
First-order deduction in neural networks

Ekaterina Komendantskaya1

Department of Mathematics, University College Cork, Cork, Ireland
e.komendantskaya@mars.ucc.ie ?

Abstract. We show how the algorithm of SLD-resolution for first-order
logic programs can be performed in connectionist neural networks. The
most significant properties of the resulting neural networks are their
finiteness and ability to learn.
Key words: Logic programs, artificial neural networks, SLD-resolution,
connectionism, neuro-symbolic integration

1 Introduction

The field of neuro-symbolic integration is stimulated by the fact that formal
theories (as studied in mathematical logic and used in automated reasoning)
are commonly recognised as deductive systems which lack such properties of
human reasoning as adaptation, learning and self-organisation. On the other
hand, neural networks, introduced as a mathematical model of neurons in human
brains, claim to possess all of the mentioned abilities, and moreover, they perform
parallel computations and hence can compute faster than classical algorithms. As
a step towards integration of the two paradigms, there were built connectionist
neural networks [7, 8] which can simulate the work of semantic operator TP

for propositional and (function-free) first-order logic programs. Those neural
networks, however, were essentially deductive and could not learn or perform
any form of self-organisation or adaptation; they could not even make deduction
faster or more effective. There were several attempts to bring learning and self-
adaptation in these neural networks, see, for example, [1–3, 10] for some further
developments.

The other disconcerting property of the connectionist neural networks com-
puting semantic operators is that they depend on ground instances of clauses,
and in case of first-order logic programs containing function symbols will re-
quire infinitely long layers to compute the least fixed point of TP . This property
does not agree with the very idea of neurocomputing, which advocates another
principle of computation: effectiveness of both natural and artificial neural net-
works depends primary on their architecture, which is finite, but allows very
sophisticated and “well-trained” interconnections between neurons.

In this paper we draw our inspiration from the neural networks of [7, 8],
but modify them as follows. In Section 3, we build SLD neural networks which
? I thank the Boole Centre for Research in Informatics (BCRI) at University College

Cork for substantial support in the preparation of this paper. I am also grateful to
the anonymous referees for their useful comments and suggestions.

simulate the work of SLD-resolution, as opposed to computation of semantic
operator in [7, 8]. We show that these neural networks have several advantages
comparing with neural networks of [7, 8]. First of all, they embed several learn-
ing functions, and thus perform different types of supervised and unsupervised
learning recognised in neurocomputing. Furthermore, SLD neural networks do
not require infinite number of neurons, and are able to perform resolution for any
first-order logic program using finite number of units. The two properties of the
SLD neural networks - finiteness and ability to learn - bring the neuro-symbolic
computations closer to the practically efficient methods of neurocomputing [5],
see also [10] for a more detailed analysis of the topic.

2 Background definitions

We fix a first-order language L consisting of constant symbols a1, a2, . . ., variables
x1, x2, . . ., function symbols of different arities f1, f2, . . ., predicate symbols of
different arities Q1, Q2, . . ., connectives ¬,∧,∨ and quantifiers ∀,∃. We follow
the conventional definition of a term and a formula.

Formula of the form ∀x(A ∨ ¬B1 ∨ . . . ∨ ¬Bn), where A is an atom and
each Bi is either an atom or a negation of an atom is called a Horn clause. A
Logic Program P is a set of Horn clauses, and it is common to use the notation
A← B1, . . . , Bn, assuming that B1, . . . , Bn are quantified using ∃ and connected
using ∧, see [12] for further details. If each Bi is positive, then we call the clause
definite. The logic program that contains only definite clauses is called a definite
logic program. In this paper, we work only with definite logic programs.

Example 1. Consider the following logic program P1, which determines, for each
pair of integers x1 and x2, whether x1

√
x2 is defined. Let Q1 denote the property

to be “defined”, (f1(x1, x2)) denote x1
√

x2; Q2, Q3 and Q4 denote, respectively,
the property of being an even number, nonnegative number and odd number.

Q1(f1(x1, x2))← Q2(x1), Q3(x2)
Q1(f1(x1, x2))← Q4(x1).

Logic programs are run by the algorithms of unification and SLD-resolution,
see [12] for detailed exposition of it. We briefly survey the notions following
[11–13]. Some useful background definitions and the unification algorithm are
summarised in the following table:
Let S be a finite set of atoms. A substitution θ is called a unifier for S if S is a singleton. A
unifier θ for S is called a most general unifier (mgu) for S if, for each unifier σ of S, there exists a
substitution γ such that σ = θγ. To find the disagreement set DS of S locate the leftmost symbol
position at which not all atoms in S have the same symbol and extract from each atom in S the
term beginning at that symbol position. The set of all such terms is the disagreement set.
Unification algorithm:

1. Put k = 0 and σ0 = ε.
2. If Sσk is a singleton, then stop; σk is an mgu of S. Otherwise, find the disagreement set Dk

of Sσk.
3. If there exist a variable v and a term t in Dk such that v does not occur in t, then put

θk+1 = θk{v/t}, increment k and go to 2. Otherwise, stop; S is not unifiable.

