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Abstract – This report aims to apply methods of neural-

symbolic integration which integrates connectionist 

systems and symbolic AI systems; and capitalize on the 

advantages of the two paradigms. There are two types of 

neural-symbolic systems – Tp neural networks and CILP 

systems both of which are capable to do deduction. We 

want to use neural-symbolic systems to solve logic 

deduction problem. We develop an interface called 

SHERLOCK that implements these systems and solves 

logic deduction problems. We test our implementation on 

several interesting problems. 

1 Introduction 

The detective Sherlock Holmes is famous for his astute 

logical reasoning and his observational skills to solve 

difficult cases. One kind of logical reasoning is deductive 

reasoning, which constructs or evaluates deductive 

conclusions from facts and knowledge.  

 

Here is a crime detective story: A small bank was robbed. 

The bank safe is found open. Footprints left on the floor 

belong to a person with a pair of small feet; and burned 

cigarettes are found on the scene. A detective came up 

with a deduction rule-―If someone has keys for bank safe, 

small feet and the habit of smoking, the one is the 

criminal.‖ Then the detective found the following facts:   

1) ―Jane, Harry and Stephen have keys.‖ 

2) ―Stephen and Jane have small feet.‖   

3) ―Stephen has a habit of smoking.‖  

The detective drew the conclusion logically that Stephen 

was the criminal.  

 

The story above is a simple example to show what 

deductive reasoning is. In deductive logic, a conclusion 

necessarily follows from a set of premises. This article 

will introduce two types of neural networks and the 

deductive ability of the neural networks to solve logic 

problems. 

 

In practice, deduction may be more complicated and 

uncertain. Consider a police officer who has just come to a 

crime scene and wishes to make use of all evidence 

available to find suspects and rule out the suspension of 

unrelated people. To be efficient, the police officer uses a 

small portable computer that has a problem-solving 

assistant. What should this assistant be like? A neural 

network software would come in handy, because it has 

been trained with sufficient examples so that it is capable 

to do deduction with incomplete information; also - it is 

very efficient to assist the police officer do his job. This 

could be achieved by deploying a neural-symbolic system. 

  

[1]―Human cognition successfully integrates the 

connectionist and symbolic paradigms of Artificial 

Intelligence (AI). Yet modelling of cognition develops 

these separately in neural computation and symbolic 

logic/AI areas. There is now a movement towards a 

fruitful mid-point between these extremes, in which the 

study of logic is combined with connectionism. ‖. 

 

Connectionist systems and symbolic AI systems have 

quite contrasting advantages and disadvantages. It is very 

significant to put forward Neural-symbolic Integration 

which integrates both paradigms while retaining all the 

advantages. There are sound, well-developed methods and 

techniques to build such systems. 

 

To design Neural-Symbolic Learning systems, it is 

necessary to use logic programming to present symbolic 

knowledge. Then, one needs translation methods to 

interpret symbolic knowledge to connectionist models, and 

to make sure that the network obtained is equivalent to the 

original program, in the sense that what is computed by 

the program is computed by the network. With such neural 

networks, we can do deduction. The following figure 

shows the neural symbolic cycle. 

 
With respect to translation methods, two models will be 

introduced in the following, either of which provides a 

correct translation algorithm. One is a single-hidden-layer 

partially recurrent neural network with binary threshold 

units, having the ability to compute the least fixpoint of a 

general logic program, introduced in Massively Parallel 

Model for Logic Programming, see [2]. Because these 

http://en.wikipedia.org/wiki/Legal_case
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neural networks correspond to fixpoint operator Tp for 

logic programs, we will call them Tp-neural networks. The 

other is Connectionist Inductive Learning and Logic 

Programming (CILP), a neural-symbolic learning system 

based on a feedforward neural network that integrates 

inductive and deductive learning, see [1]. 

 

For a real logic deduction problem, we will use logic 

programming to formalise deductive inference of the logic 

problem e.g. a crime-solving problem. Once the deductive 

reasoning is expressed as a logic program P, there are two 

translation algorithms to transform P into a Tp- or CILP- 

neural network N. There are theorems [2, 1], guaranteeing 

that the neural network N can compute the fixpoint 

operator Tp of P. The fixed point can be interpreted as the 

answer to the deduction problem. 

 

Objectives 

In the main body of this report, we address the four 

objectives. Firstly, we design a logic programming 

interface for users who use neural-symbolic systems to 

operate deduction tasks.  Secondly, we show one way to 

build up a knowledge refining system. Thirdly, we solve 

the world-famous logic deduction problem – Einstein‘s 

Riddle with the use of our logic programming interface. 

Finally, we carry on an experiment, designing a new type 

of neural networks, which is a derivative from Tp neural 

networks and enables classical negation in logic 

programming.  

 

Methods 

The first objective, to design a logic programming 

interface for neural-symbolic systems, is the most 

important work in this report. Therefore it is worthy and 

necessary to give an introduction to it here. 

 

The neural-symbolic systems are capable to do deduction. 

However, it is very difficult for users to use such a system 

because users have to insert symbolic knowledge into a 

neural network by setting up weights and thresholds and 

then interpret the outcome of the neural network to 

symbolic knowledge according to users‘ definition to 

neurons.  An interface between users and neural-symbolic 

systems is required.  

 

The interface is supposed to provide a logic programming 

code editor which is writable in terms of embedding 

symbolic knowledge into connectionist systems and a 

deduction outcome reader which is readable in terms of 

interpreting the outcome of neural-symbolic systems to 

symbolic knowledge. 

 

The detailed specification is shown as follows: 

1. This interface should provide a declarative language 

for logic programming, which would better to be 

similar to the well-known logic programming – 

Prolog.  

2. This interface should be able to build up neural-

symbolic systems (Tp- and CILP-neural networks) 

and embed the symbolic knowledge according to a 

general logic program.  

3. This interface should ensure the neural-symbolic 

systems can compute the fixed point of a well-

behaved logic program.  

4. This interface should be able to interpret the outcome 

of a neural-symbolic system to symbolic knowledge 

and present the knowledge in a form of the declarative 

language. 

Software  

We deployed Microsoft Visual C# for developing 

SHERLOCK. Matlab is used for additional tests. 

 

The report is organised as follows. Section 2 contains 

background knowledge. Section 3 describes the design and 

implementation of a logic programming interface -

SHERLOCK.  Section 4, we show how to design a rule-

based neural network for classification and probability 

estimation. Section 5 is the test – Einstein‘s Riddle on 

SHERLOCK. In Section 6, we introduce the experiment 

on classical negation. 

2 Background 

In the following subsections, we briefly recall basic 

notions and notations concerning logic programs, Tp- and 

CILP- neural networks, but we restrict ourselves to logic 

deduction. In each subsection, we would briefly show how 

the knowledge will be used. 

2.1 Definite Logic Programs: the syntax 

In this section, we give a concise introduction to Definite 

Logic Program because it is very fundamental and 

important. 

 

Definition 2.1.1 In definite logic, there are five classes of 

symbols called alphabet: 

a) Variables symbols, x, y and z, … 

b) Constants symbols, a, b and c, … 

c) Predicate symbols, p, q and r, … 

d) Function symbols, f, g and h, … 

e) Connectives, which are   (―and‖),   (―if-then‖), ~ 

(―not‖). 

f) Punctuation symbols, which are ―(‖, ―)‖ and ―,‖. 

Definition 2.1.2 A term is defined inductively as follows: 

(a) A variable is term. 

(b) A constant is term. 

(c) If f is an a-ary function symbol and t1,…,tn are 

terms, then f(t1,…,tn) is a term. 

Definition 2.1.3 An atomic formula (or an atom) is 

defined inductively as follows: If p is an n-ary predicate 

symbol and t1,…,tn are terms, then p(t1,…,tn) is a atom. 



` 

 3 

Definition 2.1.4 If A is an atomic formula then  

 A is said to be a positive literal 

 ~A is said to be a negative literal 

Definition 2.1.5 A definite program clause is a clause of 

the form  

 ⏟
    

                         ⏟      
                           

 

      

, which contains precisely one atom (viz. A) in its 

consequent. A is called the head of the clause, the Li are 

called body literals, and their conjunction L1      Ln is 

called the body of the clause. 

 

Definition 2.1.6 A definite program is a finite set of 

definite program clauses. 

 

A logic program is a very necessary tool to present a 

practical problem in a logic way. 

 

Example 2.1.1 Consider the story in Introduction, there is 

a logic program which consists of clauses (1) to (7) as 

follows: 

(1) Criminal(X)← 

HasKeys(X), SmallFeet(X), Smoke(X) 

(2) HasKeys(Harry)← 

(3) HasKeys(Jane)← 

(4) HasKeys(Stephen) ← 

(5) SmallFeet(Stephen) ← 

(6) SmallFeet(Jane)← 

(7) Smoke(Stephen)← 

Clause (1) is a rule, representing ―if some has keys for 

bank safe, small feet and the habit of smoking, the one is 

the criminal.‖  

Clauses (2)-(7) are the facts, interpreted as follows: 1) 

―Jane, Harry and Stephen have keys.‖ 2) ―Stephen and 

Jane have small feet.‖ 3) ―Stephen has a habit of smoking.‖ 

 

This introduction to Definite Logic Program prepares the 

fundamental knowledge for introducing the following 

knowledge.  

