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Ekaterina Komendantskaya, Máire Lane and Anthony Karel Seda

Department of Mathematics, University College Cork, Cork, Ireland
komendantskaya@gmail.com, maireln@bcri.ucc.ie, a.seda@ucc.ie†

Summary. Hölldobler and Kalinke showed how, given a propositional logic pro-
gram P , a 3-layer feedforward artificial neural network may be constructed, using
only binary threshold units, which can compute the familiar immediate-consequence
operator TP associated with P . In this chapter, essentially these results are estab-
lished for a class of logic programs which can handle many-valued logics, constraints
and uncertainty; these programs therefore represent a considerable extension of con-
ventional propositional programs. The work of the chapter basically falls into two
parts. In the first of these, the programs considered extend the syntax of conven-
tional logic programs by allowing elements of quite general algebraic structures to
be present in clause bodies. Such programs include many-valued logic programs,
and semiring-based constraint logic programs. In the second part, the programs
considered are bilattice-based annotated logic programs in which body literals are
annotated by elements drawn from bilattices. These programs are well-suited to
handling uncertainty. Appropriate semantic operators are defined for the programs
considered in both parts of the chapter, and it is shown that one may construct
artificial neural networks for computing these operators. In fact, in both cases only
binary threshold units are used, but it simplifies the treatment conceptually to ar-
range them in so-called multiplication and addition units in the case of the programs
of the first part.

11.1 Introduction

In their seminal paper [1], Hölldobler and Kalinke showed how, given a
propositional logic program P , one may construct a 3-layer feedforward ar-
tificial neural network (ANN), having only binary threshold units, which
can compute the familiar immediate-consequence operator TP associated
with P . This result has been taken as the starting point of a line of re-
search which forms one component of the general problem of integrating
the logic-based and connectionist or neural-network-based approaches to

† Author for correspondence: A.K. Seda.
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computation. Of course, the objective of integrating these two comput-
ing paradigms is to combine the advantages to be gained from connec-
tionism with those to be gained from symbolic computation. The papers
[3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 13, 14, 15, 16, 17, 18, 19] represent a
small sample of the literature on this topic. In particular, the papers just
cited contain extensions and refinements of the basic work of Hölldobler et
al. in a number of directions including inductive logic programming, modal-
logic programming, and distributed knowledge representation. In the large,
the problem of integrating or combining these two approaches to computa-
tion has many aspects and challenges, some of which are discussed in [3, 12].

Our objective and theme in this chapter is to present generalizations of
the basic results of [1] to classes of extended logic programs P which can
handle many-valued logics, constraints and uncertainty; in fact, the programs
we discuss are annotated logic programs. Thus, we are concerned primarily
with the computation by ANN of the semantic operators determined by such
extended logic programs. Therefore, we begin with a brief discussion of these
programs, their properties and powers of knowledge representation.

As is well-known, there exists a great variety of many-valued logics of inter-
est in computation, see [20] for a survey. For example, Lukasiewicz and Kleene
introduced several three-valued logics [20]. Then infinite-valued Lukasiewicz
logic appeared, and there are various other many-valued logics of interest,
such as fuzzy logic and intuitionistic logic. In another direction, Belnap stud-
ied bilattice-based logics for reasoning with uncertainties, and his work was
further developed in [21, 22]. Most of these logics have been adapted to logic
programming: for example, see [23] for logic programs interpreted by arbi-
trary sets, [24] for applications of Kleene’s logic to logic programming, [25] for
semiring-based constraint logic programming, [26, 27] for fuzzy logic program-
ming, and [28, 29, 30] for (bi)lattice-based logic programming. See also [31]
for a very general algebraic analysis of different many-valued logic programs.
However, in the main, there have been three approaches to many-valued logic
programming, as follows.

First, annotation-free logic programs were introduced by Fitting in [24]
and further developed in [25, 28, 29, 32]. They are formally the same as two-
valued logic programs in that the clauses of an annotation-free logic program
are exactly the same as those for a two-valued logic program. But, whilst each
atomic ground formula of a two-valued logic program is given an interpreta-
tion in {true, false}, an atomic annotated formula of an annotation-free logic
program receives its interpretation in an arbitrary set carrying idempotent,
commutative and associative operations which model logical connectives, as
we illustrate in more detail in Section 11.3. Next, implication-based logic pro-
grams were introduced by Van Emden in [33] and were designed in order to
obtain a simple and effective proof procedure. Van Emden considered the par-
ticular case of the set [0, 1] of truth values, but this has since been extended,
see for example [34]. Much of this work carries over without difficulty to an
arbitrary set with idempotent, commutative and associative operations. Van
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Emden used the conventional syntax for logic programs, except for having
clauses of the form

A←�� ���� �	f −B1, . . . , Bn,

where f is a factor or threshold taken from the interval [0, 1] of real numbers.
The atoms A, B1, . . . , Bn receive their interpretation from the interval [0, 1],
and are such that the value of the head A of a clause has to be greater than or
equal to f ×min(|B1|, . . . , |Bn|). Finally, annotated (or signed) logic programs
require each atom in a given clause to be annotated (or signed) by a truth
value. Most commonly, an annotated clause ([35]) has the following form

A : μ← B1 : μ1, . . . , Bn : μn,

where each μi is an annotation term, which means that it is either an an-
notation constant, or an annotation variable, or a function over annotation
constants and/or variables. For ease of implementation, this approach has
been very popular and many variations of annotated and signed logic pro-
grams have appeared, see [36, 22, 35, 15, 23, 37, 38, 39, 40], for example. We
consider logic programs of this type in Section 11.4 of the chapter.

The work of this chapter falls into two main sections: Section 11.3, con-
cerned with annotation-free logic programs, and Section 11.4, concerned with
annotated logic programs. However, there is considerable interaction between
these two sections, as we show, and the final result, Theorem 4, strongly
connects them. However, our approach in Section 11.3 is more algebraic than
usual and we develop an abstract, general semantic operator TP,C defined over
certain algebraic structures C. This theory not only gives a unified view of con-
ventional many-valued logic programming, and of simple logic-based models of
uncertainty in logic programming and databases, see [32], but it also includes
semiring-based constraint logic programming as considered in [25]; one simply
chooses C suitably. In defining this operator, we are inspired by Fitting’s paper
[41] and we work over the set P ∗∗, see Section 11.3.1. We are therefore faced
with the problem of handling countable (possibly infinite) products

⊙
i∈N

ci,
where ( is a binary operation defined on C, and with determining the value
of
⊙

i∈N
ci finitely, in some sense. Related problems also arise in constructing

the neural networks we present to compute TP,C when P is propositional. We
solve these problems by introducing the notion of finitely-determined binary
operations(, see Definition 1 and Theorem 1, and it turns out that this notion
is well-suited to these purposes and to building ANN, somewhat in the style of
[1], to compute TP,C, see Theorem 2. In fact, to construct the networks in this
case, we introduce the notion of addition and multiplication units which are
2-layer ANN composed of binary threshold units, and this approach produces
conceptually quite simple networks.

In Section 11.4, we focus on bilattice-based annotated logic programs and
introduce a semantic operator TP for them. Again, we build ANN in the style
of [1], but this time to simulate TP . The operator TP is simpler than TP,C
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to define in so much as it employs P directly, rather than P ∗∗, but its sim-
ulation by ANN is more difficult than is the case for TP,C. Indeed, the ANN
used in Section 11.4 do not require additional layers, but instead employ two
learning functions in order to perform computations of TP . In this sense, one
has a tradeoff: more complicated units and simpler connections versus simpler
units and more complicated connections. This reduction of architecture and
the use of learning functions builds a bridge between the essentially deductive
neural networks of [1] and the learning neural networks implemented in Neu-
rocomputing [42]. It also raises questions on the comparative time and space
complexity of the architectures of the ANN used to compute TP,C and TP ,
see Section 11.6 summarizing our conclusions, but we do not pursue this issue
here in detail.

Finally, we show in Theorem 4 how the computations of TP,C by the ANN
of Section 11.3 can be simulated by computations of TP and the corresponding
neural networks of Section 11.4. This result unites the two main sections of
the chapter and brings it to a conclusion.

For reasons of lack of space, we do not consider here the extension of our
results to the case of first-order logic programs P . However, the papers by the
present authors listed at the end of the chapter contain some results in this
direction.
Acknowlegement The authors thank the Boole Centre for Research in Infor-
matics at University College Cork for its substantial financial support of the
research presented here.

11.2 Neural Networks

We begin by briefly summarizing what we need relating to artificial neural
networks or just neural networks for short; our terminology and notation are
standard, and our treatment closely follows that of [10], but see also [9, 43].