The Unification Theorem establishes that, for any finite S, if S is unifiable,
then the unification algorithm terminates and gives an mgu for S. If S is not
unifiable, then the unification algorithm terminates and reports this fact.

The background notions needed to define SLD-resolution are summarised in
the following table:
Let a goal G be ← A1, . . . , Am, . . . , Ak and a clause C be A ← B1, . . . , Bq . Then G′ is derived
from G and C using mgu θ if the following conditions hold:

• Am is an atom, called the selected atom, in G.
• θ is an mgu of Am and A.
• G′ is the goal ← (A1, . . . , Am−1, B1, . . . , Bq, Am+1, . . . , Ak)θ.

An SLD-derivation of P ∪ {G} consists of a sequence of goals G = G0, G1, . . ., a sequence
C1, C2, . . . of variants of program clauses of P and a sequence θ1, θ2, . . . of mgu’s such that each
Gi+1 is derived from Gi and Ci+1 using θi+1. An SLD-refutation of P ∪ {G} is a finite SLD-
derivation of P ∪ {G} which has the empty clause � as the last goal of derivation. If Gn = �, we
say that refutation has length n. The success set of P is the set of all A ∈ BP such P ∪ {← A}
has an SLD-refutation.
If θ1, . . . , θn is the sequence of mgus used in SLD-refutation of P ∪ {G}, then a computed answer
θ for P ∪ {G} is obtained by restricting θ1, . . . , θn to variables of G. We say that θ is a correct
answer for P ∪ {G} if ∀((G)θ) is a logical consequence of P .

The SLD-resolution is sound and complete. We illustrate the work of SLD-
resolution by means of our running example as follows.

Example 2. Consider the logic program P1 from Example 1. To keep computa-
tions simple, we chose a ground goal G0 =← Q1(f1(a1, a2)), where a1 = 2 and
a2 = 3, and add Q2(a1) ← and Q3(a2) ← to the database. Now the process of
SLD-refutation will proceed as follows:

1. G0 =← Q1(f1(a1, a2)) is unifiable with Q1(f1(x1, x2)), and the algorithm of
unification can be applied as follows:
Form a set S = {Q1(f1(a1, a2)), Q1(f1(x1, x2))}. Form the disagreement set
DS = {x1, a1}. Put θ1 = x1/a1. Now Sθ1 = {Q1(f1(a1, a2)), Q1(f1(a1, x2))}.
Find the new disagreement set DSθ = {x2, a2} and put θ2 = x2/a2. Now
Sθ1θ2 is a singleton, and a new goal can be formed.

2. Form the next goal G1 =← (Q2(x1), Q3(x2))θ1θ2 =← Q2(a1), Q3(a2). Q2(a1)
can be unified with the clause Q2(a1)← and no substitutions are needed.

3. Form the goal G2 =← Q3(a2), and it is unifiable with the clause Q3(a2)←.
4. Form the goal G3 = �.

There is a refutation of P1 ∪G0, the answer is the substitution θ1θ2.

Connectionist Neural Networks.
We follow the definitions of a connectionist neural network given in [7, 8], see

also [1] and [6] for further developments of the connectionist neural networks.
A connectionist network is a directed graph. A unit k in this graph is char-

acterised, at time t, by its input vector (vi1(t), . . . vin
(t)), its potential pk(t), its

threshold Θk, and its value vk(t). Note that in general, all vi, pi and Θi, as well
as all other parameters of a neural network can be performed by different types
of data, the most common of which are real numbers, rational numbers [7, 8],
fuzzy (real) numbers, complex numbers, numbers with floating point, and some
others, see [5] for more details. We will use Gödel (integer) numbers to build
SLD neural networks in Section 3.

Units are connected via a set of directed and weighted connections. If there is
a connection from unit j to unit k, then wkj denotes the weight associated with
this connection, and vk(t) = wkjvj(t) is the input received by k from j at time
t. The units are updated synchronously. In each update, the potential and value
of a unit are computed with respect to an activation and an output function
respectively. Most units considered in this paper compute their potential as the
weighted sum of their inputs minus their threshold: pk(t) =

(∑nk

j=1 wkjvj(t)
)
−

Θk. The units are updated synchronously, time becomes t + ∆t, and the output
value for k, vk(t + ∆t) is calculated from pk(t) by means of a given output
function F , that is, vk(t + ∆t) = F (pk(t)). For example, the output function
we most often use in this paper is the binary threshold function H, that is,
vk(t + ∆t) = H(pk(t)), where H(pk(t)) = 1 if pk(t) > 0 and H(pk(t)) = 0
otherwise. Units of this type are called binary threshold units.