2.2 Semantics of Definite Logic Programs 

In this section, we give Semantics to Definite Logic 

Program and Fixed-point Theory. 

 

Definition 2.2.1 Let P be a definite program. The 

Herbrand universe, denoted Up, is the set of all ground 

terms that can be formed from the constants and function 

symbols appearing in. 

 

Definition 2.2.2 Let P be a definite program. The 

Herbrand base, denoted Bp, is the set of all ground atoms 

that can be formed from the predicates in P and the terms 

in the Herbrand universe. 

 

Definition 2.2.3 Let P be a definite program. A Herbrand 

interpretation denoted I, is a subset of the Herbrand base.  

 

An interpretation can map from atoms in Bp to {true, 

false}.An interpretation is extended to map clauses in P to 

{true, false} as follows: a definite clause A  L1      Ln is 

mapped to true either A is mapped to true or if one of Li is 

mapped to false. 

 

Definition 2.2.4 Let P be a definite program. A Herbrand 

mode is a Herbrand interpretation that maps all clauses in 

P to true. 

 

Definition 2.2.5 Let P be a definite program. The least 

Herbrand model of P, denoted Mp, is the smallest subset of 

Bp that represents an interpretation that is a model of P. 

 

Example 2.1.1 Considering the logic program in Example 

2.1.1: 

 The Herbrand Universe is UL = {Jane, Harry and 

Stephen}. 

 The Herbrand Base is Bp = { Criminal(Jane), 

Criminal(Harry), Criminal(Stephen), HasKeys(Jane), 

HasKeys(Harry), HasKeys(Stephen), SmallFeet(Jane), 

SmallFeet(Harry), SmallFeet(Stephen), Smoke(Jane), 

Smoke(Harry), Smoke(Stephen)}. 

 I1 =  

{HasKeys(Harry), HasKeys(Jane), HasKeys(Stephen), 

SmallFeet(Stephen), SmallFeet(Jane),Smoke(Stephen), 

Criminal(Stephen) } is a Herbrand interpretation. 

 I2 = { HasKeys(Jane) ,SmallFeet(Jane)} is a Herbrand 

interpretation. 

 I1 is a Herbrand model for this logic program while I2 

is not. I2 maps the clause ―Criminal(Jane) ← 

HasKeys(Jane), SmallFeet(Jane), Smoke(Jane)” to 

false. 

 I1 is also the least Herbrand model for this logic 

program. 

Let P be a definite program. The collection of Herbrand 

interpretations forms a complete lattice and there is a 

monotonic mapping associated with P defined on this 

lattice. Some concepts and results about a complete lattice 

are showing as follows. 

 

Definition 2.2.6 Let [L, ] be a complete lattice and T: L 

→ L be a mapping. a   L is the least fixpoint of T if a is 

fixpoint of T (i.e. T(a)=a ) and for all fixpoints b of T, a   

b. Similarly, a   L is the greatest fixpoint of T if a is a 

fixpoint of T and for all fixpoints b of T, b   a.  

 

Proposition 2.2.1 Let [L, ] be a complete lattice and T: L 

→ L be monotonic. T has a least fixed point (lft(T)) and a 

greatest fixed point (gfp(T)). 
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Definition 2.2.7 Let L be complete lattice and T: L → L be 

monotonic. Then we define:  

 T   0 = inf(L); inf(L) is the greatest lower 

bound of  L.  

 T   = T(T        ; if   is an ordinal. 

Let P be a definite program. Then 2
Bp

, which is the set of 

all Herbrand interpretations of P, is a complete lattice 

under the partial order of set inclusion  .The top element 

of this lattice is Bp and the bottom element is  . 

 

Definition 2.2.8 Let P be a definite program. The mapping 

Tp: 2
Bp 2

Bp 
is defined as follows. Let I be a set Herbrand 

Interpretation; then Tp (I) = {A    A←A1, . . . , An is a 

clause in P and { A1, . . . , An } I}. 

 

The Tp-operator propagates truth along the clauses. In 

other words, Tp provides the link between the declarative 

and the procedural semantics of P. For definite programs, 

TP converges to the least model. Therefore, Herbrand 

interpretations that are models can be characterised in 

terms of Tp. 

 

Proposition 2.2.1 Let P be a definite program and I a 

Herbrand interpretation of P. Then the mapping Tp is 

continuous and I is a model of P iff Tp (I)  I. 

 

Proposition 2.2.2 Let P be a definite program. Mp = 

lfp(Tp) =Tp   w. 

 

Example 2.2.2 Considering the logic program in Example 

2.1.1: 

1) Tp    =   ; 

2) Tp   ={HasKeys(Harry), HasKeys(Jane), 

HasKeys(Stephen), SmallFeet(Stephen), 

SmallFeet(Jane),Smoke(Stephen)} 

3) Tp    = {HasKeys(Harry), HasKeys(Jane), 

HasKeys(Stephen), SmallFeet(Stephen), 

SmallFeet(Jane),Smoke(Stephen), 

Criminal(Stephen) }  

4) Tp   2 = Tp    = Tp     

Note As Bp is finite, the lattice is also finite, and there is 

some n     such that Tp   n = Tp   n+1, and hence Tp   w. 

will be equal to Tp   n, for some successor ordinal n      
 

Semantics of Definite Logic program give a means to 

present the knowledge of a logic program P in a purely 

syntactic way. Fixed-point Theory gives a means to 

compute the least Herbrand model of P according to the 

very initial knowledge of P. 

2.3 Neural Networks 

Here we make a brief induction to Artificial Neural 

Networks (ANNs) because it is also very fundamental and 

important. 

An artificial neural network is a massively parallel 

computational model. It is inspired from neuroscience 

research that tries to imitate some key behaviour of animal 

brains (biological neural networks).                     

 

Definition 2.3.1 An artificial Neuron (AN) is a model of a 

biological neural (BN). Each AN receives a vector of I 

input signals  ⃗ =(x1, x2,…,xn) from the environment or 

other ANs. To each input signal xi is associated a weight 

Wi  to strengthen or deplete the input signals. The An 

computes the net input signal net , and uses an activation 

function f to compute the output signal y given the net 

input net and a threshold value  , also referred to as the 

bias.   

 
 

The net input signal to an AN is usually computed as the 

weighted sum of all input signals, net =∑     
 
   . The 

activation function f receives the net input and the bias, 

and determines the output of the neuron. There are three 

basic activation functions: linear, non-linear and semi-

linear. 
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Definition 2.3.2 An artificial neural network (ANN) is a 

layered network of ANs. A typical artificial neural 

network consists of an input layer, hidden layers and an 

output layer. ANs in one layer are connected, fully or 

partially, to the ANs in the next layer. Feedback 

connections to ANs in previous layers are also possible.  

  

ANs in input layer don‘t have input connections and ANs 

in output layer don‘t have output connections. Only hidden 

neurons have both input and output connection. 

 
Definition 2.3.3 A feedforward neural network is an 

artificial neural network where connections between the 

neurons do not form a directed cycle. This is different 

from recurrent neural networks. The network above is a 

feedforward neural network. 

 

Definition 2.3.4 Feedforward operation is a computational 

procedure that a feedforward neural network takes in an 

input vector and produces an output vector.  

 

In [9], for a d-nH-c fully connected three-layer network, it 

has d neurons in the input layer, nH neurons in the hidden 

layer and c neurons in the output layer. During 

feedforward operation, a d-dimensional input vector  ⃗ is 

presented to the input layer; each input neuron then emits 

its correspondent xi. Each of the nH hidden neurons 

computes its net, netj as the inner product of the input 

layer signas with weight wji. The hidden neuron emits 

yj=f(netj -   ), where f is the activation and   is the 

threshold. Each of the c output neurons computes it net, 

netk as the inner the product of the hidden layer signals 

with weight wkj. The output neuron emits zk=f(netk-   , 

where f is the activation function in the output layer and 

  is the threshold. The feedforward operation is defined 

inductively as follows: 

1. For j [1,…,nH],      ∑      
 
     

2. For j [1,…,nH], yj = f(netj -   )     

3. For k [1,…,c],      ∑   
  
       

4. For k [1,…,c], zk = f(netk -   ) 

Neural networks are introduced here because the following 

two types of neural-symbolic systems need a connectionist 

system to embed symbolic knowledge. 

2.4 Tp-Neural Network 

We now introduce Tp–neural network that can simulate 

the Tp-operator. It is titled as the Core-method for 

Propositional Logic in neural-symbolic integration. 

 

Theorem 2.4.1 [1]For each program P there exists a single 

hidden layer feedforward network N of binary Threshold 

units such that N computes Tp. ( Holldobler & Kalinke, 

1994) 

 

Theorem 2.4.2 [1]For each single hidden layer 

feedforward network N of binary Threshold units there 

exists a program P such that Tp is computed by N. 

( Holldobler & Kalinke, 1994) 

 

Holldobler and Kalinke also presented a translation 

algorithm to convert a general definite logic problem to a 

single hidden layer neural network.  This kind of network 

is called a Tp-neural network. 