A neural network or connectionist network is a weighted digraph. A typical
unit (or node) k in this digraph is shown in Figure 11.1. We let wkj ∈ R

denote the weight of the connection from unit j to unit k (wkj may be 0).
Then the unit k is characterized, at time t, by the following data: its inputs
ikj(t) = wkjvj(t) (the input received by k from j at time t) for j = 1, . . . , nk,

its threshold θk ∈ R, its potential pk(t) =
(∑nk

j=1 wkjvj(t)
)
− θk ∈ R, and its

value vk(t). The units are updated synchronously, time becomes t+Δt, and
the output value for k, vk(t+Δt), is calculated from pk(t) by means of a given
output function ψ, that is, vk(t+Δt) = ψ(pk(t)). The only output function ψ
we use here is the Heaviside function H . Thus, vk(t+Δt) = H(pk(t)), where
H is defined by H(x) is equal to 1 if x ≥ 0 and is equal to 0 otherwise. Units
of this type are called binary threshold units.

As far as the architecture of neural networks is concerned, we will only
consider networks where the units can be organized in layers. A layer is a
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pk(t) � vk(t + Δt)
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Fig. 11.1. Unit k in a connectionist network.

vector of units. An n-layer feedforward network F consists of the input layer,
n− 2 hidden layers, and the output layer, where n ≥ 2. Here, we will mainly
be concerned with n = 3. Each unit occurring in the i-th layer is connected to
each unit occurring in the (i+1)-st layer, 1 ≤ i < n. A connectionist network
F is called a multilayer feedforward network if it is an n-layer feedforward
network for some n. Let r and s be the number of units occurring in the input
and output layers, respectively, of a multilayer feedforward networkF . Then F
computes a function fF : R

r → R
s as follows. The input vector (the argument

of fF) is presented to the input layer at time t0 and propagated through the
hidden layers to the output layer. At each time point, all units update their
potential and value. At time t0+(n−1)Δt, the output vector (the image under
fF of the input layer) is read off the output layer. Finally, a neural network
is called recurrent or is made recurrent if the number of units in the input
layer is equal to the number of units in the output layer and each unit in the
output layer is connected with weight 1 to the corresponding unit in the input
layer. A recurrent network can thus perform iterated computations because
the output values can be returned to the input layer via the connections just
described; it can thus perform computation of the iterates T k(I), k ∈ N, for
example, where I is an interpretation and T is a (semantic) operator.
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11.3 Annotation-Free Logic Programs and the Operator
TP,C

11.3.1 Finitely-Determined Operations

Let C denote a set endowed with binary operations + and ×, and a unary
operation ¬ satisfying ¬(¬c) = c for all c ∈ C3. In [44], the notion of finitely-
determined disjunctions and conjunctions (∨ and ∧) was introduced for sets
C of truth values. We begin by giving this definition for a general binary
operation( on C. Note that we assume that( has meaningfully been extended
to include products

⊙
i∈M ci of countably infinite families M of elements ci

of C. Indeed, the way in which we carry out this extension is the main point
of the next definition and the discussion following it.

Definition 1. Suppose that C is a set equipped with a binary operation (. We
say that ( is finitely determined or that products (relative to () are finitely
determined in C if, for each c ∈ C, there exists a countable (possibly infinite)
collection {(Rn

c , E
n
c ) | n ∈ J } of pairs of sets Rn

c ⊆ C and En
c ⊆ C, where

each Rn
c is finite, such that a countable (possibly infinite) product

⊙
i∈M ci in

C is equal to c if and only if for some n ∈ J we have
(i) Rn

c ⊆ {ci | i ∈M}, and
(ii) for all i ∈ M , ci /∈ En

c , that is, {ci | i ∈ M} ⊆ (En
c )co, where (En

c )co

denotes the complement of the set En
c .

We call the elements of En
c excluded values for c, we call the elements of

An
c = (En

c )co allowable values for c, and in particular we call the elements of
Rn

c required values for c; note that, for each n ∈ J , we have Rn
c ⊆ An

c , so
that each required value is also an allowable value (but not conversely). More
generally, given c ∈ C, we call s ∈ C an excluded value for c if no product⊙

i∈M ci with
⊙

i∈M ci = c contains s, that is, in any product
⊙

i∈M ci whose
value is equal to c, we have ci = s for no i ∈M . We let Ec denote the set of
all excluded values for c, and let Ac denote the complement (Ec)co of Ec and
call it the set of all allowable values for c. Note finally that when confusion
might otherwise result, we will superscript each of the sets introduced above
with the operation in question. Thus, for example, A�

c denotes the allowable
set for c relative to the operation (.

This definition was originally motivated by the results of [45], and the
following example shows the thinking behind it.

Example 1. Consider Belnap’s well-known four-valued logic with set C =
FOUR = {t, u, b, f} of truth values and connectives as defined in Table 11.1,
where t denotes true, u denotes undefined or none (neither true nor false), b
denotes both (true and false), and f denotes false.

Taking ( to be disjunction ∨, the sets E and R are as follows.
(a) For t, n takes values 1 and 2, E∨

t = ∅, R∨,1
t = {t}, and R∨,2

t = {u, b}.
3 When C has no natural negation ¬, we simply take ¬ to be the identity.
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Table 11.1. Truth table for the logic FOUR

p q ¬p p ∧ q p ∨ q

t t f t t

t u f u t

t b f b t

t f f f t

u t u u t

u u u u u

u b u f t

u f u f u

b t b b t

b u b f t

b b b b b

b f b f b

f t t f t

f u t f u

f b t f b

f f t f f

(b) For u, we have n = 1, E∨
u = {t, b} and R∨

u = {u}.
(c) For b, we have n = 1, E∨

b = {t, u} and R∨
b = {b}.

(d) For f , we have n = 1, E∨
f = {t, u, b} and R∨

f = {f}.
Thus, a countable disjunction

∨
i∈Mci takes value t if and only if either (i)

at least one of the ci is equal to t or (ii) at least one of the ci takes value b and
at least one takes value u; no truth value is excluded. As another example,∨

i∈Mci takes value u if and only if at least one of the ci is u, none are equal
to t and none are equal to b.

Now taking ( to be conjunction ∧, the sets E and R are as follows.
(a) For t, we have n = 1, E∧

t = {u, b, f} and R∧
t = {t}.

(b) For u, we have n = 1, E∧
u = {b, f} and R∧

u = {u}.
(c) For b, we have n = 1, E∧

b = {u, f} and R∧
b = {b}.

(d) For f , n takes values 1 and 2, E∧
f = ∅, R∧,1

f = {f}, and R∧,2
f = {u, b}.

Notice finally that, if we restrict the connectives in FOUR to {t, u, f}, we
obtain Kleene’s well-known strong three-valued logic.

It turns out that the connectives in all the logics commonly encountered in
logic programming, and indeed in many other logics, satisfy Definition 1, and
it will be convenient to state next the main facts we need concerning arbitrary
finitely-determined operations, see [44] for all proofs.

Theorem 1. Suppose that ( is a binary operation defined on a set C. Then
the following statements hold.

1. If ( is finitely determined, then it is idempotent, commutative and asso-
ciative.
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2. Suppose that ( is finitely determined and that C contains finitely many
elements {c1, . . . , cn}. Then, for any collection {si | i ∈ M}, where each
of the si ∈ C and M is a denumerable set, the sequence s1, s1 ( s2, s1 (
s2 ( s3, . . . is eventually constant with value s, say. Therefore, setting⊙

i∈Msi = s gives each countably infinite product in C a well-defined
meaning which extends the usual meaning of finite products.

3. Suppose ( is finitely determined and that
⊙

i∈M si = c, where M is a
countable set. Then the sequence s1, s1 ( s2, s1 ( s2 ( s3, . . . is eventually
constant with value c.

4. Suppose that C is a countable set and ( is idempotent, commutative and
associative. Suppose further that, for any set {si | i ∈ M} of elements
of C where M is countable, the sequence s1, s1 ( s2, s1 ( s2 ( s3, . . . is
eventually constant. Then all products in C are (well-defined and are)
finitely determined.

