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Abstract. We introduce StarChild and Lazuli, two proof-of-concept li-
braries which leverage the type system and theorem proving capabilities
of F∗ and Liquid Haskell, respectively, to verify properties of pre-trained
neural networks. We largely focus on StarChild, as the F∗ syntax is
slightly more concise, but Lazuli implements the same functionality. Cur-
rently, both libraries are capable of verifying small models. Performance
issues arise for larger models. Optimising the libraries is future work.
We make two novel contributions. We demonstrate that (a) it is possible
to leverage a sufficiently advanced type system to model properties of
neural networks such as robustness as types, and check them without
any proof burden; and in service of that, we demonstrate that (b) it is
possible to approximately translate neural network models to SMT logic.

Introduction Neural networks are widely used for classification and pattern-
recognition tasks in computer vision, signal processing, data mining, and many
other domains. They have always been valued for their ability to work with noisy
data, yet only recently [7], it was discovered that they are prone to adversar-
ial attacks—specially crafted inputs that lead to unexpected outputs. Verifying
properties of neural networks, such as, e.g., robustness against adversarial at-
tacks, is a recognised research challenge [4]. Several current approaches involve:
(a) encoding properties as satisfiability problems [2,3]; (b) proving properties via
abstract interpretation [5]; (c) or using an interactive theorem prover [1].

F∗ [6] and Liquid Haskell [8] are functional languages with refinement types,
i.e., types can be refined with SMT-checkable constraints. For instance, the type
of positive reals (x:R{x > 0}), or booleans which are true (b:bool{b ≡ true}), or
a type of neural networks which are robust against adversarial attacks. Unlike,
e.g., Python, F∗ and Liquid Haskell are referentially transparent, which means
the semantics of pure programs in these languages can be directly encoded in
the SMT logic. This tight integration allows users to specify neural network
models and their properties in the same language, while leveraging the powerful
automated verification offered by SMT solvers!
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StarChild: Verifying Neural Networks in F∗ StarChild leverages the type
system of F∗ to verify properties of pre-trained neural networks. Users can either
write their models directly in F∗, or export them from Python. To illustrate, we
train a model to mimic the AND gate, and export it:

val m : network (*n_inputs*) 2 (*n_outputs*) 1 (*n_layers*) 1
let m = NLast { weights = [[17561.5R]; [17561.5R]]

; biases = [−25993.1R]
; activation = Sigmoid }

We can verify properties of models using either refinement types or assertions.
For instance, we can check that the model m correctly implements the AND gate:

let _ = assert(run m [1.0R;1.0R] ≡ [1.0R]) // true AND true ≡ true
let _ = assert(run m [0.0R;1.0R] ≡ [0.0R]) // false AND true ≡ false
let _ = assert(run m [1.0R;0.0R] ≡ [0.0R]) // true AND false ≡ false
let _ = assert(run m [0.0R;0.0R] ≡ [0.0R]) // false AND false ≡ false

Assertions in F∗ have no significance at runtime. They are checked statically, as
part of type checking. You can think of assert as a function with type:

val assert : b:bool{b ≡ true} → ()

Its argument is a bool which must be true, which F∗ checks using an SMT solver.
We are not limited to assertions we can run, but can also check assertions using
quantifiers, which are infeasible or impossible to run. For instance, we can check
that the model m is robust for inputs within an ε-interval:

let epsilon = 0.2R
let truthy x = dist x 1.0R ≤ epsilon
let falsy x = dist x 0.0R ≤ epsilon
let _ = assert(∀(x1:R{truthy x1})(x2:R{truthy x2}).run m [x1;x2] ≡ [1.0R])
let _ = assert(∀(x1:R{falsy x1})(x2:R{truthy x2}).run m [x1;x2] ≡ [0.0R])
let _ = assert(∀(x1:R{truthy x1})(x2:R{falsy x2}).run m [x1;x2] ≡ [0.0R])
let _ = assert(∀(x1:R{falsy x1})(x2:R{falsy x2}).run m [x1;x2] ≡ [0.0R])

The assertions cover the entire ε-interval around 1.0 and 0.0, which we could not
have achieved by executing them. The program type checks, and hence we know
the model m is, in fact, robust for ε = 0.2.

All models specified using StarChild are usable in type refinements and as-
sertions. Better yet, F∗ takes care of the translation to the SMT logic for us! F∗

translates programs to the SMT logic by normalising it, translating constructs to
their SMT equivalents where possible, and translating the rest as uninterpreted
functions. For instance, the expression run m [x1;x2] normalises to

sigmoid(x1 × 17561.5R + x2 × 17561.5R − 25993.1R)

When translating this term, F∗ maps ×, +, and − to their equivalent in the SMT
logic, and maps maps sigmoid to an uninterpreted function. Its definition uses
the exponential function, which most SMT solvers do not support. However, the
SMT solver cannot reason about uninterpreted functions. To circumvent this,
we use linear approximations, e.g., lsigmoid, during verification:

let lsigmoid x = 0.0R `min` (0.25R × x + 0.5R) `max` 1.0R

The use of approximations introduces an error, which impacts the accuracy of
the verification. Investigating the bounds on these errors is future work.
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