 

[2]Translation Algorithm 

Let p and q be the number of ground atoms and the 

number of clauses occurring in P, respectively. Without 

loss of generality we may assume that the grounded atoms 

are numbered from 1 to p. The network associated with P 

can now be constructed as follows: 

1) The input and output layer is a vector of p binary 

threshold neurons, where the ith neuron represents 

the atom Ai, 1   p. The threshold of each neuron 

occurring in the input or output layer is set to 0.5. 

2) For each clause of the form A  A1         m,  Am+1 

        An(0   n),occurring in P do the following: 

a) Add a binary threshold unit c to the hidden layer 

of N. 

b) Connect c to the unit representing A in the 

output layer with weight 1. 

c) For each Ai, 1   m, connect the unit 

representing Ai in the input layer of N to c, and 

set the connection‘s weight to 1.    
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d) For each ~Ai, m+1   n, connect the unit 

representing Ai in the input layer of N to c, and 

set the connection‘s weight to -1.   

e) Set the threshold    of c to m-0.5. 

Note: For all artificial neurons, their activation function is  

a non-linear function: 

                       f(x) ={
                        
                            

 

 

A theorem then shows that the network obtained is 

equivalent to the original logic program, in the sense that 

what is computed by the program is computed by the 

network and vice versa. That means the network can 

compute out the least Herbrand model of the original logic 

program.   

 

Example 2.4.1 Consider the following logic program P: 

1) A  B,  C 

2) A   D,E 

3) B   

 
The above neural network N is obtained by applying the 

above algorithm to P. If B = 1 and C =0 in the input layer 

of N then A = 1 in the output layer of N, representing the 

rule A ← B   C of P. Similarly, B = 1 is always obtained 

in the output layer of N, regardless of its input vector, 

indicating that B is a fact.  

 

According to the above two theorems, each interpretation I 

for P is represented. 

  

Let us recall that essentially, Tp-operator is a mapping 

from the set of all Herbrand interpretations of P to the set 

of all Herbrand interpretations of P, that is, Tp: 2
Bp 2

Bp
. 

Now the network itself is a mapping from the set of all 

interpretations of Herbrand base to the set of all 

interpretations of Herbrand base.  

 

If we iterate the network by putting output neurons 

interpretations to input neurons interpretations in the same 

way that the Tp-operator iterate itself with Herbrand 

Interpretations, the network then will converge to a static 

state that the output neurons interpretations are the least 

Herbrand Model. 

 

Theorem 2.4.3 [1]Let P be a well-behaved program. 

There exists a single hidden layer recurrent network such 

that each computation starting with an arbitrary initial 

input I converges to a stable state and yields the unique 

fixpoint of Tp. 

 

Here is the algorithm to compute the least Herbrand Model 

of P in a Tp-neural network. 

 

Massively Parallel Deduction Algorithm 

Let p be the number of input neurons and the number of 

output neurons in Tp-neural network N. The input is 

defined by a vector I = (I1, … , Ip) and the output is given 

by a vector  O = (O1, . . . ,Op).  

1. Initialize I = [0, 0, …, 0]. 

2. Loop: 

1) Calculate O = feedforward(I); 

2) If I is equal to O, then terminate; 

3) If I is not equal to O, then for j in (1, …, p), 

replace the value of Ij  with the value of Oj in O.     

 

Example 2.4.2 Consider the logic program in Example 

2.4.1.As shown in Figure, N is recurrently connected, its 

output vector feeds the input vector in an iteration of Tp. 

Let the initial input vector I = (0, 0, 0, 0, 0). So the 

deduction process would be as follows: 

(1) Tp    = {0, 0, 0, 0, 0};  

(2) Tp    = {0, 1, 0, 0, 0}; 

(3) Tp    = {1, 1, 0, 0, 0}; 

(4) Tp    = Tp    = Tp    . 

Note [3]There are four characteristic properties that 

distinguish TP -neural networks. We summarise them as 

follows. 

1. The number of neurons in the input and output layers is 

the number of atoms in the Herbrand base BP of a given 

program P. 

2. The number of iterations of TP (for a given logic 

program P) corresponds to the number of iterations of the 

neural network built upon P. 

3. Signals of TP -neural networks are binary, and this is 

achieved by using binary threshold activation functions. 

This provides the computations of truth value functions 

and   that are used in program clauses. 

4. As a consequence of the property 3, first-order atoms 

are not presented in the neural network directly, and only 

truth values 1 and 0, which are the same for all the atoms, 

are propagated. 

 

Tp-neural networks are introduced to transform a logic 

program to a neural network which is proved to have the 

ability to approximate the fixpoint operator of the 

corresponding program and compute out the fixed point. 
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2.5 CILP-Neural Networks 

In this section, we introduce a massively parallel 

computational model that can simulate the Tp-operator. It 

is a derivative from the Core-Method for Propositional 

Logic in neural-symbolic integration. 

 

[5]Connectionist Inductive Learning and Logic 

Programming (CILP) is a massively parallel 

computational model based on a feedforward artificial 

neural network that integrates inductive learning from 

examples and background knowledge with deductive 

reasoning using logic programming. 

 

 

To embed the propositional knowledge of a general logic 

program (P) in a neural network (N), CILP uses an 

approach similar to Tp-Neural Networks. However, A 

CILP-neural network N deploys a semi-linear function as 

its activation function: 

f(x) = 2/(1+e
−β x

)−1. 

Clearly f(x) has the real numbers as domain and [-1, 1] as 

codomain. 

 

Theorem 2.5.1 [1] For each propositional general program 

P, there exists a feedforward artificial neural network N 

with exactly one hidden layer and semi-linear neurons 

such that N computes Tp. 

 

The translation algorithm that converts a general logic 

program to a CILP-neural network is shown as follows. 

 

[1]Translation Algorithm  

Notation Given a general logic program P, let: 

1. q denote the number of clauses Cl (1 ≤ l ≤ q) 

occurring in P; 

2. Amin, the minimum activation for a neuron to be 

considered active (or true), 0 < Amin < 1; 

3. Amax, the maximum activation when a neuron is not 

active (or false), -1 < Amax < 0 ; 

4. h(x) = 
 

       
  , the bipolar semi-linear activation 

function; 

5. g(x) = x, the standard linear activation function; 

6. W (resp. –W), the weights of connections associated 

with positive (resp. negative) literals; 

7. θ l denote the threshold of the hidden neuron Nl 

associated with clause Cl ; 

8. θ A denote the threshold of the output neuron A, where 

A is the head of clause Cl ; 

9. kl denote the number of literals in the body of clause 

Cl ; 

10. μl denote the number of clauses in P with the same 

atom in the head, for each clause Cl ; 

11. MAXCl (kl, μl) denote the greater element of kl and μl 

for clause Cl ;  

12. MAXP(k1, . . . ,kq, μ1, . . . ,μq) denote the greatest 

element of all ks and μs of P. 

Main body of Translation Algorithm: 

1. Given a general logic program P, there are n 

propositional variables. Then there are n input 

neurons and n output neurons in a neural network N. 

Label each input (resp. output) neuron of the neural 

network with each of these propositional variables. 

Assume that Amax = - Amin. 

2. Calculate MAXP(  ⃑⃑  ⃑,  ⃑⃑  ) of P; 

3. Calculate        
    (  ⃑⃑  ⃑  ⃑⃑  )  

    (  ⃑⃑  ⃑  ⃑⃑  )  
   ;  

4. Calculate the value of W such that the following is 

satisfied: 

    
 

 
 

                        

    (  ⃑⃑  ⃑  ⃑⃑  )                
       

5.  For each clause Cl of P of the form A   L1, … , Lk (k 

≥ 0): 

a. Create input neurons L1, …, Lk and an output neuron 

A in N (if they do not exist yet). 

b. Add a neuron Nl to the hidden layer of N. 

c. Connect each neuron Li (1 ≤ i ≤ k) in the input layer 

to the neuron Nl in the hidden layer. If Li is a 

positive literal, then set the connection weight to W; 

otherwise, set the connection weight to −W. 

d. Connect the neuron Nl in the hidden layer to the 

neuron A in the output layer and set the connection 

weight to W. 

e.  Define the threshold (θ l ) of the neuron Nl in the 

hidden layer as  

   
               

 
 . 

f. Define the threshold (θ A) of the neuron A in the 

output layer as 

    
              

 
 . 

6. For those neurons in the output layer that don‘t have 

a threshold yet, define the threshold (θ o) of each of 

those neurons in the output layer as     
        

 
  . 

7.  Set g(x) as the activation function of the neurons in 

the input layer of N. In this way, the activation of the 

neurons in the input layer of N given by each input 

vector i will represent an interpretation for P. 

8.  Set h(x) as the activation function of the neurons in 

the hidden and output layers of N. In this way, a 

gradient descent learning algorithm, such as 

backpropagation, can be applied to N. 

9. If N needs to be fully connected, set all other 

connections to zero. 

 

Example 2.5.1 Consider the logic program in Example 

2.4.1. The CILP network should be set up as follows: 

MAXP (  ⃑⃑  ⃑,  ⃑⃑  ) = 2. 



` 

 8 

Amin > 1/ 3; let Amin = 0.5. 

W   4.394/ .Let   =1 and W = 4.5. 

For clause 1, A  B,  C: 

   
        

 
 =     ; 

     
        

 
        . 