5. Suppose that C is finite. Then ( is finitely determined if and only if it is
idempotent, associative and commutative.

For a finitely-determined binary operation ( on C, we define the partial
order ≤� on C by s ≤� t if and only if s ( t = t. (So that s ≤+ t if and
only if s + t = t, and s ≤× t if and only if s × t = t, for finitely-determined
operations + and ×.) Note (i) that the orderings ≤+ and ≤× are dual to
each other if and only if the absorption law holds for + and ×, in which case
(C,≤+,≤×) is a lattice, and (ii) that finitely-determined operations + and
× need not satisfy the distributive laws. Notice also that because + and ×
are finitely determined,

∑
c∈Cc ∈ C is the top element of C relative to ≤+,

and
∏

c∈Cc ∈ C is the top element of C relative to ≤×. Note, however, that it
does not follow that we have bottom elements for these orderings. We further
suppose that two elements c and c are distinguished in C, and we will make
use of these elements later on. (In some, but not all, situations when C is a
logic, c is taken to be true, and c is taken to be false.)

Example 2. In FOUR, we have t ≤∧ u ≤∧ f , and t ≤∧ b ≤∧ f . Also, f ≤∨
u ≤∨ t, and f ≤∨ b ≤∨ t. In this case, we take c = t, and c = f .

Although we will not need to suppose here that C is a complete partial
order in the orders just defined, that assumption is often made and then a
least element with respect to ≤+ must be present in C (we add this element
to C if necessary). In particular, to calculate the least fixed point of TP,C, it
is common practice to iterate on the least element. However, if we require
the least fixed point to coincide with any useful semantics, it will usually be
necessary to choose the default value c ∈ C to be the least element in the
ordering ≤+.

Furthermore, the allowable and excluded sets for s ∈ C can easily be
characterized in terms of these partial orders: s ∈ A�

t if and only if s ≤� t,
see [44, Proposition 3.10]. Because of this fact, the following result plays an
important role in the construction of the network to compute TP,C, as we see
later.
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Proposition 1. Suppose that ( is a finitely-determined binary operation on
C and that M is a countable set. Then a product

⊙
i∈M ti evaluates to the

element s ∈ C, where s is the least element in the ordering ≤� such that
ti ∈ A�

s for all i ∈M .

Proof. Assume that
⊙

i∈M ti = s. Then each ti is an allowable value for s and
so we certainly have ti ∈ A�

s for all i ∈M .
Now assume that {ti | i ∈M} ⊆ A�

t ; we want to show that s =
⊙

i∈M ti ∈
A�

t , for then it will follow that s ≤� t, as required. By Theorem 1, we may
suppose that M is finite, M = {1, . . . , n}, say. Since ti ≤� t for i = 1, . . . , n,
we have ti ( t = t for i = 1, . . . , n. Therefore, by Statement 1 of Theorem 1,
we obtain t =

⊙
i∈M (ti ( t) = (

⊙
i∈M ti) ( t = s ( t. It follows that s ≤� t,

and the proof is complete.

In what follows throughout this section, C will denote a set endowed with
binary operations + and ×; furthermore, + at least will be assumed to be
finitely determined and × will be assumed to be associative for simplicity. In
§ 11.3.3 and § 11.3.4, we will also need to assume that × is finitely determined.
In fact, it transpires that our main definition (but not all our results) can be
made simply in the context of the set C with sufficient completeness properties,
namely, that arbitrary countable sums can be defined.

Of particular interest to us are the following three cases.
(1) C is a set of truth values, + is disjunction ∨ and × is conjunction ∧.
(2) C is a c-semiring (constraint-based semiring) as considered in [25]. Thus,
C is a semiring, where the top element in the order ≤× is the identity element
0 for +, and the top element in the order ≤+ is the identity element 1 for ×.
In addition, + is idempotent, × is commutative, and 1 annihilates C relative
to +, that is, 1 + c = c+ 1 = 1 for all elements c ∈ C.
(3) C is the set Lm of truth values considered in [32], + is max and × is min.
These will be discussed briefly in Example 3.

11.3.2 The operator TP,C

We next turn to giving the definition of the operator TP,C.
Let L be a first-order language, see [46] for notation and undefined terms

relating to conventional logic programming, and suppose that C is given. By
a C-normal logic program P or a normal logic program P defined over C, we
mean a finite set of clauses or rules of the type A ← L1, . . . , Ln (n may be
0, by the usual abuse of notation), where A is an atom in L and the Lj, for
1 ≤ j ≤ n, are either literals in L or are elements of C. By a C-interpretation
or just interpretation I for P , we mean a mapping I : BP → C, where BP

denotes the Herbrand base for P . We immediately extend I to ¬ · BP by
I(¬A) = ¬I(A), for all A ∈ BP , and to BP ∪¬·BP ∪C by setting I(c) = c for
all c ∈ C. Finally, we let IP,C or simply IP denote the set of all C-interpretations
for P ordered by )+, that is, by the pointwise ordering relative to ≤+. Notice
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that the value I(L1, . . . , Ln) of I on any clause body is uniquely determined4

by I(L1, . . . , Ln) = I(L1)× . . .× I(Ln).
To define the semantic operator TP,C, we essentially follow [41], allowing

for our extra generality, in first defining the sets P ∗ and P ∗∗ associated with
P . To define P ∗, we first put in P ∗ all ground instances of clauses of P whose
bodies are non-empty. Second, if a clause A ← with empty body occurs in
P , add A ← c to P ∗. Finally, if the ground atom A is not yet the head of
any member of P ∗, add A ← c to P ∗. To define P ∗∗, we note that there
may be many, even denumerably many, elements A← C1, A← C2, . . . of P ∗

having the same head A. We replace them with A ← C1 + C2 + . . ., where
C1 +C2 + . . . is to be thought of as a formal sum. Doing this for each A gives
us the set P ∗∗. Now, each ground atom A is the head of exactly one element
A ← C1 + C2 + . . . of P ∗∗, and it is common practice to work with P ∗∗ in
place of P . Indeed, A← C1+C2+ . . . may be written A←

∑
i Ci and referred

to as a (or as the) pseudo-clause with head A and body
∑

i Ci.

Definition 2. (See [41]) Let P be a C-normal logic program. We define TP,C :
IP,C → IP,C as follows. For any I ∈ IP,C and A ∈ BP , we set

TP,C(I)(A) = I(
∑

i Ci) =
∑

iI(Ci),

where A ←
∑

iCi is the unique pseudo-clause in P ∗∗ whose head is A. Note
that when C is understood, we may denote TP,C simply by TP .

We note that I(
∑

iCi) =
∑

i I(Ci) is well-defined in C by Theorem 1.
Indeed,

∑
iI(Ci) may be a denumerable sum in C, and it is this observation

which motivates the introduction of the notion of finite determinedness.

Example 3. Some special cases of TP,C. As mentioned in the introduction, the
operator TP,C includes a number of important cases simply by choosing C
suitably, and we briefly consider this point next.
(1) The standard semantics of logic programming. Choosing C to be classical
two-valued logic, Kleene’s strong three-valued logic, and FOUR, one recovers
respectively the usual single-step operator TP , Fitting’s three-valued operator
ΦP , and Fitting’s four-valued operator ΨP , see [41]. Hence, one recovers the
associated semantics as the least fixed points of TP,C.

Furthermore, in [47], Wendt studied the fixpoint completion, fix(P ), of
a normal logic program P introduced by Dung and Kanchanasut in [48].
The fixpoint completion is a normal logic program in which all body liter-
als are negated, and is obtained by a complete unfolding of the recursion
through positive literals in the clauses of a program. In fact, Wendt ob-
tained interesting connections between various semantic operators by means
of fix(P ). Specifically, he showed that for any normal logic program P , we
have (i) GLP (I) = Tfix(P )(I) for any two-valued interpretation I, and (ii)

4 This is meaningful even if × is not associative provided bracketing is introduced
and respected.
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ΨP (I) = Φfix(P )(I) for any three-valued interpretation I, where GLP is the
well-known operator of Gelfond and Lifschitz used in defining the stable-model
semantics, and ΨP is the operator used in [49] to characterize the well-founded
semantics of P . These connections have the immediate corollary thatGLP and
ΨP can be seen as special cases of TP,C, and hence that the well-founded and
stable-model semantics can be viewed as special cases of the fixed points of
TP,C.
(2) Constraint logic programs. A semiring-based constraint logic program P ,
see [25], consists of a finite set of clauses each of which is of the form

A← L1, L2, . . . , Lk, (11.1)

where A is an atom and the Li are literals or is of the form

A← a, (11.2)

where A is an atom and a is any semiring value. Those clauses with a semiring
value in the body constitute the constraints and are also known as “facts”.
The distinguished values c and c in a c-semiring are 1 and 0 respectively.
Thus, when constructing P ∗ for a semiring-based constraint logic program P ,
unit clauses A ← are replaced by A ← 1 and for any atom A not the head
of a clause, we add the clause A← 0 to P ∗.

