
`

 1

SHERLOCK — Neural Network Software for Automated Problem Solving

Qiming Zhang

Final Year Project

BSc (Hons) Applied Computing

University of Dundee, 2011

Supervisor: Dr Katya Komendantskaya

Abstract – This report aims to apply methods of neural-

symbolic integration which integrates connectionist

systems and symbolic AI systems; and capitalize on the

advantages of the two paradigms. There are two types of

neural-symbolic systems – Tp neural networks and CILP

systems both of which are capable to do deduction. We

want to use neural-symbolic systems to solve logic

deduction problem. We develop an interface called

SHERLOCK that implements these systems and solves

logic deduction problems. We test our implementation on

several interesting problems.

1 Introduction

The detective Sherlock Holmes is famous for his astute

logical reasoning and his observational skills to solve

difficult cases. One kind of logical reasoning is deductive

reasoning, which constructs or evaluates deductive

conclusions from facts and knowledge.

Here is a crime detective story: A small bank was robbed.

The bank safe is found open. Footprints left on the floor

belong to a person with a pair of small feet; and burned

cigarettes are found on the scene. A detective came up

with a deduction rule-―If someone has keys for bank safe,

small feet and the habit of smoking, the one is the

criminal.‖ Then the detective found the following facts:

1) ―Jane, Harry and Stephen have keys.‖

2) ―Stephen and Jane have small feet.‖

3) ―Stephen has a habit of smoking.‖

The detective drew the conclusion logically that Stephen

was the criminal.

The story above is a simple example to show what

deductive reasoning is. In deductive logic, a conclusion

necessarily follows from a set of premises. This article

will introduce two types of neural networks and the

deductive ability of the neural networks to solve logic

problems.

In practice, deduction may be more complicated and

uncertain. Consider a police officer who has just come to a

crime scene and wishes to make use of all evidence

available to find suspects and rule out the suspension of

unrelated people. To be efficient, the police officer uses a

small portable computer that has a problem-solving

assistant. What should this assistant be like? A neural

network software would come in handy, because it has

been trained with sufficient examples so that it is capable

to do deduction with incomplete information; also - it is

very efficient to assist the police officer do his job. This

could be achieved by deploying a neural-symbolic system.

[1]―Human cognition successfully integrates the

connectionist and symbolic paradigms of Artificial

Intelligence (AI). Yet modelling of cognition develops

these separately in neural computation and symbolic

logic/AI areas. There is now a movement towards a

fruitful mid-point between these extremes, in which the

study of logic is combined with connectionism. ‖.

Connectionist systems and symbolic AI systems have

quite contrasting advantages and disadvantages. It is very

significant to put forward Neural-symbolic Integration

which integrates both paradigms while retaining all the

advantages. There are sound, well-developed methods and

techniques to build such systems.

To design Neural-Symbolic Learning systems, it is

necessary to use logic programming to present symbolic

knowledge. Then, one needs translation methods to

interpret symbolic knowledge to connectionist models, and

to make sure that the network obtained is equivalent to the

original program, in the sense that what is computed by

the program is computed by the network. With such neural

networks, we can do deduction. The following figure

shows the neural symbolic cycle.

With respect to translation methods, two models will be

introduced in the following, either of which provides a

correct translation algorithm. One is a single-hidden-layer

partially recurrent neural network with binary threshold

units, having the ability to compute the least fixpoint of a

general logic program, introduced in Massively Parallel

Model for Logic Programming, see [2]. Because these

http://en.wikipedia.org/wiki/Legal_case

`

 2

neural networks correspond to fixpoint operator Tp for

logic programs, we will call them Tp-neural networks. The

other is Connectionist Inductive Learning and Logic

Programming (CILP), a neural-symbolic learning system

based on a feedforward neural network that integrates

inductive and deductive learning, see [1].