For clause 2, A  D, E: 

   
        

 
 =     ; 

     
        

 
        . 

For clause 3, A  D, E: 

    
        

 
 = -     ; 

     . 

Neuron C has a threshold  

    
        

 
       . 

Neuron D has a threshold  

    
        

 
       . 

Neuron E has a threshold  

    
        

 
       . 

 

 
 

If B = 1 and C =-1 in the input layer of N then A = 0.9992 

in the output layer of N, representing the rule A ← B   C 

of P. Similarly, B = 0.9705 is always obtained in the 

output layer of N, regardless of its input vector, indicating 

that B is a fact. 

 

In order to perform deduction, a CILP –neural network N 

is transformed into a partially recurrent network N* by 

connecting each neuron in the output layer to its 

correspondent neuron in the input layer with weight 1, as 

shown in figure. In this way, N* can iterate Tp in parallel. 

 

[1]Massively Parallel Deduction Algorithm 

Let p be the number of input neurons and the number of 

output neurons in Tp-neural network N. The input is 

defined by a vector I = (I1, … , Ip) and the output is given 

by a vector  O = (O1, . . . ,Op).  

 1. Initialize I = [-1, -1, …, -1]. 

2. Loop: 

1) Calculate O = feedforward(I); 

2) Define               {
             

                   
 

if valuation(Ij) is equal to valuation (Oj)  (j [1, …, 

p]),  then terminate; 

3) Otherwise, for j [1, …, p], replace the value of Ij  

with the value of Oj.  

 

Let the initial input vector I = (-1, -1, -1, -1, -1). So the 

deduction process would be as follows: 

(1) Tp    = { (-1, -1, -1, -1, -1};  

(2) Tp    = { -0.9903, 0.9705, -0.9338, -0.9338, -

0.9338}; 

(3) Tp    = { 0.9305, 0.9705, -0.9338, -0.9338, -

0.9338}; 

(4) Tp    = Tp    = Tp    . 

CILP systems are introduced to transform a logic program 

to a neural network which is proved to have the ability to 

approximate the fixpoint operator of the corresponding 

program and compute out the fixed point. However, 

compared to a Tp-neural network, a CILP system is more 

powerful in the sense that it has the capability to do 

machine learning due to the non-linear activation function.  

The logic program P is viewed as background knowledge. 

A CILP network can be trained with examples efficiently, 

then refining the background knowledge. 

 

3 A logic programming interface 

Design 

According to the specification for a logic programming 

interface in the Introduction Section, this interface is 

supposed to consist of the following components: 

1. A code editor, with which users can present a 

general logic program in a prolog-like declarative 

language; 

2. A translator, which can analyse syntax and 

semantics of the logic program and set up 

neural-symbolic systems according to the logic 

program; 

3. A model of Tp neural networks and a model of 

CILP-neural networks; 

4. An interpreter and a result reader  

Models of neural-symbolic systems 

A model of Tp-neural networks 

Given a general logic program P, let there be q definite 

clauses, n propositional variables. A Tp-neural network 

translated from P owns n input neurons, q hidden neurons 

and n output neurons with a n-by-q matrix W1 – weights 

between the input layer and the hidden layer and an q-by-n 

matrix W2 – weights between the hidden layer and the 

output layer.  In the output layer there are n thresholds, 

whose values are set 0.5. In the hidden layer there are q 

thresholds, whose values are determined by W1.   
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Model For a Tp-neural network, a tuple (n, q, W1, W2) 

determines all the properties of the Tp-neural network.  q 

is the number of clauses. n is the number of all 

propositional variables. W1 is a n-by-q matrix; and W2 is 

an q-by-n matrix. They represent the connections between 

clauses‘ bodies and their corresponding heads. The q 

thresholds θ l (l   [1,…,q]) in the hidden layer are 

calculated as follows: 

 For l   [1,…,q], denote the number of positive value 

in the  l-th column of W1 as pl . θ l = pl -0.5. 

A model of CILP-neural networks 

Given a general logic program P, let there be q definite 

clauses, n propositional variables. A CILP-neural network 

translated from P owns n input neurons, q hidden neurons 

and n output neurons with a q*n matrix W1’ – weights 

between the input layer and the hidden layer and an q*n 

matrix W2’– weights between the hidden layer and the 

output layer. W1 is derived if W1’ divide by W; and W2 is 

derived if W2’ divide by W.  W1 and W2 determine W1‘, 

W2‘, thresholds in the hidden layer θ l (l   [1,…,q]) and 

thresholds in the output layer θ o (o  [1,…,n]) in the 

neural-symbolic system. 

 

Model For a CILP-neural network, a tuple (n, q , W1, W2) 

determines all the properties of the CILP-neural network.  

q is the number of clauses. n is the number of all 

propositional variables. W1 is a k*r matrix; and W2 is an 

r*k matrix. They represent the connections between 

clauses‘ bodies and their corresponding heads. 

W, Amin, thresholds in the hidden layer θ l (l   [1,…,q]) and 

thresholds in the output layer θ o  (o  [1,…,n]),  ⃑⃑⃑  ,  ⃑  are 

calculated as follows: 

 For l   [1,…,q], kl equals the number of non-zero 

values in the  l-th column of W1. 

 For each clause Cl  has a head Al,  the y-th neuron 

stands for the atom Al. Then μl equals the number of 

positive values in the y-th column of W2. 

 Calculate        
    (  ⃑⃑  ⃑  ⃑⃑  )  

    (  ⃑⃑  ⃑  ⃑⃑  )  
 

 Calculate     
 

 
 

                        

    (  ⃑⃑  ⃑  ⃑⃑  )                
 

 Calculate the weights between the input layer and the 

hidden layer- W1‘ 

W1‘=W1*W 

 Calculate the weights between the hidden layer and 

the output layer –W2‘ 

W2‘=W2*W 

 For thresholds l   [1,…,q] in the hidden layer ,  

calculate    
               

 
 . 

 For o   [1,…,n] in the output layer, denote the 

number of positive values in the o-th column of W2 

as ro , calculate      
              

 
 . 

It is clearly seen that the model of a Tp-neural network 

and the model of a CILP-neural network have the same 

tuple (n, q, W1, W2) for a general logic program. 

A declarative language and a code editor  

The users would like to use a declarative language for 

Logic programming, which would better to be similar to 

the well-known logic programming. The following 

language   introduced in this report is very similar to the 

turbo-prolog language. 

 

A general logic program consists of facts, rules and 

questions. In order to present facts, rules and questions 

well, a general logic program in   is designed to have four 

sections – Domains, Predicates, Goals, Rules. 

 

In Domains section, we define terms and classify them 

into domains. In Predicates section, we define predicates 

which are used in logic clauses. In Goals section, we state 

questions which are supposed to be answered by machine. 

In Rules section, we present the facts and logic clauses. 

The deliberate grammar design of a general logic program 

in    is shown as follows:  

1. Domains‘ Format:  

<domain name> = { <list of terms> }. 

2. Predicates‘ Format: 

<predicate name> = ( <list of domain> ). 

3. Goals‘ Format: 

?<predicate name> ( <list of terms or variables> ). 

4. Rules divide into facts and clauses. 

Facts‘ format: 

<predicate name> ( <list of terms> ). 

 Clauses‘ format: 

<predicate name> ( <list of terms or variables> ) :- 

<predicate name> ( <list of terms or variables> ) 

{;<predicate name> ( <list of terms or variables> ) }. 

Example 4.1.3.1 Considering the following program P: 

Domains 

  Suspect = {Harry,Jane,Stephen }. 

Predicates 

  HaveKeys ( Suspect ). 

  HaveSmallFeet ( Suspect ). 

  Smoke ( Suspect ) . 

  Criminal( Suspect ) . 

Goals 

  Criminal(X). 

Clauses 

  HaveKeys(Harry). 

  HaveKeys(Jane). 

  HaveKeys(Stephen). 

  HaveSmallFeet(Stephen). 

  HaveSmallFeet(Jane). 

  Smoke(Stephen). 

Criminal(X):-HaveKeys(X);HaveSmallFeet(X);Smoke(X). 
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In P there are one domain, four predicates, one goal, six 

facts and one rules. Either a domain name or a predicate 

name is a string of laterals. A term is also a string of 

laterals; but it must start with a lower-case letter.  A 

variable is a string of laterals which starts with an upper-

case letter; and its scope is the current sentence in where it 

is. The design of a general logic program must obey the 

procedure – define domains, declare Predicates, set Goals, 

present Clauses (Facts and Rules), which is shown in the 

example above. 

 

The code editor is a simple text editor, on which users 

write logic programs in  .   

A translator 

A translator is a necessary component which connects the 

symbolic logic programming component to the 

connectionist computing systems. It is supposed to 

transform a general logic program written in   into a tuple 

(n, q, W1, W2) which either the model of a Tp-neural 

network or the model of a CILP-neural network could use 

to build a neural-symbolic system that can compute 

deduction. 

 

The translator is very similar to a single pass compiler 

which consists of two stages. In the first stage, the 

translator performs lexical analysis, syntactic analysis and 

creates a token table. In the second stage, it performs 

intermediate representation generation and target tuple (n, 

q, W1, W2) creation. 