Example 3. Consider two units, j and k, having thresholds Θj , Θk, potentials
pj , pk and values vj , vk. The weight of the connection between units j and k
is denoted by wkj . Then the following graph shows a simple neural network
consisting of j and k. The neural network receives input signals v′, v′′, v′′′ and
sends an output signal vk.

v′

((QQQQQQQ pj wkj pk

v′′ //WVUTPQRSΘj // WVUTPQRSΘk
//vk

v′′′

66nnnnnn j k
We will mainly consider connectionist networks where the units can be organised
in layers. A layer is a vector of units. An n-layer feedforward network F consists
of the input layer, n− 2 hidden layers, and the output layer, where n ≥ 2. Each
unit occurring in the i-th layer is connected to each unit occurring in the (i+1)-st
layer, 1 ≤ i < n.

3 SLD-Resolution in Neural Networks

In this section we adapt techniques used both in connectionism and neurocom-
puting to simulate SLD-resolution, the major first-order deductive mechanism
of logic programming. The resulting neural networks have finite architecture,
have learning abilities and can perform parallel computations for certain kinds
of program goals. This brings connectionist neural networks of [7, 8] closer to
artificial neural networks implemented in neurocomputing, see [5], for exam-
ple. Furthermore, the fact that classical first-order derivations require the use
of learning mechanisms if implemented in neural networks is very interesting on
its own right and suggests that first-order deductive theories are in fact capable
of acquiring some new knowledge, at least to the extent of how this process is
understood in neurocomputing.

In order to perform SLD-resolution in neural networks, we will allow not
only binary threshold units in the connectionist neural networks, but also units

which may receive and send Gödel numbers as signals. We encode first-order
atoms directly in neural networks, and this enables us to perform unification
and resolution directly in terms of operations of neural networks.

We will use the fact that the first-order language yields a Gödel enumeration.
There are several ways of performing the enumeration, we just fix one as follows.

Each symbol of the first-order language receives a Gödel number as follows:

– variables x1, x2, x3, . . . receive numbers (01), (011), (0111), . . .;
– constants a1, a2, a3, . . . receive numbers (21), (211), (2111), . . .;
– function symbols f1, f2, f3, . . . receive numbers (31), (311), (3111), . . .;
– predicate symbols Q1, Q2, Q3, . . . receive numbers (41), (411), (4111), . . .;
– symbols (,) and , receive numbers 5, 6 and 7 respectively.

It is possible to enumerate connectives and quantifiers, but we will not need
them here and so omit further enumeration.

Example 4. The following is the enumeration of atoms from Example 1, the
rightmost column contains short abbreviations we use for these numbers in fur-
ther examples:
Atom Gödel Number Label
Q1(f1(x1, x2)) 41531501701166 g1

Q2(x1) 4115016 g2

Q3(x2) 411150116 g3

Q3(a2) 411152116 g4

Q2(a1) 4115216 g5

Q1(f1(a1, a2)) 41531521721166 g6

We will reformulate some major notions defined in Section 2 in terms of Gödel
numbers. We will define some simple (but useful) operations on Gödel numbers
in the meantime.

Disagreement set can be defined as follows. Let g1, g2 be Gödel numbers
of two arbitrary atoms A1 and A2 respectively. Define the set g1	 g2 as follows.
Locate the leftmost symbols jg1 ∈ g1 and jg2 ∈ g2 which are not equal. If jgi

,
i ∈ {1, 2} is 0, put 0 and all successor symbols 1, . . . , 1 into g1	g2. If jgi

is 2, put
2 and all successor symbols 1, . . . , 1 into g1	g2. If jgi

is 3, then extract first two
symbols after jgi and then go on extracting successor symbols until number of
occurrences of symbol 6 becomes equal to the number of occurrences of symbol
5, put the number starting with jgi

and ending with the last such 6 in g1 	 g2.
It is a straightforward observation that g1	 g2 is equivalent to the notion of the
disagreement set DS , for S = {A1, A2} as it is defined in Section 2.

We will also need the operation ⊕, concatenation of Gödel numbers, defined
by g1 ⊕ g2 = g18g2.

Let g1 and g2 denote Gödel numbers of a variable xi and a term t respectively.
We use the number g19g2 to describe the substitution σ = {x/t}, and we will call
g19g2 the Gödel number of substitution σ. If the substitution is obtained
for gm 	 gn, we will write s(gm 	 gn).