In this context, an interpretation I is a mapping I : BP → S, where
S = C is the underlying c-semiring, and we denote by IP,S the set of all
such interpretations. Finally, associated with each semiring-based constraint
logic program P is a consequence operator TP,S : IP,S → IP,S defined in [25]
essentially as follows.

Definition 3. Given an interpretation I and a ground atom A, we define
TP,S(I) by

TP,S(I)(A) =
∑

i I(Ci),

where A←
∑

iCi is the unique pseudo-clause whose head is A, and I(Ci) is
defined as follows. We set I(Ci) = a when A ←

∑
iCi is the fact A ← a,

and otherwise when A ←
∑

iCi is not a fact of the form A ← a, we set
I(Ci) =

∏ni

j=1 I(L
i
j), where Ci = Li

1, . . . , L
i
ni

, say.

It is easy to see that if P is a semiring-based constraint logic program,
then the semantic operator TP,C coincides with TP,S when we take C to be
the c-semiring S underlying P , as already observed.

Another example of interest in this context concerns uncertainty in rule-
based systems, such as those considered in [32], but we omit the details.

11.3.3 Towards the Computation of TP,C by ANN

As noted in the introduction, an algorithm is presented in [1] for constructing
an ANN which computes TP exactly for any given propositional logic program
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P . Indeed, it is further shown in [1] that 2-layer binary threshold feedforward
networks cannot do this. In the algorithms discussed in [1], single units hold
the truth values of atoms and clauses in P . A unit outputs 1 if the corre-
sponding atom/clause is true with respect to the interpretation presented to
the network, and outputs 0 if the corresponding atom/clause is false. How-
ever, when dealing with many-valued logics or with sets C with more than two
elements, single units can compute neither products nor sums of elements.

In this subsection and the next, we discuss the computation by ANN of the
semantic operator TP,C determined by a propositional normal logic program
P defined over some set C. This is done by simulating the clauses and the
connections between the body literals in the clauses of P . This requires that
we represent elements of C by units, or combinations of them, in ANN and
then simulate the operations of + and × in C by computations in ANN. To
keep matters simple, and since we are not employing learning algorithms here,
we shall focus our attention on binary threshold units only.

In order to define TP,C, it is not even necessary for multiplication to be
commutative because only finite products occur in the bodies of elements of P
and P ∗∗. Nevertheless, it will be necessary here in computing TP,C by ANN to
impose the condition that multiplication is in fact finitely determined, since we
need to make use of Proposition 1 relative to both addition and multiplication.

We shall focus on finite sets C with n elements listed in some fixed order,
C = {c1, c2, . . . , cn} or C = {t1, t2, . . . , tn}, say. In order to simulate the opera-
tions in C by means of ANN, we need to represent the elements of C in a form
amenable to their manipulation by ANN. To do this, we represent elements
of C by vectors of n units5, where the first unit represents c1, the second unit
represents c2, and so on. Hence, a vector of units with the first unit activated,
or containing 1, represents c1, a vector with the second unit activated, or con-
taining 1, represents c2, etc. Indeed, it will sometimes be convenient to denote
such vectors by binary strings of length n, and to refer to the unit in the i-th
position of a string as the i-th unit or the ci-unit or the unit ci; as is common,
we represent these vectors geometrically by strings of not-necessarily adjacent
rectangles. Note that we do not allow more than one unit to be activated at
any given time in any of the vectors representing elements of C, and hence all
but one of the units in such vectors contain 0. Furthermore, when the input
is consistent with this, we shall see from the constructions we make that the
output of any network we employ is consistent with it also.

Example 4. Suppose that C = FOUR = {t, u, b, f}, listed as shown. Then t is
represented by 1000, u by 0100, b by 0010, and f by 0001.

In general, the operations in C are not linearly separable, and therefore
we need two layers to compute addition and two to compute multiplication.
As usual, we take the standard threshold for binary threshold units to be

5 It is convenient sometimes to view them as column vectors.
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0.5. This ensures that the Heaviside function outputs 1 if the input is strictly
greater than 0, rather than greater than or equal to 0.

Definition 4. A multiplication (×) unit or a conjunction (∧) unit MU for
a given set C is a 2-layer ANN in which each layer is a vector of n binary
threshold units c1, c2, . . . , cn corresponding to the n elements of C. The units in
the input layer have thresholds l−0.5, where l is the number of elements being
multiplied or conjoined, and all output units have threshold 0.5. We connect
input unit ci to the output unit ci with weight 1 and to any unit cj in the
output layer, where ci <× cj, with weight −1.
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Fig. 11.2. A conjunction unit for FOUR. The full arrows represent connections
with weight 1, and the broken arrows represent connections with weight −1.

An input layer representing a product of l elements of C is connected to
a multiplication unit MU in the following way. For each element c of the
product, where c is represented by the n units c1, c2, . . . , cn, the unit cj is
connected, with weight 1, to the cj-unit in the input layer of MU and is also
connected, with weight 1, to any unit ck in the input layer of MU for which
cj <× ck. For a negated element d = ¬c in the product, we connect, with
weight 1, cj to the unit representing ¬cj in the input layer of MU and also,
with weight 1, to any unit ck in the input layer of MU for which ¬cj <× ck.

Proposition 2. A multiplication or conjunction unit MU computes the value
of a product or conjunction of l elements of C when it is connected to an input
layer as just described.

Proof. The proof ultimately depends on Proposition 1 and indeed MU , in
effect, counts the number of elements of C which are in the allowable set A×

s

for each s ∈ C. Suppose given a product s1 × s2 × · · · × sl, of l elements of C,
whose value is equal to ci ∈ C, so that each of the elements in this product is
an allowable value for ci. By the manner of connecting the units representing
the sk to the input layer of MU , the cj-unit in the input layer of MU will be
activated if and only if ci ≤× cj . By construction of MU , any cj-unit in the
output layer of MU for which the cj-unit in the input layer is activated will
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receive an input of 1 (= 1×1). However, any cj-unit in the output layer ofMU
for which ci <× cj will also receive negative input whereas the unit ci itself
will receive no such input. Therefore, the unit ci is the only unit activated in
the output layer of MU , as required.

Example 5. Consider again C = FOUR = {t, u, b, f}, and input the two ele-
ments u and b to a multiplication unit MU , where l = 2. It is readily checked
that the potentials of the units t, u and b in the input layer of MU are respec-
tively −1.5, −0.5 and −0.5, that their outputs are all equal to 0, and that the
outputs of the units t, u and b in the output layer of MU are also all equal
to 0. On the other hand, the f -unit in the input layer of MU has potential
1× 0 + 1× 0 + 1× 1 + 1× 0 + 1× 0 + 1× 1 + 1× 0 + 1× 0− 1.5 = 0.5, and
therefore the output of this unit is H(0.5) = 1. Furthermore, the input to the
f -unit in the output layer of MU is −1× 0− 1× 0− 1× 0+1× 1 = 1. Hence,
the output of this unit is H(1− 0.5) = 1, and so MU outputs 0001 or f and
this indeed is the value of u ∧ b, as required.

Note 1. (1) If we take l = 1, that is, if we consider a product of just one
element c of C, then a multiplication unit outputs c whenever c is input to
that unit. The same comment applies to addition units also, and these ob-
servations will be used in the network we construct in Theorem 2 to handle
clauses whose body contains just one element.
(2) Suppose that MU is a multiplication unit with l ≥ 2 and that c ∈ C.
By permanently connected a vector representing c to MU , we obtain a mul-
tiplication unit MU(c) which multiplies any input to it by c. We shall refer
to MU as a multiplication unit with one factor fixed at c. One can similarly
construct multiplication units with any number of factors fixed at elements of
C. Such units will be needed in Step 2.2 of the translation algorithm used in
Theorem 2.

The ideas behind multiplication units work, with minor changes, for addi-
tion or disjunction, and we consider this point next.

Definition 5. An addition (+) unit or a disjunction (∨) unit AU for a given
set C is a 2-layer ANN in which each layer is a vector of n binary threshold
units c1, c2, . . . , cn corresponding to the n elements of C. The units in the input
layer have threshold k − 0.5, where k is the number of elements to be added
or disjoined, and all output units have threshold 0.5. We connect input unit
ci to the output unit ci with weight 1 and to any unit cj in the output layer,
where ci <+ cj, with weight −1.

The manner of connecting an input layer to an addition unit, and the
calculation of a sum or disjunction of elements proceeds exactly as for multi-
plication, and again in effect makes use of Proposition 1.

Proposition 3. An addition or disjunction unit AU computes the value of a
sum or disjunction of k elements of C when it is connected to an input layer
as just described.
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Fig. 11.3. A disjunction unit for FOUR. The full arrows represent connections
with weight 1, and the broken arrows represent connections with weight −1.