 

Lexical analysis is a relatively simple phase in which 

symbols (or tokens) of the language are formed.  It is 

supposed to indentify predicates, terms, variables, 

conjunctions. 

 
 

The set of acceptable symbols is shown as follows: 

1. A string –a sequence of laterals 

2. ‗.‘ 

3. ‗=‘ 

4. ―:-‖  

5. ―~‖ 

6. ‗{‗ and ‗}‘ 

7. ‗(‘ and ‗)‘ 

8. ‗,‘ and ‗;‘  

Syntax analysis is a phase to in which the overall structure 

of a program is identified, and involves an understanding 

of the order in which the symbols in a program may 

appear. According the declarative language , there are 

four sections in a logic program. For each section, it has a 

label to mark it and there is a piece of syntax which is used 

to define its contents. The syntax for a general logic 

program in   is defined in a regular grammar as follows: 

 

1. Labels/Key words: Domains, Predicates, Goals, Rules 

Its syntax is defined as follow: 

S -> Domains | Predicates | Goals | Rules 

2. Domains 

Its syntax is defined as follow: 

S -> DOMAIN = { B }. 

B ->TERM  



DOMAIN -> [a-zA-Z]  

DOMAIN -> [a-zA-Z]，DOMAIN 

TERM -> [a-z] [a-zA-Z]* 

3. Predicates 

Its syntax is defined as follow: 

S-> PREDICATE = ( B ) . 

B -> DOMAIN 

B -> DOMAIN, B 

PREDICATE -> [a-zA-Z] [a-zA-Z]* 

DOMAIN -> [a-zA-Z] [a-zA-Z]* 

4. Goals 

Its syntax is defined as follow: 

S -> ? PREDICATE ( B ) . 

PREDICATE -> [a-zA-Z] [a-zA-Z]* 

B -> TERM 

B -> TERM, B 

B -> VARIABLE 

B -> VARIABLE, B 

TERM -> [a-z] [a-zA-Z]* 

VARIABLE -> [A-Z] [a-zA-Z]* 

5. Facts 

Its syntax is defined as follow: 

S -> PREDICATE ( B ) . 

PREDICATE -> [a-zA-Z] [a-zA-Z]* 

B -> TERM 

B -> TERM, B 

B -> VARIABLE 

B -> VARIABLE, B 

TERM -> [a-z] [a-zA-Z]* 

VARIABLE -> [A-Z] [a-zA-Z]* 
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6. Clauses 

Its syntax is defined as follow: 

S ->  A  :- T . 

T -> A 

T -> ~A 

T -> A; T 

T -> ~A; T 

A -> PREDICATE ( B )  

PREDICATE -> [a-zA-Z] [a-zA-Z]* 

B -> TERM 

B -> TERM, B 

B -> VARIABLE 

B -> VARIABLE, B 

TERM -> [a-z] [a-zA-Z]* 

VARIABLE -> [A-Z] [a-zA-Z]* 

According these grammars, the syntax analyser (or parser) 

can fit a sequence of tokens into a specified syntax. A 

parsing problem consists of finding a derivation (if one 

exists) of a particular sentence using a given grammar. In 

this translator, the parser is a left to right bottom-up parser 

with one symbol lookahead LR (1).  The LR (1) is a very 

common algorithm in complier design, which will not be 

introduced here, see [7, 11]. 

 
 

Intermediate representation generation is a phase to 

transform each statement in the original code of a general 

logic program to intermediate data according to a 

particular syntax. 

 

Given a general logic program P, the translator is 

supposed to generate appropriate intermediate data which 

it can use to create the target tuple to construct a neural-

symbolic network representing P. Four types of 

intermediate data are defined as follows: 

(1) n, the number of neurons of the input layer or the 

output layer; 

(2) q, the number of neurons of the hidden layer; 

(3) Input-hidden-connection :(inputi , hiddenj, weightij),  

a connection between a neuron in the input layer 

and a neuron in the hidden layer with a weight. 

(4) Hidden-output-connection:(hiddenj,outputk,weightjk), 

a connection between a neuron in the hidden layer 

and a neuron in the output layer weight. 

When the translator identifies the syntax of a statement, it 

will either create a new item of intermediate data or amend 

the value of a previous item of intermediate data. When a 

domain statement or a predicate statement is encountered, 

n will be amended. When a fact or a clause is encountered, 

q will be amended; and input hidden connections will be 

created. 

 

Target tuple creation is a simple phase to create a tuple (n, 

q, W1, W2) according to the intermediate data. n is 

assigned the final value of  n in the intermediate data.  q is 

also assigned the final value of q in the intermediate data.  

W1 is a n-by-q matrix which is initialised with 0s. For 

each input-hidden-connection :(inputi, hiddenj, weightij), 

the entry W1 [inputi , hiddenj] is assigned weightij. W2 is a 

q-by-n matrix which is initialised with 0s. For each 

Hidden-output-connection :( hiddenj,outputk, weightjk), the 

entry W2[ hiddenj, outputk] is assigned weightjk. 

 

The final task for the translator is to with set up a neural-

symbolic system with the tuple(n, q, W1, W2). The neural-

symbolic system could be either a Tp-neural network or a 

CILP neural network, which depends on the choice of 

users. 

An interpreter and a result reader 

An interpreter is a component that interprets the execution 

result of a neural-symbolic system into propositional 

variables‘ truth value and gives symbolic answers to the 

goals of P.  

 

According the record of the meaning (model) of the 

neurons in the output layer, it is easy to judge a 

propositional variable‘ truth value.  For a Tp-neural 

network, if the value of a neuron is greater than or equal to 

0.5, then its corresponding propositional variable is 

considered to own a true value; otherwise the 

propositional variable owns a false value. For a CILP- 

neural network, if the value of a neuron is greater than or 

equal to Amin, then its corresponding propositional variable 

is considered to own a true value. 

 

The interpreter is supposed to understand the meaning of 

goals in a logic program, search answers and then format 

answers in a symbolic way. There are two types of goals. 

One has no variable and the other one has. A goal with no 

variable expects an answer whether the corresponding 

proposition variable is true or not. A goal with variables 

expects an answer that presents the sets of variables‘ value 

that make the goal‘s propositional variable true. 



` 

 12 

 

A result reader is a component that either presents the 

interpreter‘s answers to goals in P or states all errors when 

P has grammar errors. 

 

Implementation 

The Logic Programming Interface is implemented in C#. It 

consists of three class libraries and one windows 

application shown in detail as follows: 

1. Linear-Algebra-Library Class Library, which provides 

RVector and RMatrix structures with proper algebra 

operations, see [10]. 

2. Tp-Neural-Network Class Library, which provides a 

Tp-Neural-Network class with the following methods: 

a) Tp(leteralsNum,clauseNum,W1,W2), which is 

the constructer; 

b) Generate(), which is a method that generates a 

entire Tp-neural network, which includes 

neurons, weights and thresholds; 

c) TpFixedPoint(), which is a method that a Tp-

neural network iterate itself doing massively 

parallel computing to obtain the Fixed Point. 

3. CILP-Neural-Network Class Library, which provides 

a CILP-Neural-Network class with the following 

methods: 

a) CILP(leteralsNum,clauseNum,W1,W2), which 

is the constructer; 

b) Generate(), which is a method that generates a 

entire CILP-neural network, which includes 

neurons, weights, threasholds, Amin and W; 

c) CILPFixedPoint(), which is a method that a 

CILP-neural network iterate itself doing 

massively parallel computing to obtain the 

Fixed Point. 

4. Logic-Interface Windows Application, which 

provides a code editor, a translator , an interpreter and 

a result reader. 

Example 5.1.1 Consider the logic program in Example 

2.1.1. A simple procedure to use application shown as 

follows: 

1. Type in a logic program P which accords to the 

grammar of the language  .

  

2. Choose a neural-symbolic system model from TpNN 

and CILPNN, both of which can do deduction.Then 

the application translates P and set ups the model. 

 
3. The neural symbolic system iterates massively 

parallel computing and obtains the fixed pointed. The 

interpreter will generate answers to Goals in P. The 

result reader shows the result as follows. 

 
 

4 A knowledge refining system 

Specification 

Knowledge refining is to insert background knowledge (or 

coarse knowledge) of a particular domain into a neural 

network and obtain fine knowledge by learning with 

example data. One kind of Neural-symbolic systems – 

CILP is very suitable to do knowledge refining. Not only 

CILP has the capability to present Background Knowledge 

into neural networks, but also it can use back-propagation 

to get networks trained with examples. 

 

Using the interface above to translate a logic program to a 

CILP-neural network can be considered as the first step of 

knowledge refining. The second step is to deploy standard 

back-propagation to train the CILP-neural network. 

 

Using the interface to do knowledge refining has two 

merits: 

1. An easy way to generate neurocomputing models. We 

use a logic programming language to build a neural 

network with background knowledge. The logic 

programming language is syntactically similar to the 

way people reason, which makes for a general and 

easily accessible interface for users with diverse 

backgrounds to do knowledge refining. 

2. Neural networks will incorporate rules rather than 

eliminate them when trained with examples. During 

the process of training, the embedded knowledge in a 

CILP-neural network is refined and coarse knowledge 

becomes fine knowledge. 