If g1 is a Gödel number of some atom A1, and s = g′19g′28g′′19g′′28 . . . 8g′′′1 9g′′′

is a concatenation of Gödel numbers of some substitutions σ′, σ′′, . . . , σ′′′, then

g1 � s is defined as follows: whenever g1 contains a substring (g1)∗ such that
(g1)∗ is equivalent to some substring si of s such that either si contains the first
several symbols of s up to the first symbol 9 or si is contained between 8 and 9
in s, but does not contain 8 or 9, substitute this substring (g1)∗ by the substring
s′i of symbols which success si9 up to the first 8. It easy to see that g1 � s
reformulates (A1)σ1σ2 . . . , σn in terms of Gödel numbers. In Neural networks,
Gödel numbers can be used as positive or negative signals, and we put g1� s to
be 0 if s = −g1.

Unification algorithm can be restated in terms of Gödel numbers as fol-
lows: Let g1 and g2 be Gödel numbers of two arbitrary atoms A1 an A2.

1. Put k = 0 and the Gödel number s0 of substitution σ0 equal to 0.
2. If g1� sk = g2� sk then stop; sk is an mgu of g1 and g2. Otherwise, find the

disagreement set (g1 � sk)	 (g2 � sk) of g1 � sk and g2 � sk.
3. If there exists a number g′ starting with 0 and a number g′′ in g1	g2 such that

g′ does not occur as a sequence of symbols in g′′, then put sk+1 = sk⊕g′9g′′,
increment k and go to 2. Otherwise, stop; g1 and g2 are not unifiable.

The algorithm of unification can be simulated in neural networks using the
learning technique called error-correction learning, see the table below.
[5] Let dk(t) denote some desired response for unit k at time t. Let the corresponding value of the
actual response be denoted by vk(t). The response vk(t) is produced by a stimulus (vector) vj(t)
applied to the input of the network in which the unit k is embedded. The input vector vk(t) and
desired response dk(t) for unit k constitute a particular example presented to the network at time
t. It is assumed that this example and all other examples presented to the network are generated
by an environment. We define an error signal as the difference between the desired response dk(t)
and the actual response vk(t) by ek(t) = dk(t)− vk(t).
The error-correction learning rule is the adjustment ∆wkj(t) made to the weight wkj at time n
and is given by

∆wkj(t) = ηek(t)vj(t),

where η is a positive constant that determines the rate of learning.
Finally, the formula wkj(t+1) = wkj(t)+∆wkj(t) is used to compute the updated value wkj(t+1)
of the weight wkj . We use formulae defining vk and pk as in Section 2.
The neural network from Example 3 can be transformed into an error-correction learning neural
network as follows. We introduce the desired response value dk into the unit k, and the error signal
ek computed using dk must be sent to the connection between j and k to adjust wkj :

v′

((RRRRRRR pj wkj + ∆wkj

��

ek

v′′ // ONMLHIJKΘj // _^]\XYZ[Θk, dk
//ek, vk

uu

v′′′

66llllll
j wkj k

Lemma 1. Let k be a neuron with the desired response value dk = gB, where gB

is the Gödel number of a first-order atom B, and let vj = 1 be a signal sent to k
with weight wkj = gA, where gA is the Gödel number of a first-order atom A. Let
h be a unit connected with k. Then there exists an error signal function ek and
an error-correction learning rule ∆wkj such that the unification algorithm
for A and B is performed by error-correction learning at unit k, and the
unit h outputs the Gödel number of an mgu of A and B if an mgu exists, and it
outputs 0 if no mgu of A and B exists.

Proof. We set Θk = Θh = 0, and the weight whk = 0 of the connection between k
and h. We use the standard formula to compute pk(t) = vj(t)wkj(t) − Θk, and put
vk(t) = pk(t) if pk(t) ≥ 0, and vk(t) = 0 otherwise.

The error signal is defined as ek(t) = s(dk(t) 	 vj(t)). That is, ek(t) computes
the disagreement set of gB and gA, and s(dk(t) 	 vj(t)) computes the Gödel number
of substitution for this disagreement set, as described in item 3 of the Unification
algorithm. If dk(t) 	 vj(t) = ∅, set ek(t) = 0. This corresponds to item 1 of the
unification algorithm. If dk(t) 	 vj(t) 6= ∅, but s(dk(t) 	 vj(t)) is empty, set ek(t) =
−wkj(t). The latter condition covers the case when gA and gB are not unifiable.

The error-correction learning rule is defined to be ∆wkj(t) = vj(t)ek(t). In our case
vj(t) = 1, for every t, and so ∆wkj(t) = ek(t). We use ∆wkj(t) to compute

wkj(t+ 1) = wkj(t)�∆wkj(t) and dk(t+ 1) = dk(t)�∆wkj(t).

That is, at each new iteration of this unit, substitutions are performed in accordance
with item 2 of the Unification algorithm.