For a real logic deduction problem, we will use logic

programming to formalise deductive inference of the logic

problem e.g. a crime-solving problem. Once the deductive

reasoning is expressed as a logic program P, there are two

translation algorithms to transform P into a Tp- or CILP-

neural network N. There are theorems [2, 1], guaranteeing

that the neural network N can compute the fixpoint

operator Tp of P. The fixed point can be interpreted as the

answer to the deduction problem.

Objectives

In the main body of this report, we address the four

objectives. Firstly, we design a logic programming

interface for users who use neural-symbolic systems to

operate deduction tasks. Secondly, we show one way to

build up a knowledge refining system. Thirdly, we solve

the world-famous logic deduction problem – Einstein‘s

Riddle with the use of our logic programming interface.

Finally, we carry on an experiment, designing a new type

of neural networks, which is a derivative from Tp neural

networks and enables classical negation in logic

programming.

Methods

The first objective, to design a logic programming

interface for neural-symbolic systems, is the most

important work in this report. Therefore it is worthy and

necessary to give an introduction to it here.

The neural-symbolic systems are capable to do deduction.

However, it is very difficult for users to use such a system

because users have to insert symbolic knowledge into a

neural network by setting up weights and thresholds and

then interpret the outcome of the neural network to

symbolic knowledge according to users‘ definition to

neurons. An interface between users and neural-symbolic

systems is required.

The interface is supposed to provide a logic programming

code editor which is writable in terms of embedding

symbolic knowledge into connectionist systems and a

deduction outcome reader which is readable in terms of

interpreting the outcome of neural-symbolic systems to

symbolic knowledge.

The detailed specification is shown as follows:

1. This interface should provide a declarative language

for logic programming, which would better to be

similar to the well-known logic programming –

Prolog.

2. This interface should be able to build up neural-

symbolic systems (Tp- and CILP-neural networks)

and embed the symbolic knowledge according to a

general logic program.

3. This interface should ensure the neural-symbolic

systems can compute the fixed point of a well-

behaved logic program.

4. This interface should be able to interpret the outcome

of a neural-symbolic system to symbolic knowledge

and present the knowledge in a form of the declarative

language.

Software

We deployed Microsoft Visual C# for developing

SHERLOCK. Matlab is used for additional tests.

The report is organised as follows. Section 2 contains

background knowledge. Section 3 describes the design and

implementation of a logic programming interface -

SHERLOCK. Section 4, we show how to design a rule-

based neural network for classification and probability

estimation. Section 5 is the test – Einstein‘s Riddle on

SHERLOCK. In Section 6, we introduce the experiment

on classical negation.

2 Background

In the following subsections, we briefly recall basic

notions and notations concerning logic programs, Tp- and

CILP- neural networks, but we restrict ourselves to logic

deduction. In each subsection, we would briefly show how

the knowledge will be used.

2.1 Definite Logic Programs: the syntax

In this section, we give a concise introduction to Definite

Logic Program because it is very fundamental and

important.

Definition 2.1.1 In definite logic, there are five classes of

symbols called alphabet:

a) Variables symbols, x, y and z, …

b) Constants symbols, a, b and c, …

c) Predicate symbols, p, q and r, …

d) Function symbols, f, g and h, …

e) Connectives, which are (―and‖), (―if-then‖), ~

(―not‖).

f) Punctuation symbols, which are ―(‖, ―)‖ and ―,‖.

Definition 2.1.2 A term is defined inductively as follows:

(a) A variable is term.

(b) A constant is term.

(c) If f is an a-ary function symbol and t1,…,tn are

terms, then f(t1,…,tn) is a term.

Definition 2.1.3 An atomic formula (or an atom) is

defined inductively as follows: If p is an n-ary predicate

symbol and t1,…,tn are terms, then p(t1,…,tn) is a atom.

`

 3

Definition 2.1.4 If A is an atomic formula then

 A is said to be a positive literal

 ~A is said to be a negative literal

Definition 2.1.5 A definite program clause is a clause of

the form

 ⏟

 ⏟

, which contains precisely one atom (viz. A) in its

consequent. A is called the head of the clause, the Li are

called body literals, and their conjunction L1 Ln is

called the body of the clause.