Proof. The proof follows that of Proposition 2 with the necessary minor
changes.

Therefore, both operations in C can be simulated by ANN. However, there
are occasions when we desire the addition and multiplication units to be inde-
pendent of the number of elements being added or multiplied: for instance, if
we wish to add more clauses after the network has been constructed. To handle
this situation, “constant threshold” units for an arbitrary finitely-determined
C were introduced and studied in [50], but they will not be considered here.

When clauses of the form A← c, where c ∈ C, are present in the programs
we consider, we need to compute c in the middle layer of the networks of
Theorem 2, and this leads to the introduction of C-element units.

Definition 6. A C-element unit for c ∈ C is an ANN whose layers and con-
nections are the same as those in a multiplication unit except for the thresh-
olds. The thresholds for all units in the input layer are taken to be equal to 1
apart from the unit representing the element c, which has threshold taken to
be −0.5. All thresholds in the output layer are taken to be 0.5.

Note 2. Given any input a1, a2, . . . , an to a C-element unit for c, where all the
ai are either 0 or 1 and only one of them is equal to 1, the unit outputs c.
These units will also be needed in Step 2.2 of the translation algorithm of
Theorem 2.

Example 6. When A ← u is present in a program defined over FOUR, the
following unit is placed in the middle layer of the networks required to compute
TP,C, see Figure 11.4. Only u will be activated at any time and the unit will
always output 0100, or u, as desired.

11.3.4 Networks for the Computation of TP,C

Suppose that P is a propositional logic program defined over C. Then BP

is finite with m elements {A1, A2, . . . , Am}, say. However, we need to fix
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Fig. 11.4. u-unit for FOUR.

an order on the elements of BP , and henceforth will write BP as the list
(A1, A2, . . . , Am). For finite sets C of cardinality n, we can view interpreta-
tions I ∈ IP,C as vectors of length m in which each entry is itself a vector or
binary string of length n holding the value I(A) of a particular atom A. Thus,
the j-th entry corresponds to Aj in the sense that the string in question will
have 1 in its i-th place if I(Aj) = ci, and 0 otherwise. It follows that the input
layer of the network we are about to construct contains m× n units: the first
n units correspond to the values of the first atom A1, the second n correspond
to the values of the second atom A2, and so on.

Example 7. Take C to be FOUR = {t, u, b, f}, again ordered as listed, and
suppose that BP = (A1, A2, A3, A4, A5) has five elements. Then the following
vector (0100, 1000, 0001, 0100, 0010) represents a four-valued interpretation I
such that I(A1) = u, I(A2) = t, I(A3) = f , I(A4) = u, and I(A5) = b.

We are now in a position to present the following theorem.

Theorem 2. Suppose that both operations in C are finitely determined and
that P is a propositional logic program defined over C. Then we can construct
a 3-layer feedforward ANN F which contains multiplication units in its middle
layer and addition units in its output layer such that F computes TP,C.

Proof. Because of the preponderance of symbols “c” in the proof, it will ease
notation slightly to take C as the set {t1, t2, . . . , tn} instead of {c1, c2, . . . , cn}.

With the notation already established, let K be the number of clauses in
P ∗.

1. Set the first and third layers to be vectors of length m. Each entry in
the vector in the first layer is itself a vector of n binary threshold units
representing an element of BP , and each entry in the third layer is an
addition unit corresponding to an element of BP . Each unit in each vector
corresponds to the (truth) value of an atom Aj ∈ BP , as described above.

2. For the second layer:
2.1 Set the second layer to be a vector of length K, with each entry
determining the value of the corresponding clause body C by means of a
multiplication unit with input layer Ct1 , Ct2 , . . . , Ctn .



11 Connectionist Representation of Multi-Valued Logic Programs 275

2.2 For each clause in P ∗, connect each atom B in its body, C, with weight
1, as follows. Connect the unit Btj in the first layer of the network to the
unit Ctj in the input layer of the multiplication unit corresponding to C,
and to any unit Cs in the input layer of that same multiplication unit for
which tj <× s, where s ∈ C. For a negated literal L = ¬B in the body C
of the given clause, connect, with weight 1, the unit Btj in the first layer
of the network to the unit C¬tj in the input layer of the multiplication
unit corresponding to C, and, also with weight 1, to any unit Cs in the
input layer of that same multiplication unit for which ¬tj <× s, where
s ∈ C. Note that the connections specified here are precisely those given
earlier for connecting a layer to a multiplication unit. Furthermore:
(i) If the body C of the given clause contains elements c of C as well
as atoms B or literals L, then the corresponding multiplication unit is a
multiplication unit with one factor fixed at c for each such c, see Note 1.
(ii) If the given clause is of the form A← c for some c ∈ C, and hence con-
tains no atoms nor literals, the the corresponding “multiplication unit” is
a C-element unit for c, see Note 2. This unit is connected as a multipli-
cation unit to any vector in the first layer of the network representing an
element of BP .

3. For the clause A ← C in P ∗, connect the unit Ctj in the output layer
of the second layer of the network, with weight 1, to the unit Atj in the
input layer of the addition unit corresponding to A in the third layer of
the network, and, also with weight 1, to any unit As in the input layer of
that same addition unit for which tj <+ s, where s ∈ C. Note that the
connections specified here are precisely those given earlier for connecting
a layer to an addition unit.

Suppose that the interpretation I is presented to the input layer, and that
TP,C(I)(A) = s. Then I(

∑h
i=1 Ci) = s, where A ←

∑h
i=1 Ci is the unique

pseudo-clause in P ∗∗ with head A. Thus, I(Ci) ∈ A+
s for all 1 ≤ i ≤ h, as in

Definition 1. In particular, there exists j with R+,j
s ⊆ {I(Ci) | 1 ≤ i ≤ h}.

If R+,j
s = {r1, r2, . . . , rg}, then there are clauses A← Ci1 , A← Ci2 , . . . , A←

Cig in P ∗ such that I(Ciu ) = ru, for 1 ≤ u ≤ g. For each of these Ciu =
L1, L2, . . . , Ll, say, we have I(Li) ∈ A×

ru
. Therefore, there is a j′ such that

R×,j′
ru

= {q1, q2, . . . , qv} ⊆ A×
ru

and I(Lλ1) = q1, I(Lλ2) = q2, . . . , I(Lλv) =
qv, and all other I(Lμ) ∈ A×

ru
. Thus, each Cru

iu
in the input layer of the

corresponding Ciu multiplication unit in the second layer is activated since
it has a threshold of l − 0.5 and receives input from the l literals. The same
applies to any of the Crw

iu
, but they will also get input −1 from Cru

iu
in the

output layer of the multiplication unit. Equally, Cru

iu
in the output layer will

receive no negative input since no Cr
iu

with r <× ru can be activated in the
input layer, and thus only Cru

iu
will be activated in the output layer of the

multiplication unit. Next, As in the input layer of the A addition unit in the
third layer receives positive input from the h clauses of which A is the head.
All At with s <+ t will also be activated in the input layer of the A addition
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unit, but not in the output layer of this unit, since At in the output layer
will receive an input of −1 from As in the input layer. However, As will be
activated, as required, because it receives an input from As in the input layer
and no negative input because none of the At with t <+ s can be activated.

Conversely, if As is activated in the output layer of its addition unit in the
third layer, then no At with t <+ s can be activated, by construction of an
addition unit. Hence, the smallest t relative to ≤+ such that all the activated
C

tj

i have tj ∈ A+
t must be equal to s. Thus, the sum

∑h
i=1 I(Ci) = s, and

accordingly there must exist a j with R+,j
s = {r1, r2, . . . , rv} ⊆ {I(Ci) | 1 ≤

i ≤ h}. For any clause with Cr activated, where r ∈ A+
s , r is the smallest value

relative to ≤+ which is activated in the C multiplication unit in the second
layer. There cannot be any Ct activated with t <× r otherwise the body
L1, L2, . . . , Ll would evaluate to t under the present interpretation I, and not
to r as asserted. Thus, for this clause, we have that {I(Li) | 1 ≤ i ≤ l} ⊆ A×

r

and r is the smallest value relative to ≤× for which this is the case. Therefore,
I(L1)× . . .× I(Ll) = r, as desired.

Thus, TP,C(I)(A) = s if and only if As is activated in the third layer, and
the proof is complete.