We update the weight of the connection from the unit k to the unit h:
whk(t+ 1) = whk(t)⊕∆wkj(t), if ∆wkj(t) > 0, and whk(t+ 1) = 0 otherwise. That is,
the Gödel numbers of substitutions will be concatenated at each iteration, simulating
item 3 of the unification algorithm.

It remains to shows how to read the Gödel number of the resulting mgu. Whenever
ek(t + ∆t) is 0, compute ph(t + ∆t) = vk(t + ∆t) � whk(t + ∆t). If ph(t + ∆t) > 0,
put vh(t+∆t) = whk, and put vh(t+∆t) = 0 otherwise. (Note that ph(t+∆t) can be
equal to 0 only if vk(t+∆t) = 0, and this is possible only if wkj(t+∆t) = 0. But this,
in its turn, is possible only if ∆wkj(t +∆t − 1) = ek(t +∆t − 1) is negative, that is,
if some terms appearing in A and B are reported to be non-unifiable according to the
Algorithm of Unification.) Thus, if an mgu of A and B exists, it will be computed by
vh(t+∆t), and if it does not exists, the unit h will give vh(t+∆t) = 0 as an output.

Now we are ready to state and prove the main Theorem of this paper.

Theorem 1. Let P be a definite logic program and G be a definite goal. Then
there exists a 3-layer recurrent neural network which computes the Gödel number
s of substitution θ if and only if SLD-refutation derives θ as an answer for
P ∪ {G}. (We will call these neural networks SLD neural networks).

Proof. Let P be a logic program and let C1, . . . , Cm be definite clauses contained in
P .

The SLD neural network consists of three layers, Kohonen’s layer k (see the table
below) of input units k1, . . . , km, layer h of output units h1, . . . , hm and layer o of units
o1, . . . , on, where m is number of clauses in the logic program P , and n is the number
of all atoms appearing in the bodies of clauses of P .
[9] The general definition of the Kohonen layer is as follows. The Kohonen layer consists of N units,
each receiving n input signals v1, . . . , vn from another layer of units. The vj input signal to Koho-
nen unit i has a weight wij assigned to it. We denote by wi the vector of weights (wi1, . . . , win),
and we use v to denote the vector of input signals (v1, . . . , vn).
Each Kohonen unit calculates its input intensity Ii in accordance with the following formula:
Ii = D(wi, v), where D(wi, v) is the distance measurement function. The common choice for
D(wi, v) is the Euclidian distance D(wi, v) = |wi − v|.
Once each Kohonen unit has calculated its input intensity Ii, a competition takes place to see
which unit has the smallest input intensity. Once the winning Kohonen unit is determined, its
output vi is set to 1. All the other Kohonen unit output signals are set to 0.

Similar to the connectionist neural networks of [7, 8], each input unit ki represents
the head of some clause Ci in P , and is connected to precisely one unit hi, which is

connected, in its turn, to units ok, . . . , os representing atoms contained in the body of
Ci. This is the main similar feature of SLD neural networks and connectionist neural
networks of [7, 8]. Note that in neural networks of [7, 8] o was an output layer, and h
was hidden layer, whereas in our setting h will be an output layer and we require the
reverse flow of signals comparting with [7, 8].

Thresholds of all the units are set to 0.

The input units k1, . . . , km will be involved in the process of error-correction learn-
ing and this is why each of k1, . . . , km must be characterised by the value of the desired
response dki , i ∈ {1, . . . ,m}, and each dki is the Gödel number of the atom Ai which
is the head of the clause Ci. Initially all weights between layer k an layer h are set to
0, but an error-correction learning function is introduced in each connection between
ki and hi, see Lemma 1. The weight from each hi to some oj is defined to be the Gödel
number of the atom represented by oj .

Consider a definite goal G that contains atoms B1, . . . , Bn, and let g1, . . . gn be the
Gödel numbers of B1, . . . , Bn. Then, for each gl, do the following: at time t send a
signal vl = 1 to each unit ki.

Predicate threshold function will be assumed throughout the proof, and is stated
as follows. Set the weight of the connection wki,l(t) equal to gl (l ∈ {1, . . . , n}) if gl

has the string of 1s after 4 of the same length as the string of 1s succeeding 4 in dki

(there may be several such signals from one gl, and we denote them by vl1, . . . , vlm).
Otherwise, set the weight wkil(t) of each connection between l and ki equal to 0.