Definition 2.1.6 A definite program is a finite set of

definite program clauses.

A logic program is a very necessary tool to present a

practical problem in a logic way.

Example 2.1.1 Consider the story in Introduction, there is

a logic program which consists of clauses (1) to (7) as

follows:

(1) Criminal(X)←

HasKeys(X), SmallFeet(X), Smoke(X)

(2) HasKeys(Harry)←

(3) HasKeys(Jane)←

(4) HasKeys(Stephen) ←

(5) SmallFeet(Stephen) ←

(6) SmallFeet(Jane)←

(7) Smoke(Stephen)←

Clause (1) is a rule, representing ―if some has keys for

bank safe, small feet and the habit of smoking, the one is

the criminal.‖

Clauses (2)-(7) are the facts, interpreted as follows: 1)

―Jane, Harry and Stephen have keys.‖ 2) ―Stephen and

Jane have small feet.‖ 3) ―Stephen has a habit of smoking.‖

This introduction to Definite Logic Program prepares the

fundamental knowledge for introducing the following

knowledge.

2.2 Semantics of Definite Logic Programs

In this section, we give Semantics to Definite Logic

Program and Fixed-point Theory.

Definition 2.2.1 Let P be a definite program. The

Herbrand universe, denoted Up, is the set of all ground

terms that can be formed from the constants and function

symbols appearing in.

Definition 2.2.2 Let P be a definite program. The

Herbrand base, denoted Bp, is the set of all ground atoms

that can be formed from the predicates in P and the terms

in the Herbrand universe.

Definition 2.2.3 Let P be a definite program. A Herbrand

interpretation denoted I, is a subset of the Herbrand base.

An interpretation can map from atoms in Bp to {true,

false}.An interpretation is extended to map clauses in P to

{true, false} as follows: a definite clause A L1 Ln is

mapped to true either A is mapped to true or if one of Li is

mapped to false.

Definition 2.2.4 Let P be a definite program. A Herbrand

mode is a Herbrand interpretation that maps all clauses in

P to true.

Definition 2.2.5 Let P be a definite program. The least

Herbrand model of P, denoted Mp, is the smallest subset of

Bp that represents an interpretation that is a model of P.

Example 2.1.1 Considering the logic program in Example

2.1.1:

 The Herbrand Universe is UL = {Jane, Harry and

Stephen}.

 The Herbrand Base is Bp = { Criminal(Jane),

Criminal(Harry), Criminal(Stephen), HasKeys(Jane),

HasKeys(Harry), HasKeys(Stephen), SmallFeet(Jane),

SmallFeet(Harry), SmallFeet(Stephen), Smoke(Jane),

Smoke(Harry), Smoke(Stephen)}.

 I1 =

{HasKeys(Harry), HasKeys(Jane), HasKeys(Stephen),

SmallFeet(Stephen), SmallFeet(Jane),Smoke(Stephen),

Criminal(Stephen) } is a Herbrand interpretation.

 I2 = { HasKeys(Jane) ,SmallFeet(Jane)} is a Herbrand

interpretation.

 I1 is a Herbrand model for this logic program while I2

is not. I2 maps the clause ―Criminal(Jane) ←

HasKeys(Jane), SmallFeet(Jane), Smoke(Jane)” to

false.

 I1 is also the least Herbrand model for this logic

program.

Let P be a definite program. The collection of Herbrand

interpretations forms a complete lattice and there is a

monotonic mapping associated with P defined on this

lattice. Some concepts and results about a complete lattice

are showing as follows.

Definition 2.2.6 Let [L,] be a complete lattice and T: L

→ L be a mapping. a L is the least fixpoint of T if a is

fixpoint of T (i.e. T(a)=a) and for all fixpoints b of T, a

b. Similarly, a L is the greatest fixpoint of T if a is a

fixpoint of T and for all fixpoints b of T, b a.