Design 

Consider the neural network software which the police 

officer has, it is could be the outcome of a knowledge 

refining system. In this report, it will show how to obtain 

such a system. 
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First, we will introduce some basic knowledge about real 

crime analysis and a model to solve crime detective 

problems. Then we will show how to present the 

knowledge in a logic programming language. Finally we 

obtain a CILP neural network which could be trained with 

examples, and we how to train it. 

Crime detection knowledge 

Some terminology in crime detection: 

1. The categorical trinity—means, motive, opportunity. 

Respectively, they refer to: the ability of the suspect 

to commit the crime (means), the reason the suspect 

had to commit the crime (motive), and whether or not 

the suspect had the chance to commit the crime 

(opportunity), see [13].  

2. Evidence. Evidence may be left on the scene after 

criminals have committed a crime. Some people may 

see the crime and become a witness. 

3. Witness. A witness is someone who has firsthand 

knowledge about a crime through his or her senses 

(e.g. seeing, hearing, and smelling). 

4. Abnormal behaviour. Criminals tend to have 

abnormal behaviour after the crime. The most 

common one is lying. 

As shown above, six elements have to be taken into 

consideration to judge who criminals are. They are Means, 

Motive, Opportunity, Evidence, Witness, and Abnormal 

Behaviour. The following graph shows their attribution to 

determine a criminal in a clear way. 

 

Logic programming representation 

Instead of using the decision architecture above, the police 

officer may have the following logic when deciding who 

criminals are: 

1. Categorical-trinity(x) <- Means(x), Motive(x), 

Opportunity(x) 

2. Criminal(x) <- Categorical-trinity(x), Evidence(x), 

Abnormal-behaviour(x) 

3. Criminal(x) <- Categorical-trinity(x),Witness(x), 

Abnormal-behaviour(x) 

4. Criminal(x) <- Evidence(x), Witness(x), Abnormal-

behaviour(x) 

With such logic, a CILP neural network can be obtained. 

However, such a network obviously cannot help the police 

officer to find suspects and rule out the suspension of 

unrelated people. Things are complicated and uncertain in 

real crime scenarios. The police officer wants the problem-

solving assistant to help me make judgements with 

uncertain information or incomplete information. 

Knowledge refining 

According to Theory of Uncertain Reasoning, there is a 

notion called the credibility, which defines the extent to 

which one person believes one thing or one event due to 

experience. We borrow this notion to CILP neural 

networks. For each neuron in the input layer and the 

output layer, it has a domain ranging from -1 to 1. If we 

define the credibility I   [-1, 1] for each neuron, then we 

can interpreter neurons in the CILP neural network as 

follows: 

 If I is equal to -1, it is certain that the model of the 

neuron does not exist.  

 If I is equal to 1, it is certain that the model of the 

neuron does exist.  

 If I is equal to 1, it implies that no evidence proves the 

existence of the model of the neuron.  

 If I   (0, 1), the model of the neuron has a probability 

of existence. 

 If I   (-1, 0), the model of the neuron has a probability 

of nonexistence. 

If we have sufficient examples to train the CILP neural 

network, the deduction knowledge can be refined so that 

the police officer can use the neural network software to 

do uncertain reasoning. This illustration gives a design of 

a knowledge refining system which can assist police 

officer to solve crime problems. However, in terms of the 

fact that this is an undergraduate honours project, our 

design is not implemented because no example data are 

available. It can be regarded as a methodology to use a 

neural-symbolic system to do knowledge refining.  

Implementation 

In this report, we conduct a test by using the cancer data 

set from the UCI Machine Learning Repository, see [14]. 

These data consisted of 9 clinical parameters (clump 

thickness, uniformity of cell size, uniformity of cell shape, 

marginal adhesion, single epithelial cell size, bare nuclei, 

bland chromatin, normal nucleoli, and mitoses) and 699 

examples. Sixteen samples of this data set are including 

uncompleted data set.  We used remained 683 examples in 

which 444 are benignant examples and 239 are malignant 

examples. The detailed information could be found in the 

appendix, see Figure 1 – Figure 9. 

 

All nine parameters may be important risk factors for 

development of breast cancer. Inspired by [15], we 

acquired the coarse knowledge about the relationship 
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between these factors and breast cancer by using the 

machine learning method, then the knowledge was 

mapped to the structure of a neural network which is a 

CILP neural network.  Then the CILP neural network was 

trained with the data set and got a better prediction. The 

operations are shown as follows: 

1) We used Matlab to build a 3-layer neural network 

and trained it with the data set. 

 

 
2) We deploy the pedagogical approach to get the 

coarse knowledge  as follows: 

i. For 9 input neurons, we simulate 2
9
 input data sets 

where each of 9 neurons either has a value of  0.1 

or 1.  

ii. From the result, we conclude the coarse knowledge 

as follows: 

a) If the value of Bare Nuclei is large, then it is 

Malignant. 

b) If the value of Clump Thickness is large and 

the value of one attribute from Uniformity of 

Cell Size, Uniformity of Cell Shape,Marginal 

Adhesion, Single Epithelial Cell Size, Bland 

Chomatin, Normal Nucleoli and Mitoses is 

large, then it is Malignant. 

c) If the value of Uniformity of Cell Size is large 

and the value of one attribute from Bland 

Chomatin, Normal Nucleoli and Mitoses is 

large, then it is Malignant. 

d) If the value of Uniformity of Cell Shape is 

large and the value of one attribute from 

Bland Chomatin, Normal Nucleoli and 

Mitoses is large, then it is Malignant. 

e) If the value of Marginal Adhesion and the 

value of Normal Nucleoli are both large, then 

it is Malignant. 

f) If the value of Single Epithelial Cell Size and 

the value of Mitoses are both large, then it is 

Malignant. 

g) If the value of Clump Thickness is small and 

the value of one attribute from Uniformity of 

Cell Shape, Marginal Adhesion, Single 

Epithelial Cell Size, Bare Nuclei, Bland 

Chomatin, Normal Nucleoli and Mitoses is 

small, then it is Benign. 

3) According to the coarse knowledge, we use the 

interface to generate the CILP neural network.

 
4) We copy the CILP neural network to Matlab and get 

trained with the cancer data set.  

 
5) The test outcome is satisfying because the trained 

CILP has achieved the similar correctness as the pure 

machine method does. Moreover, the trained CILP 

neural network has a neat structure; and it can be 

interpreted to the symbolic knowledge. According to 

Figure 10 and Figure 11 in the appendix, all the rules 

above in the 2nd item hold. What is interesting is that 
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the performance of the CILP neural network cannot 

be improved by setting a better training goal while a 

general neural network can. This implies the 

knowledge embedded in the CILP neural network 

does not accept some data (to be exact, 23data). 

5 Einstein’s Riddle 

Specification 

The Einstein's Riddle is world-famous for its hardness. It 

is also said that 98% of the world population couldn't find 

a solution in the late 1800s.  Such a difficult problem can 

arise in real crime solving. Imagine that, in Example 2.1.1 

the police found the cigarette was Dunhill‘s and the feet 

prints led to a street exactly like the street in Einstein‘s 

Riddle below. The goal is to find in which of the houses 

the offenders lives. 

 

There are many efficient techniques to solve this question, 

for example, constraint programming. In this report, we 

give a model in logic programming to solve this riddle. 

The following is one version of the Einstein's Riddle: 

 There are five houses in a row, each of different 

colours.  

 Each has an owner of a different nationality.  

 Each owner has a unique favourite drink, type of 

cigarette, and a pet. 

 The question is: Who owns the fish? 

 Necessary clues: 

1. The Englishman lives in the red house.  

2. The Swede keeps dogs.  

3. The Dane drinks tea.  

4. The green house is just to the left of the white one.  

5. The owner of the green house drinks coffee.  

6. The Pall Mall smoker keeps birds.  

7. The owner of the yellow house smokes Dunhills.  

8. The man in the centre house drinks milk.  

9. The Norwegian lives in the first house.  

10. The Blend smoker has a neighbour who keeps 

cats.  

11. The man who smokes Blue Masters drinks bier.  

12. The man who keeps horses lives next to the 

Dunhill smoker.  

13. The German smokes Prince.  

14. The Norwegian lives next to the blue house.  

15. The Blend smoker has a neighbour who drinks 

water.  

Design 

According the riddle above, we can get three types of 

information as follows: 

1. Direct information from clues; 

2. Indirect information from clues; 

3. Constraint information. 

Example 4.3.1 Consider clue 1- ―The Englishman lives in 

the red house.‖   

1. Two pieces of direct information: (a) If the 

Englishman lives in House N, then House N are red. 

(b) If House N is red, then the Englishman lives in 

House N. 

2. Eight pieces of indirect information: (a) If a man (not 

English, can be Norwegian, Dane, German or 

Swedish) live in House N, and then House N is not 

red. (b) If House N is one colour form Yellow, Blue, 

Green and White, then the English doesn‘t live in 

House N. 

3. Four pieces of constraint information: (a) If House N 

is none of Yellow, Blue, Green and White, and then 

House N is red. (b) If none of the Norwegian, Dane, 

German or Swedish lives in House N, then the 

English lives in House N.(c) If House N is Red, then 

House N is none of Yellow, Blue, Green and White. 