Step 1 shows how the input layer k filters excessive signals in order to process,
according to SLD-resolution algorithm, only one goal at a time. This step will involve
the use of Kohonen competition and Grossberg’s laws defined in the table above:
[5] Consider the situation when a unit receives multiple input signals, v1, v2, . . . , vn, with vn

distinguished signal. In Grossberg’s original neurobiological model [4], the vi, i 6= n, were thought
of as “conditioned stimuli” and the signal vn was an “unconditioned stimulus”. Grossberg assumed
that vi, i 6= n was 0 most of the time and took large positive value when it became active.
Choose some unit c with incoming signals v1, v2, . . . , vn. Grossberg’s law is expressed by the
equation

w
new
ci = w

old
ci + a[vivn − w

old
ci]U(vi), (i ∈ {1, . . . , n− 1}),

where 0 ≤ a ≤ 1 and where U(vi) = 1 if vi > 0 and U(vi) = 0 otherwise.
We will also use the inverse form of Grossberg’s law and apply the equation

w
new
ic = wic(t)

old
+ a[vivn − w

old
ic]U(vi), (i ∈ {1, . . . , n− 1})

to enable (unsupervised) change of weights of connections going from some unit c which sends
outcoming signals v1, v2, . . . vn to units 1, . . . , n respectively. This will enable outcoming signals
of one unit to compete with each other.

Suppose several input signals vl1(t), . . . , vlm(t) were sent from one source to unit
ki. At time t, only one of vl1(t), . . . , vlm(t) can be activated, and we apply the inverse
Grossberg’s law to filter the signals vl1(t), . . . , vlm(t) as follows. Fix the unconditioned
signal vl1(t) and compute, for each j ∈ {2, . . . ,m}, wnew

kilj
(t) = wold

kilj
(t)+ [vl1(t)vlj (t)−

wold
kilj

(t)]U(vlj). We will also refer to this function as ψ1(wkilj (t)). This filter will set
all the weights wkilj (t), where j ∈ {2, . . . ,m} to 1, and the Predicate threshold will
ensure that those weights will be inactive.

The use of the inverse Grossberg’s law here reflects the logic programming conven-
tion that each goal atom unifies only with one clause at a time. Yet several goal atoms
may be unifiable with one and the same clause, and we use Grossberg’s law to filter
signals of this type as follows.

If an input unit ki receives several signals vj(t), . . . , vr(t) from different sources,
then fix an unconditioned signal vj(t) and apply, for all m ∈ {(j + 1), . . . , r} the

equation wnew
kim(t) = wold

kim(t) + [vm(t)vj(t) − wold
kim(t)]U(vm) at time t, we will refer

to this function as ψ2(wkim(t)). The function ψ2 will have the same effect as ψ1: all
the signals except vj(t) will have to pass through connections with weights 1, and the
Predicate threshold will make them inactive at time t.

Functions ψ1 and ψ2 will guarantee that each input unit processes only one signal at
a time. At this stage we could start further computations independently at each input
unit, but the algorithm of SLD-refutation treats each non-ground atom in a goal as
dependent on others via variable substitutions, that is, if one goal atom unifies with
some clause, the other goal atoms will be subjects to the same substitutions. This is
why we must avoid independent, parallel computations in the input layer and we apply
the principles of competitive learning as they are realized in Kohonen’s layer:

At time t + 1, compute Iki(t + 1) = D(wkij,vj), for each ki. The unit with the
least Iki(t + 1) will proceed with computations of pki(t + 1) and vki(t + 1), all the
other units kj 6= ki will automatically receive the value vkj (t + 1) = 0. Note that if
neither of wkij(t + 1) contains symbol 0 (all goal atoms are ground), we don’t have
to apply Kohonen’s competition and can proceed with parallel computations for each
input unit.

Now, given an input signal vj(t+1), the potential pki(t+1) will be computed using
the standard formula: pki(t + 1) = vj(t + 1)wkij − Θk, where, as we defined before,
vj(t+1) = 1, wkij = gj and Θk = 0. The output signal from ki is computed as follows:
vki(t+ 1) = pki(t+ 1), if pki(t+ 1) > 0, and vki(t+ 1) = 0 otherwise.

At this stage the input unit ki is ready to propagate the signal vki(t+ 1) further.
However, the signal vki(t + 1) may be different from the desired response dki(t + 1),
and the network initialises the error-correction learning in order to bring the signal
vki(t+1) in correspondence with the desired response and compute the Gödel number
of an mgu. We use here Lemma 1, and conclude that at some time (t+∆t) the signal
vhi(t+∆t) (the Gödel number of substitutions) is sent both as the input signal to the
layer o and as an output signal of the network which can be read by external recipient.

The next two paragraphs describe amendments to the neural networks to be done
in cases when either mgu was obatined, or the unification algorithm reported that no
mgu exists.

If eki(t + ∆t) = 0 (∆t ≥ 1), set wkj(t + ∆t + 2) = 0, where j is the impulse
previously trained via error-correction algorithm; change input weights leading from
all other sources r, r 6= j, using wknr(t+∆t+ 2) = wknr(t)� whiki(t+∆t).