Proposition 2.2.1 Let [L,] be a complete lattice and T: L

→ L be monotonic. T has a least fixed point (lft(T)) and a

greatest fixed point (gfp(T)).

`

 4

Definition 2.2.7 Let L be complete lattice and T: L → L be

monotonic. Then we define:

 T 0 = inf(L); inf(L) is the greatest lower

bound of L.

 T = T(T ; if is an ordinal.

Let P be a definite program. Then 2
Bp

, which is the set of

all Herbrand interpretations of P, is a complete lattice

under the partial order of set inclusion .The top element

of this lattice is Bp and the bottom element is .

Definition 2.2.8 Let P be a definite program. The mapping

Tp: 2
Bp 2

Bp
is defined as follows. Let I be a set Herbrand

Interpretation; then Tp (I) = {A A←A1, . . . , An is a

clause in P and { A1, . . . , An } I}.

The Tp-operator propagates truth along the clauses. In

other words, Tp provides the link between the declarative

and the procedural semantics of P. For definite programs,

TP converges to the least model. Therefore, Herbrand

interpretations that are models can be characterised in

terms of Tp.

Proposition 2.2.1 Let P be a definite program and I a

Herbrand interpretation of P. Then the mapping Tp is

continuous and I is a model of P iff Tp (I) I.

Proposition 2.2.2 Let P be a definite program. Mp =

lfp(Tp) =Tp w.

Example 2.2.2 Considering the logic program in Example

2.1.1:

1) Tp = ;

2) Tp ={HasKeys(Harry), HasKeys(Jane),

HasKeys(Stephen), SmallFeet(Stephen),

SmallFeet(Jane),Smoke(Stephen)}

3) Tp = {HasKeys(Harry), HasKeys(Jane),

HasKeys(Stephen), SmallFeet(Stephen),

SmallFeet(Jane),Smoke(Stephen),

Criminal(Stephen) }

4) Tp 2 = Tp = Tp

Note As Bp is finite, the lattice is also finite, and there is

some n such that Tp n = Tp n+1, and hence Tp w.

will be equal to Tp n, for some successor ordinal n

Semantics of Definite Logic program give a means to

present the knowledge of a logic program P in a purely

syntactic way. Fixed-point Theory gives a means to

compute the least Herbrand model of P according to the

very initial knowledge of P.

2.3 Neural Networks

Here we make a brief induction to Artificial Neural

Networks (ANNs) because it is also very fundamental and

important.

An artificial neural network is a massively parallel

computational model. It is inspired from neuroscience

research that tries to imitate some key behaviour of animal

brains (biological neural networks).

Definition 2.3.1 An artificial Neuron (AN) is a model of a

biological neural (BN). Each AN receives a vector of I

input signals ⃗ =(x1, x2,…,xn) from the environment or

other ANs. To each input signal xi is associated a weight

Wi to strengthen or deplete the input signals. The An

computes the net input signal net , and uses an activation

function f to compute the output signal y given the net

input net and a threshold value , also referred to as the

bias.

The net input signal to an AN is usually computed as the

weighted sum of all input signals, net =∑

 . The

activation function f receives the net input and the bias,

and determines the output of the neuron. There are three

basic activation functions: linear, non-linear and semi-

linear.

`

 5

Definition 2.3.2 An artificial neural network (ANN) is a

layered network of ANs. A typical artificial neural

network consists of an input layer, hidden layers and an

output layer. ANs in one layer are connected, fully or

partially, to the ANs in the next layer. Feedback

connections to ANs in previous layers are also possible.

ANs in input layer don‘t have input connections and ANs

in output layer don‘t have output connections. Only hidden

neurons have both input and output connection.

Definition 2.3.3 A feedforward neural network is an

artificial neural network where connections between the

neurons do not form a directed cycle. This is different

from recurrent neural networks. The network above is a

feedforward neural network.

Definition 2.3.4 Feedforward operation is a computational

procedure that a feedforward neural network takes in an

input vector and produces an output vector.