(d) If the English lives in House N, then none of the 

Norwegian, Dane, German or Swedish lives in House 

N. 

The information needs to be reformed in a definite logic 

program. In order to express the presence of negation, we 

need to use extended logic programs, which has been 

introduced in Definition 3.4.1, Definition 3.4.2 and 

Theorem 3.4.1.  In the following, we introduce a solution 

to solve Einstein‘s Riddle in the positive form P* of an 

extended logic program P with using the logic 

programming interface. We define domains and predicates 

for P* as follows: 

Domains 

  HouseNumber={1,2,3,4,5}. 

  Color={Yellow,Blue,Red,Green,White}.  

Nationality={Norwegian,Dane,English,German,Swede}. 

Drink={Water,Tea,Milk,Coffee,Beer}. 

Cigarette={Dunhill,Blend,PallMall,Prince,BlueMaster}. 

  Pets={Cats,Horses,Birds,Fish,Dogs}. 

Predicates 

  HouseColor(HouseNumber,Color). 

  NegatedHouseColor(HouseNumber,Color). 

  OwnerIs(HouseNumber,Nationality). 

  NegatedOwnerIs(HouseNumber,Nationality). 

  OwnerDrink(HouseNumber,Drink). 

  NegatedOwnerDrink(HouseNumber,Drink). 

  OwnerSmoke(HouseNumber,Cigarette). 

  NegatedOwnerSmoke(HouseNumber,Cigarette). 

  OwnerPet(HouseNumber,Pets). 

  NegatedOwnerPet(HouseNumber,Pets). 

HouseColor(1,Red) is an atom that House 1 is Red. 

NegatedHouseColor(1, Red) is also an atom that House 1 

is not Red. NegatedHouseColor is the negation of 
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HouseColor, which expresses the negation in an explicit 

way. For each of the predicates, there is a positive form 

with a prefix - negated to express the negation of the 

predicate. 

 

Example 4.3.2 Consider Example 4.3.1. The information 

is reformed as follows: 

Direct information:  

(a) OwnerIs(X,English):-HouseColor(X,Red). 

(b) HouseColor(X,Red):-OwnerIs(X,English). 

Indirect information: 

(a)NegatedHouseColor(X,Red):-wnerIs(X,Norwegian). 

(b)NegatedHouseColor(X,Red):-OwnerIs(X,Dane). 

(c)NegatedHouseColor(X,Red):-OwnerIs(X,German). 

(d)NegatedHouseColor(X,Red):-OwnerIs(X,Swede). 

(e)NegatedOwnerIs(X,English):HouseColor(X,Yellow). 

(f)NegatedOwnerIs(X,English):-HouseColor(X,Blue). 

(g)NegatedOwnerIs(X,English):-HouseColor(X,Green). 

(h)NegatedOwnerIs(X,English):-HouseColor(X,White). 

Constraint information: 

(a) HouseColor(X,Red):- 

 NegatedHouseColor(X, Yellow); 

NegatedHouseColor(X, Blue);  

NegatedHouseColor(X, Green); 

NegatedHouseColor(X, White); 

(b)OwnerIs(X, English):-  

NegatedOwnerIs(X, Norwegian); 

NegatedOwnerIs(X, Dane); 

NegatedOwnerIs(X, German); 

NegatedOwnerIs(X, Swede). 

(c)NegatedHouseColor(X, Yellow):- 

HouseColor(X, Red). 

NegatedHouseColor(X, Blue):-HouseColor(X, Red). 

NegatedHouseColor(X, Green):-HouseColor(X, Red). 

NegatedHouseColor(X, White):-HouseColor(X, Red). 

(d)NegatedOwnerIs(X, Norwegian):-  

OwnerIs(X, English). 

NegatedOwnerIs(X, Dane):-  

OwnerIs(X, English). 

NegatedOwnerIs(X, German):-  

OwnerIs(X, English). 

NegatedOwnerIs(X, Swede):-  

OwnerIs(X, English). 

 

In this solution, we need find direct information and 

indirect information for all clues and constraint 

information for every atom, then reform the information in 

a logic program. Then we can use neither a Tp-neural 

network nor a CILP system to compute the answer set.  

 

Discussion about this solution: 

1. An extended program. In order to solve this question 

in logic programming, we need a way to express the 

negation explicitly. The extended program can do that. 

However, there is no logic programming tool that we 

can deploy in practice to use an extended logic 

program to do deduction.  We resort to the positive 

form of an extended logic program. Consequently 

inconsistency may happen if the logic program is not 

well-behaved. Fortunately the result of this solution is 

a well-behaved logic program. 

2. Comparison with Constraint Programming. Constraint 

Programming is based on Constraint propagation and 

Backtracking while neural-symbolic systems are 

based on Fixed Pointed Theorem. Therefore the 

search for a solution is trivial while the solving 

process of logic programming is monotonic. 

Implementation 

Solving the Einstein‘s Riddle in practice involves the 

follow procedures: 

1. Type in the logic program with classical negation. 

2.  
3. Choose a neural-symbolic system model from 

TpNN and CILPNN, both of which can solve this 

logic program.  

 
4. The result is show as follows: 
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By comparing the execution time (0.817592s on averages) 

of this logic program and the execution (0.000000 on 

averages) of a constraint program using the Minion solver, 

the solver is quicker. However, the result doesn‘t mean 

that monotonic deduction is worse than repeated search 

with constraint propagation. 

 

6 An Experiment on Classical Negation 

Specification 

In this section, we propose a new model of neural-

symbolic networks to enable classical negation. 

 

[1] ―According to Lifschitz and McCarthy, commonsense 

knowledge can be represented more easily when classical 

negation (¬), sometimes called explicit negation, is 

available. In [12], Gelfond and Lifschitz have extended the 

notion of stable models to programs with classical 

negation.‖ 

 

[1] General logic programs provide negative information 

implicitly, by the closed-world assumption, while 

extended programs include explicit negation, allowing the 

presence of incomplete information in the data base. In the 

language of extended programs, we can distinguish 

between a query which fails in the sense that it does not 

succeed, and a query which fails in stronger sense that its 

negation succeeds. 

 

Example [1,12] ―Consider the following problem, due to 

John McCarthy, illustrate such a difference: a school bus 

may cross railway tracks unless there is an approaching 

train. This would be expressed in a general logic program 

by the rule cross   ~train, in which case the absence of 

train in the database is interpreted as the absence of an 

approaching train, i.e. using the closed-world assumption. 

Such an assumption is unacceptable if one reasons with 

incomplete information. However, if we use classical 

negation and represent the above knowledge as the 

extended program: cross  ¬train, the cross will be derived 

not be derived until the fact ¬train is added to the 

database.‖ 

 

Definition 3.4.1 [12] An extended logic program is a finite 

set of clauses of the form L0   L1, … , Lm, ~ Lm+1, … , ~ 

Ln, where Li (0 i n) is literal ( an atom or the classical 

negation of an atom, denoted by ¬) and ~ is default 

negation ( or negation-as-failure). 

 

It is clearly seen that an atom A has four states: 

1. A, positive existence 

2. ¬A, classical negative existence 

3. ~A , default negation of positive existence 

4. ~¬A, default negation of classical negative 

existence. 

In [1], Artur S. D'Avila Garcez, Krysia Broda and Dov M. 

Gabbay extended CILP to incorporate classical negation 

by using the positive form of an extended logic program.  

 

Definition 3.4.2 [1]The positive form (P*) of an extended 

logic program (P) is defined as follows: For any negative 

literal ¬A occurring in P, let A‘ be a positive literal form 

of ¬A.  P* is obtained from P by replacing all the negative 

literals of each rule of P by its positive form.  

Note: It can be clearly seen that P* is just an ordinary 

definite logic program.  

 

In the positive form of an extended logic program, the 

original atom A becomes two atoms A and ¬A with four 

states as follows: 

 
Theorem 3.4.1 [1] For each extended logic program P, 

there exists a feedforward artificial network N with 

exactly one hidden layer and semilinear neurons such that 

N computes TP*, where P* is the positive form of P. 

Note: Given a extended logic program P, there also exists 

a Tp-neural network which can compute TP*, where P* is 

the positive form of P. 

 

By far, no matter it is a general logic program or an 

extended logic program, each of the atoms has only two 

states – true and default negation. In other words, each of 

the neurons in the input layer or the output layer of its 

corresponding neural-symbolic network also has only two 

states. However a neuron with real number value can have 

as many states as possible. Why do we need two neurons 

to present the three states – truth, negation, default (or 

state unknown) of an atom in an extended logic program? 

Is there an alternative to incorporate classical negation into 

neural-symbolic systems? 

 

An experiment that tries to build a new model of neural-

symbolic systems which incorporates classical negation is 

to change the model of Tp-neural networks so that it can 

do deduction with classical negation. This new model is 

supposed to meet the following requirements: 

1. It has to incorporate classical negation into logic 

programs. 
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2. It should provide a translation algorithm to translate 

a logic program with classical negation to a 

connectionist system, which can compute Tp. 

3. It should provide an algorithm such that the 

corresponding connectionist system of a logic 

program with classical negation can perform 

massively parallel deduction. 

Design 

In this report, we give a logic program with classical 

negation, its semantics, a Translation Algorithm to a 

symbolic-neural system and a Massively Parallel 

Deduction Algorithm. 