Notice that, as a corollary of this result, for each propositional logic pro-
gram P , one can construct networks as given in Theorem 2, which compute,
respectively, not only the classical consequence operator TP , but also the
three-valued operator ΦP of Fitting, and the four-valued operator ΨP of Fit-
ting. Indeed, as shown in [16], one can construct conventional 3-layer feedfor-
ward networks to compute ΦP and ΨP containing only binary threshold units
and not using multiplication and addition units. 6

Example 8. Take C as FOUR again and consider the program P whose clauses
are A← A, b; A← D,¬E; A← u; D ←.

Here, BP = {A,D,E}, and P ∗ contains the five clauses: A ← A, b; A ←
D,¬E; A ← u; D ← t; E ← f , which we list as 1 to 5 as shown. Also, P ∗∗

contains the three clauses: A ← (A, b) + (D,¬E) + u; D ← t; E ← f . Thus,
for any interpretation I : BP → FOUR, we have TP,C(I)(A) = (I(A) ∧ b) ∨
(I(D) ∧ ¬I(E)) ∨ u, TP,C(I)(D) = I(t) = t, and TP,C(I)(E) = I(f) = f .

For the network F produced by applying Theorem 2, we have m = 3,
n = 4 and K = 5. Thus, the first layer contains three vectors (each of length
4) representing A, D and E, and the third layer contains three addition units
corresponding to A,D,E with k = 3, 1 and 1 respectively. The middle layer
contains five multiplication units corresponding to the five elements of P ∗.
The first of these has l = 2, has a factor fixed at b and is connected to the
unit A in the first layer. The second multiplication unit has l = 2 and is

6 See the thesis of Yvonne Kalinke: “Ein massiv paralleles Berechnungsmodell für
normale logische Programme”, Department of Computer Science, Dresden Uni-
versity of Technology, 1994, where these results are stated. We thank S. Hölldobler
for drawing this reference to our attention.
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connected to units D and E in the first layer. The other three units in the
second layer are C-element units for u, t and f respectively, and each may be
connected to E, say, in the first layer. On giving an interpretation I to F as
input, it is readily checked that F computes TP,C(I).

11.4 Annoted Logic Programs and the Operator TP

11.4.1 Lattice and Bilattice-Based Annotated Logic Programs

We now turn to the second class of extended logic programs we wish to con-
sider: annotated (bi)lattice-based logic programs. For a detailed exposition
of lattice- and bilattice-based annotated logic programs, see [35, 15]. The so-
called generalized annotated logic programs (GAPs) were introduced in [35]
and were shown to generalize annotation-free, and implication-based logic
programs as well as most of the various annotated logic programs introduced
to date. In [15], GAPs were extended to bilattice-based annotated logic pro-
grams (BAPs), which allowed us to introduce a continuous semantic operator
in place of the non-continuous semantic operator of [35]. We will therefore
take BAPs as the most general approach to annotated logic programming,
and use the semantic operator introduced for them, but we will concentrate,
in the main, only on a one-lattice fragment of BAPs in order to bring uni-
formity into the discussion of the current section and the previous section
which analysed sets of truth values with only one ordering defined on them.
This permits us to claim that the results described in the previous section are
extendable to BAPs with only variables allowed in annotations.

The notion of a bilattice was introduced in the 1980s as a generalization of
the famous lattice FOUR of Belnap (see Example 1) as a suitable structure for
interpreting different languages and programs when working with uncertainty
and incomplete or inconsistent databases, see [28, 29, 21, 22, 35] for further
details and further motivation.

Definition 7. [21] A bilattice B is a sextuple (B,∨,∧,⊕,⊗,¬) such that
(B,∨,∧) and (B,⊕,⊗) are both complete lattices, and ¬ : B → B is a map-
ping satisfying the following three properties: (¬)2 = IdB, ¬ is a dual lattice
homomorphism from (B,∨,∧) to (B,∧,∨), and ¬ is a lattice homomorphism
from (B,⊕,⊗) to itself.

The lattice (B,∨,∧) is traditionally thought of as generalizing the Boolean
lattice {false, true}, and is used for describing measures of truth and falsity.
The lattice (B,⊕,⊗) is thought of as measuring the amount of information
(or knowledge) between none and both (as in FOUR).

Let (L1,≤1) and (L2,≤2) denote two lattices, let x1, x2 denote arbitrary
elements of the lattice L1, and let y1, y2 denote arbitrary elements of the
lattice L2. Let ∩1,∪1 denote the meet respectively join defined in the lattice
L1, and let ∩2,∪2 denote the meet respectively join defined in the lattice L2.
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Now form the set of points L1 × L2. We define the usual orderings ≤t (the
truth ordering) and ≤k (the knowledge ordering) on L1 × L2 as follows.
(1) 〈x1, y1〉 ≤t 〈x2, y2〉 if and only if x1 ≤1 x2 and y2 ≤2 y1.
(2) 〈x1, y1〉 ≤k 〈x2, y2〉 if and only if x1 ≤1 x2 and y1 ≤2 y2.

We use here the fact that each distributive bilattice can be regarded as a
product of two lattices, see [29]. For convenience of presentation, we will treat
each bilattice we work with as isomorphic to some subset of B = L1 × L2 =
([0, 1],≤) × ([0, 1],≤), where [0, 1] is the unit interval of real numbers with
the linear ordering defined on it. Elements of such a bilattice are pairs. In
particular, (1, 0) and (0, 1) are the analogues of true and false and are maximal
respectively minimal in the truth ordering, whilst (1, 1) (or both) and (0, 0)
(or none) are respectively maximal and minimal elements in the knowledge
ordering.

We define an annotated bilattice-based language L to consist of individual
variables, constants, functions and predicate symbols together with annota-
tion terms which can consist of variables, constants and/or functions over a
bilattice. Bilattice-based languages allow, in general, six connectives and four
quantifiers, as follows: ⊕,⊗,∨,∧,¬,∼, Σ,Π, ∃, ∀. But in this chapter we re-
strict our attention to only one-lattice based BAPs and will work only with
⊕,⊗, Σ, the latter being the existential quantifier with respect to the knowl-
edge ordering. Returning to algebraic characterizations of many-valued logics,
we make the remark that ⊕ and ⊗ correspond to the operations + and × of
Section 11.3.1, and that Σ corresponds to infinite summation (+).

An annotated formula is defined inductively as follows: if R is an n-ary
predicate symbol, t1, . . . , tn are terms, and μ is an annotation term, then
R(t1, . . . , tn) : μ is an annotated formula (called an annotated atom). Anno-
tated atoms can be combined to form complex formulae using the connectives
and quantifiers.

A bilattice-based annotated logic program (BAP) P consists of a finite set
of annotated program clauses of the form

A : μ← L1 : μ1, . . . , Ln : μn,

where A : μ denotes an annotated atom called the head of the clause, and
L1 : μ1, . . . , Ln : μn denotes L1 : μ1⊗. . .⊗Ln : μn and is called the body of the
clause; each Li : μi is an annotated literal called an annotated body literal of
the clause. Individual and annotation variables in the body are thought of as
being existentially quantified using Σ. In [15], we showed how the remaining
connectives ⊕,∨,∧ can be introduced into BAPs, but we will not address this
issue here.

Each annotated atom A : μ is interpreted in two steps as follows: the first-
order atomic formula A is interpreted in B (we may write IB(A) → B to
indicate this process) using a domain of interpretation and a variable assign-
ment, see [28, 29, 35, 15] for further details. Then we define the interpretation
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IB as follows: if IB(A) ≥ μ, we put IB(A : μ) = 1, and IB(A : μ) = 0
otherwise.

Let IB be an interpretation for L and let F be a closed annotated formula
of L. Then IB is a model for F if IB(F ) = 1. We say that IB is a model for
a set S of annotated formulae if IB is a model for each annotated formula of
S. We say that F is a logical consequence of S if, for every interpretation IB
of L, IB is a model for S implies IB is a model for F .

Let BP and UP denote the annotation Herbrand base and the annotation
Herbrand universe for a program P respectively; they are essentially BP and
UP as defined in [46], but with annotation terms allowed in UP and attached
to ground formulae in BP . In common with conventional logic programming,
each Herbrand interpretation HI for P can be identified with the subset
{R(t1, . . . , tk) : α ∈ BP | R(t1, . . . , tk) : α receives the value 1 with respect to
IB} of BP , where R(t1, . . . , tk) : α denotes a typical element of BP . This set
constitutes an annotation Herbrand model for P . Finally, we let HIP,B denote
the set of all annotation Herbrand interpretations for P .

It was observed in [22, 14, 15, 37, 38], that the non-linear ordering of
(bi)lattices influences both model-theoretic properties and proof procedures
for (bi)lattice-based logics, and this distinguishes them from classical and even
fuzzy logic. In particular, both the semantic operator and SLD-resolution for
BAPs must reflect the non-linear ordering of bilattices, see [13, 14, 15].