In [9], for a d-nH-c fully connected three-layer network, it

has d neurons in the input layer, nH neurons in the hidden

layer and c neurons in the output layer. During

feedforward operation, a d-dimensional input vector ⃗ is

presented to the input layer; each input neuron then emits

its correspondent xi. Each of the nH hidden neurons

computes its net, netj as the inner product of the input

layer signas with weight wji. The hidden neuron emits

yj=f(netj -), where f is the activation and is the

threshold. Each of the c output neurons computes it net,

netk as the inner the product of the hidden layer signals

with weight wkj. The output neuron emits zk=f(netk- ,

where f is the activation function in the output layer and

 is the threshold. The feedforward operation is defined

inductively as follows:

1. For j [1,…,nH], ∑

2. For j [1,…,nH], yj = f(netj -)

3. For k [1,…,c], ∑

4. For k [1,…,c], zk = f(netk -)

Neural networks are introduced here because the following

two types of neural-symbolic systems need a connectionist

system to embed symbolic knowledge.

2.4 Tp-Neural Network

We now introduce Tp–neural network that can simulate

the Tp-operator. It is titled as the Core-method for

Propositional Logic in neural-symbolic integration.

Theorem 2.4.1 [1]For each program P there exists a single

hidden layer feedforward network N of binary Threshold

units such that N computes Tp. (Holldobler & Kalinke,

1994)

Theorem 2.4.2 [1]For each single hidden layer

feedforward network N of binary Threshold units there

exists a program P such that Tp is computed by N.

(Holldobler & Kalinke, 1994)

Holldobler and Kalinke also presented a translation

algorithm to convert a general definite logic problem to a

single hidden layer neural network. This kind of network

is called a Tp-neural network.

[2]Translation Algorithm

Let p and q be the number of ground atoms and the

number of clauses occurring in P, respectively. Without

loss of generality we may assume that the grounded atoms

are numbered from 1 to p. The network associated with P

can now be constructed as follows:

1) The input and output layer is a vector of p binary

threshold neurons, where the ith neuron represents

the atom Ai, 1 p. The threshold of each neuron

occurring in the input or output layer is set to 0.5.

2) For each clause of the form A A1 m, Am+1

 An(0 n),occurring in P do the following:

a) Add a binary threshold unit c to the hidden layer

of N.

b) Connect c to the unit representing A in the

output layer with weight 1.

c) For each Ai, 1 m, connect the unit

representing Ai in the input layer of N to c, and

set the connection‘s weight to 1.

`

 6

d) For each ~Ai, m+1 n, connect the unit

representing Ai in the input layer of N to c, and

set the connection‘s weight to -1.

e) Set the threshold of c to m-0.5.

Note: For all artificial neurons, their activation function is

a non-linear function:

 f(x) ={

A theorem then shows that the network obtained is

equivalent to the original logic program, in the sense that

what is computed by the program is computed by the

network and vice versa. That means the network can

compute out the least Herbrand model of the original logic

program.

Example 2.4.1 Consider the following logic program P:

1) A B, C

2) A D,E

3) B

The above neural network N is obtained by applying the

above algorithm to P. If B = 1 and C =0 in the input layer

of N then A = 1 in the output layer of N, representing the

rule A ← B C of P. Similarly, B = 1 is always obtained

in the output layer of N, regardless of its input vector,

indicating that B is a fact.

According to the above two theorems, each interpretation I

for P is represented.

Let us recall that essentially, Tp-operator is a mapping

from the set of all Herbrand interpretations of P to the set

of all Herbrand interpretations of P, that is, Tp: 2
Bp 2

Bp
.

Now the network itself is a mapping from the set of all

interpretations of Herbrand base to the set of all

interpretations of Herbrand base.

If we iterate the network by putting output neurons

interpretations to input neurons interpretations in the same

way that the Tp-operator iterate itself with Herbrand

Interpretations, the network then will converge to a static

state that the output neurons interpretations are the least

Herbrand Model.