 

Definition 4.4.1 A logic program with classical negation 

is a finite set of clauses of the form L0  A1         m, 

 Am+1         An (0   n), where L0 is a literal (an atom 

A0 or the classical negation of an atom ¬A0) and Ai denote 

an atom. 

 

In such a logic program P, an atom A has three states – 

truth, classical negation, default (or state unknown). For a 

clause L0  A1         m,  Am+1         An (0   n), L0 

will be concluded only if Ai (1 i m) has a truth state and 

Ai (m+1 i n) has a classical negation state; otherwise the 

atom A0  will have a default state. 

 

A logic program with classical negation has a different 

semantics from the semantics of a definite logic program. 

In the following we borrow notions from extended 

programs to explain the semantics of a logic program with 

classic negation. 

 

[12] Let Lit be the set of ground literals of a logic program 

with classical negation. The Answer Set is a smallest 

subset S of Lit such that  

1. for any rule L0  L1, …, Lm, if L1, …, Lm  S, then L0 

 S; 

2. if S contains a pair of complementary literals (e.g. 

A,¬A), then S =Lit. 

A well-behaved logic program with classical negation has 

exactly one answer set, and the set is consistent. The 

answer that a logic program with classical negation returns 

for a ground query (A) is yes, no, or unknown, depending 

on whether its answer set contains A, ¬A or neither. 

 

Let P be a logic program with classical negation. Let B be 

the set of all grounded atoms and their classical negations 

determined by P. The collection of the states of all the 

atoms in B is an interpretation, denoted as I. Then 2
B
 is the 

set of all possible interpretations.  

 

Definition 4.4.2 Let P be a logic program with classical 

negation. The mapping Tp: 2
B 2

B 
is defined as follows. 

Let I be an interpretation of B; then Tp (I) = {L0| L0 ← 

L1, . . . , Ln is a clause in P and { L1, . . . , Ln } I}. 

 

Proposition 4.4.1 Let P be a well-behaved logic program 

with classical negation. The answer set S = Tp   w. 

 

For a logic program with classical negation P, there exists 

a three-layer feedforward artificial network N such that N 

computes TP. the following is the translation algorithm.  

 

Translation Algorithm 

Let p and q be the number of propositional variables and 

the number of clauses occurring in P, respectively. 

Without loss of generality we may assume that the 

grounded atoms are numbered from 1 to p. The network 

associated with P can now be constructed as follows: 

1) The input and output layer is a vector of p neurons, 

where the ith neuron represents the atom Ai, 1   p. 

The threshold of each neuron occurring in the input or 

output layer is set to 0. 

The activation function in the hidden layer is the 

linear limit function (y = x). 

The activation function in the hidden layer is the hard 

limit function (y ={
           
              

 ). 

The activation function in the output layer is the 

function (y ={
            

            
                

 ). 

2) For each clause of the form L0  A1         m,  Am+1 

        An (0   n),occurring in P do the following: 

a) Add a binary threshold unit c to the hidden layer 

of N. 

b) Connect c to the unit representing L0 in the output 

layer.  If L0 is negated atom, set up the connection 

with weight -1; otherwise set up the weight 1 

c) For each Ai, 1   m, connect the neuron 

representing Ai in the input layer of N to c, and 

set the connection‘s weight to 1.    

d) For each Ai, m+1   n, connect the neuron 

representing Ai in the input layer of N to c, and 

set the connection‘s weight to -1.   

e) Set the threshold    of c to n- 0.5. 

 

Example 4.4.1Consider the following logic program P: 

1) A  B,  C 

2) A   D,E 

3) B   

4) ¬D  B 
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The above neural network N is obtained by applying the 

above algorithm to P. If B = 1 and C =-1 in the input layer 

of N then A = 1 in the output layer of N, representing the 

rule A ← B   C of P. Similarly, B = 1 is always obtained 

in the output layer of N, regardless of its input vector, 

indicating that B is a fact. D = -1 is always obtained 

because B is a fact and the rule ¬D   B holds. 

 

Proposition 4.4.1 Let P be a well-behaved program. There 

exists a single hidden layer recurrent network such that 

each computation starting with an arbitrary initial input I 

converges to a stable state and yields the unique fixpoint 

of Tp. 

 

The following is the algorithm to compute the stable state 

of P in a neural network mentioned above. 

 

Massively Parallel Deduction Algorithm 

Let p be the number of input neurons and the number of 

output neurons in Tp-neural network N. The input is 

defined by a vector I = (I1, … , Ip) and the output is given 

by a vector  O = (O1, . . . ,Op).  

1. Initialize I = [0, 0, …, 0]. 

2. Loop: 

4) Calculate O = feedforward(I); 

5) If I is equal to O, then terminate; 

6) If I is not equal to O, then for j in (1, …, p), 

replace the value of Ij  with the value of Oj in O.     

 

Example 4.4.2 Consider the logic program in Example 

4.4.1.As shown in Figure, N is recurrently connected, its 

output vector feeds the input vector in an iteration of Tp. 

Let the initial input vector I = (0, 0, 0, 0, 0). So the 

deduction process would be as follows: 

(5) Tp    = {0, 0, 0, 0, 0};  

(6) Tp    = {0, 1, 0, 0, 0}; 

(7) Tp    = {1, 1, 0, 0, -1}; 

(8) Tp    = Tp    = Tp    . 

Discussions about this model: 

 Answer Set: Herbrand model does not work 

because each atom has three states. We need a way 

to represent a logic program in a set of grounded 

instances (or literals). 

 Inconsistency issue: Inconsistency may happen 

when the logic program is not well-behaved.  

Solutions can be borrowed from the positive form 

of extended programs, see [1]. 

 ―¬Q   not P‖ failure, see [12]. ―¬Q   not P‖ 

means: Q has a classical negation state, if P has a 

default state. But this model cannot do such 

deduction. 

 The translation algorithm is not well explained. For 

clause ¬A0   A1         m,  Am+1         An (0  

  n), a neuron c will be added to the hidden layer. 

The connection from c the A0 is weighted as -1. 

Consider the clause ¬D  B, a neuron c is added to 

the hidden layer to represent this clause, the 

connection between c and the neuron which 

represent D is -1 which is easy to interpret it as D 

 ¬B. However, if -1 can be taken as an inhibitory 

signal, we might give an interpretation to ¬D  B as 

B will transmit an inhibitory signal to D and make 

D in a state of inhibition if B receives an excitatory 

signal. 

 Merit one: The model can perform a certain type of 

deduction with classical negation. 

 Merit two: The model gives a means to use one 

neuron to present the three states of one atom 

instead of two neurons in the model of the positive 

form of extended programs.  

 CILP system can also be changed to incorporate 

classical negation in a similar way. 

Implementation 

We implemented this new model of neural-symbolic 

networks in the logic programming interface. It required a 

library class, representing the model, which consists of a 

constructor, Generate() and TpFixedPoint(). Another two 

new components - a new translator and a new interpreter 

are needed to be added to the Logic-Interface Windows 

Application.  

 

Example 5.4.1 The following is the procedure to use the 

model to solve Einstein‘s Riddle. 

1. Type in the logic program with classical negation. 



` 

 20 

 
2. Choose the neural-symbolic system –

TPNNWithNegation.  

 
3. The result is shown as follows: 

 

This solution needs 2104 neurons and 463500 weights 

while the solution using the positive form of an extended 

program needs 2354 neurons and 927000 weights. Both 

solutions need 14 iterations to arrive at the fixed point.  

Definitely it will save a lot of memory and execution time. 

7 Conclusion 

A logic programming interface which deploys neural-

symbolic systems to do deduction been proposed in this 

report. Based on it, we proposed a novel approach to build 

knowledge refining systems and tested it with the breast 

cancer problem. Then we tested the soundness of the 

interface by solving the Einstein‘s Riddle. Finally, we 

proposed a new type of neural-symbolic systems which 

enables classical negation. Future work will focus on a 

deep research on knowledge refining systems and a better 

solution to build a neural-symbolic system which enables 

classical negation. 
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Appendices 

 
Figure 1. Histogram for the clump thickness attributes in the training data. The average is 4.442167. 

 

 
Figure 2. Histogram for the uniformity of Cell Size thickness attributes in the training data. The average is 3.150805. 

 

 
Figure 3. Histogram for the uniformity of Cell Shape thickness attributes in the training data. The average is 3.215227. 
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Figure 4. Histogram for the marginal adhesion attributes in the training data. The average is 2.830161. 

 

 
Figure 5. Histogram for the single epithelial cell size attributes in the training data. The average is 3.234261. 

 

 
Figure 6. Histogram for the bare nuclei in the training data. The average is 2.14082. 
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Figure 7. Histogram for the bland chromatin attributes in the training data. The average is 3.445095. 

 

 
 

Figure 8. Histogram for the normal nucleoli attributes in the training data. The average is 2.869693. 

 

 
Figure 9. Histogram for the mitoses attributes in the training data. The average is 1.6032211. 
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Figure 10. The input-hidden weights 

 
Figure 11. The hidden-output weights 
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Figure 12. The thresholds of neurons in the hidden layer 

 
Figure 13. The thresholds of neurons in the output layer 