In [15], we introduced a semantic operator TP for BAPs, proved its conti-
nuity and showed that it computes the least Herbrand model for a given BAP
as its least fixed point.

Definition 8. We define the mapping TP : HIP,B → HIP,B as follows: TP (HI)
denotes the set of all A : μ ∈ BP such that either

1. There is a strictly ground instance of a clause A : μ← L1 : μ1, . . . , Ln : μn

such that {L1 : μ′
1, . . . , Ln : μ′

n} ⊆ HI for some annotations μ′
1, . . . , μ

′
n,

and one of the following conditions holds for each μ′
i:

a) μ′
i ≥k μi,

b) μ′
i ≥k ⊗j∈Jiμj, where Ji is the finite set of those indices i, j ∈
{1, . . . n} such that Lj = Li

or
2. there are annotated strictly ground atoms A : μ∗

1, . . . , A : μ∗
k ∈ HI such

that μ ≤k μ
∗
1 ⊕ . . .⊕ μ∗

k.
7

Item 1a is the analogue of the conventional TP operator, see [46] for ex-
ample, and of the generalized semantic operator TP,C. Items 1b and 2 reflect
properties of the non-linear ordering defined on the set HIP,B of all inter-
pretations, as further illustrated in the next example. Note that the absence
of conditions 1b and 2 in the formulation of TP,C given in Section 11.3 is

7 Note that whenever F : μ ∈ HI and μ′ ≤k μ, then F : μ′ ∈ HI . Also, for each
formula F , F : (0, 0) ∈ HI .
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compensated for by the use of the ground completion P ∗∗ of a program P
whenever TP,C is applied.

Example 9. Consider a bilattice-based annotated logic program P which can
collect and process information about connectivity of some (probabilistic)
graph G. Suppose we have received information from two different sources:
one reports that there is an edge between nodes a and b, the other, that there
is no such. This is represented by the two unit clauses edge(a, b) : (1, 0) ←,
edge(a, b) : (0, 1) ←. It is reasonable to conclude that the information is con-
tradictory, that is, to conclude that edge(a, b) : (1, 1), and this fact is captured
by item 2. If, on the other hand, the program contains some clause of the form
disconnected(G) : (1, 1) ← connected(a, c) : (1, 0), connected(a, c) : (0, 1),
we may regard the clause disconnected(G) : (1, 1) ← connected(a, c) : (0, 0)
as equal to the initial clause. This fact is captured by item 1b.

Let B, A and C denote, respectively, edge(a, b), connected(a, c) and
disconnected(G). Consider the logic program: B : (0, 1) ←, B : (1, 0) ←,
A : (0, 0) ← B : (1, 1), C : (1, 1) ← A : (1, 0), A : (0, 1). The least fixed point of
TP is TP ↑ 3 = {B : (0, 1), B : (1, 0), B : (1, 1), A : (0, 0), C : (1, 1)}. However,
the item 1.a (corresponding to the classical semantic operator) would allow
us to compute only TP ↑ 1 = {B : (0, 1), B : (1, 0)}, that is, to compute only
explicit consequences of the program, which then leads to a contradiction in
the two-valued case.

As was shown in [15], the BAPs introduced here generalize different sorts of
implication-based and annotation-free logic programs, such as those of [28, 29].
The fragment of BAPs described here is computationally equivalent to GAPs
- annotated logic programs based on one-lattice structures. This gives a very
close connection between the structures used to interpret GAPs respectively
BAPs and captured by the algebraic analysis of the operations + and× on the
set C, as described in Section 11.3.1. Namely, both GAPs and the fragment
of BAPs described here, both taken only with variable annotations, yield the
general semantic characterizations of Sections 11.3.1 and 11.3.2, as follows.

Definition 9. Let P be an annotation-free logic program with clauses of the
form A← B1, . . . , Bn. We construct P ′, an annotated logic program derived
from P , as follows. For each clause A ← B1, . . . , Bn in P , add a clause
A : μ← B1 : μ1, . . . , Bn : μn to P ′, where each μi is an annotation variable.

The following proposition is an adaptation of the relevant proposition from
[35, 15].

Proposition 4. Let A be a ground first-order atomic formula and let α be an
annotation constant. Then I(A) = α in the least fixed point of TP,C if and
only if A : α is in the least fixed point of TP .

We now turn to the description of the neural networks computing TP .
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11.4.2 Neural Networks for (Bi)Lattice-Based Annotated Logic
Programs

We extend the approach of [1] described in Section 11.3 to learning neural
networks which can compute logical consequences of BAPs. This will allow
us to introduce hypothetical and uncertain reasoning based on BAPs into the
framework of neural-symbolic computation. Bilattice-based logic programs
can work with conflicting sources of information and inconsistent databases.
Therefore, neural networks corresponding to these logic programs should re-
flect this facility as well, and this is why we introduce some forms of learning
into neural networks. These forms of learning can be seen as corresponding to
unsupervised Hebbian learning which is widely implemented in neurocomput-
ing. The general idea behind Hebbian learning is that positively correlated
activities of two neurons strengthen the weight of the connection between
them and uncorrelated or negatively correlated activities weaken the weight
of the connection between them (the latter form is known as anti-Hebbian
learning).

The general conventional definition of Hebbian learning is given as follows,
see [51] for further details. Let k and j denote two units and wkj denote the
weight of a connection from j to k. We denote the value of j at time t by
vj(t) and the potential of k at time t by pk(t). Then the rate of change in the
weight between j and k is expressed in the form

Δwkj(t) = F (vj(t), pk(t)),

where F is some function. As a special case of this formula, it is common to
write

Δwkj(t) = η(vj(t))(pk(t)),

where η is a constant that determines the rate of learning and is positive in
the case of Hebbian learning and negative in the case of anti-Hebbian learning.
Finally, we update by wkj(t+ 1) = wkj(t) +Δwkj(t).

In this section, we will compare the two learning functions we introduce
with this conventional definition of Hebbian learning. First, we prove a theo-
rem establishing a relationship between learning neural networks and BAPs
with no function symbols occurring in either individual or annotation terms.
(Since the annotation Herbrand base for these programs is finite, they can
equivalently be seen as propositional bilattice-based logic programs with no
functions allowed in the annotations.)

Theorem 3. For each function-free BAP P , there exists a 3-layer feedforward
learning neural network which computes TP .

Proof. Let m and n be the number of strictly ground annotated atoms from
the annotation Herbrand base BP and the number of clauses occurring in P
respectively. Without loss of generality, we may assume that the annotated
atoms are ordered. The network associated with P can now be constructed
by the following translation algorithm.
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1. The input and output layers are vectors of binary threshold units of length
k, 1 ≤ k ≤ m, where the i-th unit in the input and output layers repre-
sents the i-th strictly ground annotated atom. The threshold of each unit
occurring in the input or output layer is set to 0.5.

2. For each clause of the form A : (α, β) ← B1 : (α1, β1), . . . , Bm : (αm, βm),
m ≥ 0, in P , do the following.
2.1 Add a binary threshold unit c to the hidden layer.
2.2 Connect c to the unit representing A : (α, β) in the output layer with

weight 1. We will call connections of this type 1-connections.
2.3 For each atom Bj : (αj , βj) in the input layer, connect the unit repre-

senting Bj : (αj , βj) to c and set the weight to 1. (We will call these
connections 1-connections also.)

2.4 Set the threshold θc of c to l− 0.5, where l is the number of atoms in
B1 : (α1, β1), . . . , Bm : (αm, βm).

2.5 If some input unit representing B : (α, β) is connected to a hidden
unit c, connect each of the input units representing annotated atoms
B : (αi, βi), . . . , B : (αj , βj) to c. These connections will be called
⊗-connections. The weights of these connections will depend on a
learning function. If the function is inactive, set the weight of each
⊗-connection to 0.

3. If there are units representing atoms of the form B : (αi, βi), . . . , B :
(αj , βj) in the input and output layers, correlate them as follows. For each
B : (αi, βi), connect the unit representing B : (αi, βi) in the input layer to
each of the units representing B : (αi, βi), . . . , B : (αj , βj) in the output
layer. These connections will be called ⊕-connections. If an ⊕-connection
is set between two atoms with different annotations, we consider them as
being connected via hidden units with thresholds 0. If an ⊕-connection
is set between input and output units representing the same annotated
atom B : (α, β), we set the threshold of the hidden unit connecting them
to −0.5, and we will call them ⊕-hidden units, so as to distinguish the
hidden units of this type. The weights of all these ⊕-connections will
depend on a learning function. If the function is inactive, set the weight
of each ⊕-connection to 0.