Theorem 2.4.3 [1]Let P be a well-behaved program.

There exists a single hidden layer recurrent network such

that each computation starting with an arbitrary initial

input I converges to a stable state and yields the unique

fixpoint of Tp.

Here is the algorithm to compute the least Herbrand Model

of P in a Tp-neural network.

Massively Parallel Deduction Algorithm

Let p be the number of input neurons and the number of

output neurons in Tp-neural network N. The input is

defined by a vector I = (I1, … , Ip) and the output is given

by a vector O = (O1, . . . ,Op).

1. Initialize I = [0, 0, …, 0].

2. Loop:

1) Calculate O = feedforward(I);

2) If I is equal to O, then terminate;

3) If I is not equal to O, then for j in (1, …, p),

replace the value of Ij with the value of Oj in O.

Example 2.4.2 Consider the logic program in Example

2.4.1.As shown in Figure, N is recurrently connected, its

output vector feeds the input vector in an iteration of Tp.

Let the initial input vector I = (0, 0, 0, 0, 0). So the

deduction process would be as follows:

(1) Tp = {0, 0, 0, 0, 0};

(2) Tp = {0, 1, 0, 0, 0};

(3) Tp = {1, 1, 0, 0, 0};

(4) Tp = Tp = Tp .

Note [3]There are four characteristic properties that

distinguish TP -neural networks. We summarise them as

follows.

1. The number of neurons in the input and output layers is

the number of atoms in the Herbrand base BP of a given

program P.

2. The number of iterations of TP (for a given logic

program P) corresponds to the number of iterations of the

neural network built upon P.

3. Signals of TP -neural networks are binary, and this is

achieved by using binary threshold activation functions.

This provides the computations of truth value functions

and that are used in program clauses.

4. As a consequence of the property 3, first-order atoms

are not presented in the neural network directly, and only

truth values 1 and 0, which are the same for all the atoms,

are propagated.

Tp-neural networks are introduced to transform a logic

program to a neural network which is proved to have the

ability to approximate the fixpoint operator of the

corresponding program and compute out the fixed point.

`

 7

2.5 CILP-Neural Networks

In this section, we introduce a massively parallel

computational model that can simulate the Tp-operator. It

is a derivative from the Core-Method for Propositional

Logic in neural-symbolic integration.

[5]Connectionist Inductive Learning and Logic

Programming (CILP) is a massively parallel

computational model based on a feedforward artificial

neural network that integrates inductive learning from

examples and background knowledge with deductive

reasoning using logic programming.

To embed the propositional knowledge of a general logic

program (P) in a neural network (N), CILP uses an

approach similar to Tp-Neural Networks. However, A

CILP-neural network N deploys a semi-linear function as

its activation function:

f(x) = 2/(1+e
−β x

)−1.

Clearly f(x) has the real numbers as domain and [-1, 1] as

codomain.

Theorem 2.5.1 [1] For each propositional general program

P, there exists a feedforward artificial neural network N

with exactly one hidden layer and semi-linear neurons

such that N computes Tp.

The translation algorithm that converts a general logic

program to a CILP-neural network is shown as follows.

[1]Translation Algorithm

Notation Given a general logic program P, let:

1. q denote the number of clauses Cl (1 ≤ l ≤ q)

occurring in P;

2. Amin, the minimum activation for a neuron to be

considered active (or true), 0 < Amin < 1;

3. Amax, the maximum activation when a neuron is not

active (or false), -1 < Amax < 0 ;

4. h(x) =

 , the bipolar semi-linear activation

function;

5. g(x) = x, the standard linear activation function;

6. W (resp. –W), the weights of connections associated

with positive (resp. negative) literals;

7. θ l denote the threshold of the hidden neuron Nl

associated with clause Cl ;

8. θ A denote the threshold of the output neuron A, where

A is the head of clause Cl ;

9. kl denote the number of literals in the body of clause

Cl ;

10. μl denote the number of clauses in P with the same

atom in the head, for each clause Cl ;

11. MAXCl (kl, μl) denote the greater element of kl and μl

for clause Cl ;

12. MAXP(k1, . . . ,kq, μ1, . . . ,μq) denote the greatest

element of all ks and μs of P.

