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Abstract

Coalgebra may be used to provide semantics for SLD-derivations, both finite and infinite. We first give such semantics
to classical SLD-derivations, proving results such as adequacy, soundness and completeness. Then, based upon coalge-
braic semantics, we propose a new sound and complete algorithm for parallel derivations. We analyse this new algorithm
in terms of the Theory of Observables, and we prove soundness, completeness, correctness and full abstraction results.

1 Motivation
There are two trends in logic programming that are both desirable and problematic: coinductive definitions and concurrent
computations. We illustrate both using the following example.

Example 1 The program Stream defines the infinite stream of binary bits:

bit(0) ←
bit(1) ←

stream(scons (x,y)) ← bit(x),stream(y)

Stream is a coinductive definition, with proof search for the goal stream(x) resulting in an infinite derivation.
Programs like Stream can be given declarative semantics via the greatest fixed point of the semantic operator TP . But
fixed point semantics is incomplete (Lloyd (1987)) as it fails for some infinite derivations.

Example 2 The program R(x)← R(f(x)) is characterised by the greatest fixed point of the TP operator, which contains
R(fω(a)), although no infinite term is computed by SLD-resolution.

There have been numerous attempts to resolve the mismatch between infinite derivations and greatest fixed point
semantics, e.g., Gupta et al. (2007); Jaume (2002); Lloyd (1987); Paulson and Smith (1989); Simon et al. (2007). But
infinite SLD derivations of both finite and infinite objects have not yet received a uniform semantics.

Another distinguishing feature of logic programming languages is that they allow implicit parallel execution of pro-
grams. The three main types of parallelism used in implementations are and-parallelism, or-parallelism, and their combi-
nation: see Gupta and Costa (1994); Pontelli and Gupta (1995).

Or-parallelism arises when more than one clause unifies with the goal: the corresponding bodies can be executed
in or-parallel fashion. And-parallelism arises when more than one atom is present in the goal. That is, given a goal
G = ← B1, . . . Bn, an and-parallel algorithm of resolution looks for derivations for each Bi simultaneously. And-or
parallelism features both kinds of parallelism. However, many first-order algorithms are P-complete and hence inher-
ently sequential (Dwork et al. (1984); Kanellakis (1988)). This especially concerns first-order unification and variable
substitution in the presence of variable dependencies.

Example 3 The goal stream(cons(x, cons(y,x))), if processed sequentially, will lead to a failed derivation in
three derivation steps. But, if the goal is processed in and-or parallel fashion, the derivation algorithm will not be able to
determine inconsistency between substitutions for x in parallel branches of the derivation tree.

2 Summary of results
We apply the coalgebraic semantics proposed in Komendantskaya et al. (2010); Komendantskaya and Power (2011) to
address the above two problems. Coalgebraic semantics can be used instead of greatest fixed point semantics. Unlike



greatest fixed point semantics, coalgebraic semantics yields soundness and completeness results for both finite and infinite
SLD-derivations.

We test our coalgebraic semantics using the theory of observables, Comini et al. (2001). According to this theory,
the traditional characterisation of logic programs in terms of their input/output behavior, successful derivations and their
corresponding fixed point semantics, is not sufficient for program analysis and optimisation. One requires more complete
information about SLD-derivations, such as sequences of goals, most general unifiers and variants of clauses.

The idea of observational semantics for logic programs is to observe equal behaviour of logic programs and to distin-
guish logic programs with different computational behaviour. So the choice of observables and semantic models is closely
related to the choice of equivalence relation defined on logic programs. In the theory of observables, programs P1 and P2

are said to be observationally equivalent if, for any goal G, they yield the same call patterns in the SLD derivations. Given
a suitable semantics, one can prove that if P1 and P2 have equal semantic models, then P1 and P2 are observationally
equivalent (correctness result). The converse is a full abstraction result.

Our coalgebraic semantics yields the correctness result relative to the sequential algorithm of SLD resolution but not the
full abstraction result. The failure of the latter does not mean that coalgebraic semantics is not suitable for characterizing
observational behavior of logic programs. Rather, it indicates the mismatch between the sequential algorithm of SLD
resolution and the concurrent nature of coalgebraic semantics.

We therefore propose a new coinductive derivation algorithm inspired by coalgebraic semantics. The algorithm pro-
vides an elegant solution to the problem of implementing both corecursion and concurrency in logic programming. We
prove soundness, completeness, correctness and full abstraction results for the new coinductive derivations relative to the
coalgebraic semantics of Komendantskaya and Power (2011).
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