas as proof hints.

Proof General MATLAB/WekaML4PG

feature extraction

proof families

Interactive Prover:
Coq, SSReflect

Clustering:
K-means, Gaussian, . . .
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Proof pattern recognition in ITPs

Feature extraction mechanism

Lemma fact_tail_aux_lemma : forall (a n : nat), fact_tail_aux n a = a

* n‘!.

Proof.

tactics N tactics arg type tactic arg is hypothesis? top symbol subgoals

g1
g2
g3
g4
g5
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Feature extraction mechanism

Lemma fact_tail_aux_lemma : forall (a n : nat), fact_tail_aux n a = a

* n‘!.

Proof.

move => n.

tactics N tactics arg type tactic arg is hypothesis? top symbol subgoals

g1 move 1 nat no forall 1
g2
g3
g4
g5

Katya and Jónathan Statistical Machine Learning for Theorem Proving 19/25



Proof pattern recognition in ITPs

Feature extraction mechanism

Lemma fact_tail_aux_lemma : forall (a n : nat), fact_tail_aux n a = a

* n‘!.

Proof.

move => n. elim : n => [a| n IH a /=].

tactics N tactics arg type tactic arg is hypothesis? top symbol subgoals

g1 move 1 nat no forall 1
g2 elim, move 2 nat, [nat | nat Prop nat] yes forall 2
g3
g4
g5
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Proof pattern recognition in ITPs

Feature extraction mechanism

Lemma fact_tail_aux_lemma : forall (a n : nat), fact_tail_aux n a = a

* n‘!.

Proof.

move => n. elim : n => [a| n IH a /=].

by rewrite /theta_fact fact0 muln1.

tactics N tactics arg type tactic arg is hypothesis? top symbol subgoals

g1 move 1 nat no forall 1
g2 elim, move 2 nat, [nat | nat Prop nat] yes forall 2
g3 rewrite 1 Prop, Prop, Prop EL, EL, EL equal 1
g4
g5
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Proof pattern recognition in ITPs

Features of this approach

1 Feature extraction:

features are extracted from higher-order propositions and
proofs;
feature extraction is built on the method of proof-traces;
the feature vectors are fixed at the size of 30;
longer proofs are analysed by means of the proof-patch
method.

Proof General MATLAB/WekaML4PG

feature extraction

proof families

Interactive Prover:
Coq, SSReflect

Clustering:
K-means, Gaussian, . . .
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Proof pattern recognition in ITPs

Features of this approach

2 Machine-learning tools:

work with unsupervised learning (clustering) algorithms
implemented in MATLAB and Weka;
use algorithms such as Gaussian, K-means, and farthest-first.

Proof General MATLAB/WekaML4PG

feature extraction

proof families

Interactive Prover:
Coq, SSReflect

Clustering:
K-means, Gaussian, . . .
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Proof pattern recognition in ITPs

A proof in Coq/SSReflect with ML4PG help

Lemma fact_tail_aux_lemma : forall (a n : nat), fact_tail_aux n a = a

* n‘!.

Proof.

move => n. elim : n => [a| n IH a /=].

by rewrite /theta_fact fact0 muln1.

n : nat

IH : forall a : nat,

fact_tail_aux n a =

a * n‘!

a : nat

============================

fact_tail_aux n (n.+1 * a)

=

a * (n.+1)‘!

----------------------------------

This lemma is similar to lemmas:

- mult_tail_aux_lemma

- power_tail_aux_lemma

- expt_tail_aux_lemma

----------------------------------
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Conclusions

Conclusions

Different Machine Learning methods are suitable for ATPs and
ITPs.
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