4. Set all the weights which are not covered by these rules to 0. For each
annotated atom A : (α, β), connect the unit representing A : (α, β) in the
output layer to the unit representing it in the input layer with weight 1.

Allow two learning functions to be embedded into the ⊗ -connections and
the ⊕ -connections. We let vi denote the value of the input unit representing
B : (αi, βi) and let pc denote the potential of the unit c.

Let a unit representing B : (αi, βi) in the input layer be denoted by i.
If i is connected to a hidden unit c via an ⊗ -connection, then a learning
function φ1 is associated to this connection as defined next. We let φ1 =
Δwci(t−1) = vi(t−1)(−pc(t−1)+0.5) become active and change the weight
of the ⊗-connection from i to c at time t if i became activated at time (t−1);
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units representing atoms B : (αj , βj), . . . , B : (αk, βk) in the input layer are
connected to c via 1-connections, and (αi, βi) ≥k (αj , βj)⊗ . . .⊗ (αk, βk).

Function φ2 is embedded only into connections of type ⊕, namely, into
⊕-connections between hidden and output layers. Let o be an output unit
representing an annotated atom B : (αi, βi). Apply φ2 = Δwoc(t − 2) =
vc(t− 2)(po(t− 2)+ 1.5) to change woc at time t if (i) φ2 is embedded into an
⊕-connection from the ⊕-hidden unit c to o, and there are output units rep-
resenting annotated atoms B : (αj , βj), . . . , B : (αk, βk) which are connected
to the unit o via ⊕-connections, and (ii) these output units became activated
at time t− 2 and (αi, βi) ≤k (αj , βj)⊕ . . .⊕ (αk, βk).

Each annotation Herbrand interpretation HI for P can be represented
by a binary vector (v1, . . . , vm). Such an interpretation is given as input to
the network by externally activating corresponding units of the input layer at
time t0. It remains to show that A : (α, β) ∈ TP ↑ n for some n if and only if
the unit representing A : (α, β) becomes active at time t+ 2, for some t. The
proof that this is so proceeds by routine induction.

Example 10. The following diagram displays the neural network which com-
putes TP ↑ 3 from Example 9. Without the functions φ1, φ2, the neural
network will compute only TP ↑ 1 = {B : (0, 1), B : (1, 0)}, and these are
explicit logical consequences of the program. Indeed, it is the use of φ1 and
φ2 that allows the neural network to compute TP ↑ 3. Note that the arrows

�� , ����� , �� denote respectively 1-connections, ⊗-connections
and ⊕-connections, and we have marked by φ1, φ2 the connections which are
activated by the learning functions.8

A:(1,1) A:(1,0) A:(0,1) A:(0,0) B:(1,1) B:(1,0) B:(0,1) B:(0,0) C:(1,1) C:(1,0) C:(0,1) C:(0,0)


��
����0.5 
��
����0.5 
��
����0.5 
��
����0.5 
��
����0.5 
��
����0.5 
��
����0.5 
��
����0.5 
��
����0.5 
��
����0.5 
��
����0.5 
��
����0.5

φ2 φ2

��������−0.5

��

��������−0.5

��

��������−0.5

��


��
����0.5

��

��������−0.5

��

��������−0.5

��

��������−0.5

��

��������−0.5

��


��
����1.5

��

��������−0.5

��

��������−0.5

��

��������−0.5

��

φ1

φ1


��
����0.5

�����������������������

��

�� �� ��


��
����0.5

���������������������������������������

��

�� �� ��


��
����0.5

���������������������������������

��

��  ��


��
����0.5

����������������

��

��!!""


��
����0.5

!!����������

��

�� �� ��


��
����0.5

##�
�

�
�

�
�

�

��

��

�� ��


��
����0.5

$$�
�

�
�

�
�

�
�

�

���� ��

��


��
����0.5

%%� � � � � � � � � � �

��

����&&


��
����0.5

��

�� �� ��


��
����0.5

��

��

�� ��


��
����0.5

!! ��

��

��


��
����0.5

""   ��

��

A:(1,1) A:(1,0) A:(0,1) A:(0,0) B:(1,1) B:(1,0) B:(0,1) B:(0,0) C:(1,1) C:(1,0) C:(0,1) C:(0,0)

We can make several conclusions from the construction of Theorem 3.

8 We do not draw here the connections which make this network recurrent.
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• Neurons representing annotated atoms with identical first-order (or propo-
sitional) components are joined into multineurons in which units are cor-
related using ⊕- and ⊗-connections.

• The learning function φ2 roughly corresponds to Hebbian learning, with
the rate of learning η2 = 1, the learning function φ1 corresponds to anti-
Hebbian learning with the rate of learning η1 = −1, and we regard η1 as
negative because the factor pc in the formula for φ1 is multiplied by (−1).

• The main problem Hebbian learning causes is that the weights of connec-
tions with embedded learning functions tend to grow exponentially, which
cannot fit the model of biological neurons. This is why traditionally func-
tions are introduced to bound the growth. In the neural networks we have
built, some of the weights may grow with iterations, but the growth will be
very slow because we are using binary threshold units in the computation
of each vi.

11.5 Relationships Between the Neural Networks
Simulating TP,C and TP

In this section, we will briefly compare the neural networks computing TP,C

and TP , and establish a result which relates the computations performed by
these two neural networks.

Both the ANNs constructed here can be seen as direct extensions of the
work of [1] in that the fundamental processing unit in each case is the binary
threshold unit, including those units employed in multiplication and adddi-
tion units. This property of the neural networks of Section 11.4 is a direct
consequence of the fact that annotated logic programs eventually receive a
two-valued meaning. The neural networks of Section 11.3 could be designed
to process many-valued vectors, as they are built upon annotation-free logic
programs which receive their meaning only via many-valued interpretations,
but we use only binary vectors here.

The main difference between the two types of neural networks is that
the ANNs of Section 11.3 require two additional layers in comparison with
those of [1] and Section 11.4, although their connections are less complex.
On the other hand, the ANNs of Section 11.4 have complex connections and
compensate for “missing” layers by applying learning functions in the spirit of
neurocomputing. The latter property can perhaps be seen as an optimization
of the ANNs built in Section 11.3, although the ANNs of Section 11.3 can
compute many-valued semantic operators without using learning functions.

We close the chapter with the following important result.

Theorem 4. Let P denote an annotation-free logic program, and let P ′ denote
the annotated logic program derived from P . Then there exist an ANN1 (as
constructed in Section 11.3.4) simulating TP,C and an ANN2 (as constructed
in Section 11.4.2) simulating TP ′ such that the output vector of ANN1 at each
time t+ 2 is equal to the output vector of ANN2 at time t.
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Proof. We use Definition 9 and Proposition 4.
Without loss of generality, we assume that all the ground atoms and all

the values are ordered. When constructing the networks ANN1 and ANN2,
we assume also that all the input and output units of ANN1 and ANN2 are
synchronized in that the order at which each m-th proposition with n-th value
appears in ANN1 corresponds to the order in which each unit representing
each Am : μn appears in ANN2.

The rest of the proof makes use of the constructions of Theorems 2 and
3 and proceeds by routine induction on the number of iterations of TP,C and
TP .

11.6 Conclusions and Further Work

We have given a very general algebraic characterization of many-valued
annotation-free logic programs, and have shown how this analysis can be ex-
tended to other types of many-valued logic programs. We have also shown how
two very general semantic operators, the generalized semantic operator TP,C

for annotation-free logic programs and the enriched semantic operator TP for
annotated logic programs, can be defined, and we have established semantical
and computational relationships between them.

Furthermore, we have proposed neural networks in the style of [1] for com-
puting TP,C and TP . The neural networks we have given for computing TP,C

require several additional layers in order to reflect the many-valued properties
of TP,C that they simulate. On the other hand, the neural networks computing
TP have learning functions embedded in them which compensate for the use
of additional layers. It would be interesting to carry out a detailed analysis
of the complexity (time and space) of both of these neural networks and to
compare them on complexity grounds.

Future work in the general direction of the chapter includes the following.

1. Further analysis of the properties of many-valued semantic operators, as
given, for example, in [31], and its implications for the construction of the
corresponding networks.

2. The neural networks computing the operators considered here could per-
haps be optimized if transformed into non-binary neural networks. This
might result, for example, in the removal of the annotations used in the
representation of input and output units.

3. Another area of our future research is to investigate how learning can op-
timize and improve the representation of different neuro-symbolic systems
and the computations performed by them.
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