Whenever at time t+∆t (∆t ≥ 1), eki(t+∆t) ≤ 0, set the weight whiki(t+∆t+2) =
0. Furthermore, if eki(t + ∆t) = 0, initialise at time t + ∆t + 2 new activation of
Grossberg’s function ψ2 (for some fixed vm 6= vj); if eki(t+∆t) < 0, initialise at time
t + ∆t + 2 new activation of inverse Grossberg’s function φ1 (for some vli 6= vl1). In
both cases initialise Kohonen’s layer competition at time t+∆t+ 3.

Step 2. As we defined already, hi is connected to some units ol, . . . , or in the layer
o with weights wolhi = gol , . . . , worhi = gor . And vhi is sent to each ol, . . . , or at time
t+∆t+1. The network will now compute, for each ol, pol(t+∆t+1) = wolhi�vhi−Θol ,
with Θol = 0. Put vol(t +∆t + 1) = 1 if pol(t +∆t + 1) > 0 and vol(t +∆t + 1) = 0
otherwise.

At step 2 the network applies obtained substitutions to the atoms in the body of the
clause whose head has been unified already.

Step 3. At time t + ∆t + 2, vol(t + ∆t + 1) is sent to the layer k. Note that
all weights wkjol(t + ∆t + 2) were defined to be 0, and we introduce the learning
function ϑ = ∆wkjol(t + ∆t + 1) = pol(t + ∆t + 1)vol(t + ∆t + 1), which can be

seen as a kind of Hebbian function, see [5]. At time t+∆t+ 2 the network computes
wkjol(t+∆t+ 2) = wkjol(t+∆t+ 1) +∆wkjol(t+∆t+ 1).

At step 3, the new goals, which are the Gödel numbers of the body atoms (with
applied substitutions) are formed and sent to the input layer.

Once the signals vol(t+∆t+ 2) are sent as input signals to the input layer k, the
Grossberg’s functions will be activated at time (t+∆t+ 2), Kohonen competition will
take place at time (t+∆t+ 3) as described in Step 1 and thus the new iteration will
start.

Computing and reading the answer. The signals vhi are read from the hidden
layer h, and as can be seen, are Gödel numbers of relevant substitutions. We say that an
SLD neural network computed an answer for P ∪ {G}, if and only if, for each external
source i and internal source os of input signals vi1(t), vi2(t), . . . , vin(t) (respectively
vos1(t), vos2(t), . . . , vosn

(t)), the following holds: for at least one input signal vil(t) (or
vosl

(t)) sent from the source i (respectively os), there exists vhj (t + ∆t), such that
vhj (t+∆t) is a string of length l ≥ 2 whose first and last symbol is 0. If, for all vil(t)
(vosl

(t) respectively), vhj (t+∆t) = 0 we say that the computation failed.
Backtracking is one of the major techniques in SLD-resolution. We formulate it

in the SLD neural networks as follows. Whenever vhj (t+∆t) = 0, do the following.

1. Find the corresponding unit kj and wkjol , apply the inverse Grossberg’s function
ψ1 to some vos , such that vos has not been an unconditioned signal before.

2. If there is no such vos , find unit hf connected to os and go to item 1.

The rest of the proof proceeds by routine induction.

Example 5. Consider the logic program P1 from Example 2 and SLD neural net-
works for it. Gödel numbers g1, . . . , g6 are taken from Example 4. Input layer
k consists of units k1, k2, k3 and k4, representing heads of four clauses in P1,
each with the desired response value dki

= gi. The layers o consists of units o1,
o2 and o3, representing three body atoms contained in P1. Then the steps of
computation of the answer for the goal G0 =← Q1(f1(a1, a2)) from Example 2
can be performed by the following Neural network:

1

g6

��
g6

66
66

6

��6
66 g6
III

III
I

$$III
II g6
PPPPPPPPPP

((PPPPPPPP
∆w

GFED@ABCdk1

KKKK

�� ��GFED@ABCdk2

$$IIIIIIIIIIIIIIIIIII

�� ��GFED@ABCdk3

ek3

$$IIIIIIIIIIIIIIIIIII

�� ��GFED@ABCdk4

ek4

$$IIIIIIIIIIIIIIIIIII

ek1

$$IIIIIIIIIIIII

DD

GFED@ABCh1

g2
sssssssss

yysssssssss g3
~~

~~
~~

~

~~~~
~~

~~
~

��

GFED@ABCh2

��~~
~~

~~
~~

~~
~~

~~
GFED@ABCh3

��

GFED@ABCh4

��

?>=<89:;o1

OO EE

g9������������

GG������������

CC

?>=<89:;o2

TTSS KK

g10

JJ

?>=<89:;o3

vh1(4) vh3(7) vh4(7)



The answer is: vh1(4) = 0019218011921180, vh3(7) = 080192180, vh4(7) =
08011921180, natural numbers in brackets denote time at which the signal was
emitted. It is easy to see that the output signals correspond to Gödel numbers
of substitutions obtained as an answer for P1 ∪G0 in Example 2.

Note that if we built a connectionist neural network of [7, 8] which corresponds
to the logic program P1 from Examples 1-2, we would need to built a neu-
ral networks with infinitely many units in all the three layers. And, since such
networks cannot be built in the real world, we would finally need to use some
approximation theorem which is, in general, non-constructive.

4 Conclusions and Further Work

Several conclusions can be made from Lemma 1 and Theorem 1.
SLD neural networks have finite architecture, but their effectiveness is due

to several learning functions: two Grossberg’s filter learning functions, error-
correction learning functions, Predicate threshold function, Kohonen’s competi-
tive learning, Hebbian learning function ϑ. The most important of those func-
tions are those providing supervised learning and simulating the work of algo-
rithm of unification.

Learning laws implemented in SLD neural network exhibit a “creative” com-
ponent in SLD-resolution algorithm. Indeed, the search for successful unification,
choice of goal atoms and program clause at each step of derivation are not fully
determined by the algorithm, but leave us (or program interpreter) to make per-
sonal choice, and in this sense, allow certain “creativity” in the decisions. The
fact that process of unification is simulated by means of error-correction learning
algorithm reflects the fact that the unification algorithm is, in essence, a correc-
tion of one peace of data relatively to the other piece of data. This also suggests
that unification is not totally deductive algorithm, but an adaptive process.

Atoms and substitutions of the first-order language are represented in SLD
neural networks internally via Gödel numbers of weights and other parameters.
This distinguishes SLD neural networks from the connectionist neural networks
of [7, 8], where symbols appearing in a logic program were not encoded in the
corresponding neural network directly, but each unit was just “thought of” as
representing some atom. This suggests that SLD neural networks allow easier
machine implementations comparing with the neural networks of [7, 8].

The SLD neural networks can realize either depth-first or breadth-first search
algorithms implemented in SLD-resolution, and this can be fixed by imposing
some conditions on the choice of unconditioned stimulus during the use of Gross-
berg’s law in layer k.

The future work may include both practical implementation of SLD neural
networks, and their further theoretical development. For example, SLD neu-
ral networks we have presented here, unlike the neural networks of [7, 8], allow
almost straightforward generalisations to higher-order logic programs. Further



extension of these neural networks to higher-order Horn logics, hereditary Har-
rop logics, linear logic programs, etc. may lead to other novel and interesting
results.

References

1. A. d’Avila Garcez, K. B. Broda, and D. M. Gabbay. Neural-Symbolic Learning
Systems: Foundations and Applications. Springer-Verlag, 2002.

2. A. d’Avila Garcez and G. Zaverucha. The connectionist inductive learning and
logic programming system. Applied intelligence, Special Issue on Neural networks
and Structured Knowledge, 11(1):59–77, 1999.

3. A. d’Avila Garcez, G. Zaverucha, and L. A. de Carvalho. Logical inference and
inductive learning in artificial neural networks. In C.Hermann, F.Reine, and
A.Strohmaier, editors, Knowledge Representation in Neural Networks, pages 33–46.
Logos Verlag, Berlin, 1997.

4. S. Grossberg. Embedding fields: A theory of learning with physiological implica-
tions. J. Math. Psych., 6:209–239, 1969.

5. R. Hecht-Nielsen. Neurocomputing. Addison-Wesley, 1990.
6. P. Hitzler, S. Hölldobler, and A. K. Seda. Logic programs and connectionist net-

works. Journal of Applied Logic, 2(3):245–272, 2004.
7. S. Hölldobler and Y. Kalinke. Towards a massively parallel computational model

for logic programming. In Proceedings of the ECAI94 Workshop on Combining
Symbolic and Connectionist Processing, pages 68–77. ECCAI, 1994.

8. S. Hölldobler, Y. Kalinke, and H. P. Storr. Approximating the semantics of logic
programs by recurrent neural networks. Applied Intelligence, 11:45–58, 1999.

9. T. Kohonen. Self-Organization and Associative memory. Springer-Verlag, Berlin,
second edition edition, 1988.

10. E. Komendantskaya. Learning and deduction in neural networks and logic, 2006.
Submitted to the Special Issue of TCS, ”From Gödel to Einstein: computability
between logic and physics”.

11. R. A. Kowalski. Predicate logic as a programming language. In Information
Processing 74, pages 569–574, Stockholm, North Holland, 1974.

12. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 2nd edition,
1987.

13. J. A. Robinson. A machine-oriented logic based on resolution principle. Journal
of ACM, 12(1):23–41, 1965.