Main body of Translation Algorithm:

1. Given a general logic program P, there are n

propositional variables. Then there are n input

neurons and n output neurons in a neural network N.

Label each input (resp. output) neuron of the neural

network with each of these propositional variables.

Assume that Amax = - Amin.

2. Calculate MAXP(⃑⃑ ⃑, ⃑⃑) of P;

3. Calculate
 (⃑⃑ ⃑ ⃑⃑)

 (⃑⃑ ⃑ ⃑⃑)
 ;

4. Calculate the value of W such that the following is

satisfied:

 (⃑⃑ ⃑ ⃑⃑)

5. For each clause Cl of P of the form A L1, … , Lk (k

≥ 0):

a. Create input neurons L1, …, Lk and an output neuron

A in N (if they do not exist yet).

b. Add a neuron Nl to the hidden layer of N.

c. Connect each neuron Li (1 ≤ i ≤ k) in the input layer

to the neuron Nl in the hidden layer. If Li is a

positive literal, then set the connection weight to W;

otherwise, set the connection weight to −W.

d. Connect the neuron Nl in the hidden layer to the

neuron A in the output layer and set the connection

weight to W.

e. Define the threshold (θ l) of the neuron Nl in the

hidden layer as

 .

f. Define the threshold (θ A) of the neuron A in the

output layer as

 .

6. For those neurons in the output layer that don‘t have

a threshold yet, define the threshold (θ o) of each of

those neurons in the output layer as

 .

7. Set g(x) as the activation function of the neurons in

the input layer of N. In this way, the activation of the

neurons in the input layer of N given by each input

vector i will represent an interpretation for P.

8. Set h(x) as the activation function of the neurons in

the hidden and output layers of N. In this way, a

gradient descent learning algorithm, such as

backpropagation, can be applied to N.

9. If N needs to be fully connected, set all other

connections to zero.

Example 2.5.1 Consider the logic program in Example

2.4.1. The CILP network should be set up as follows:

MAXP (⃑⃑ ⃑, ⃑⃑) = 2.

`

 8

Amin > 1/ 3; let Amin = 0.5.

W 4.394/ .Let =1 and W = 4.5.

For clause 1, A B, C:

 = ;

 .

For clause 2, A D, E:

 = ;

 .

For clause 3, A D, E:

 = - ;

 .

Neuron C has a threshold

 .

Neuron D has a threshold

 .

Neuron E has a threshold

 .

If B = 1 and C =-1 in the input layer of N then A = 0.9992

in the output layer of N, representing the rule A ← B C

of P. Similarly, B = 0.9705 is always obtained in the

output layer of N, regardless of its input vector, indicating

that B is a fact.

In order to perform deduction, a CILP –neural network N

is transformed into a partially recurrent network N* by

connecting each neuron in the output layer to its

correspondent neuron in the input layer with weight 1, as

shown in figure. In this way, N* can iterate Tp in parallel.

[1]Massively Parallel Deduction Algorithm

Let p be the number of input neurons and the number of

output neurons in Tp-neural network N. The input is

defined by a vector I = (I1, … , Ip) and the output is given

by a vector O = (O1, . . . ,Op).

 1. Initialize I = [-1, -1, …, -1].

2. Loop:

1) Calculate O = feedforward(I);

2) Define {

if valuation(Ij) is equal to valuation (Oj) (j [1, …,

p]), then terminate;

3) Otherwise, for j [1, …, p], replace the value of Ij

with the value of Oj.

Let the initial input vector I = (-1, -1, -1, -1, -1). So the

deduction process would be as follows:

(1) Tp = { (-1, -1, -1, -1, -1};

(2) Tp = { -0.9903, 0.9705, -0.9338, -0.9338, -

0.9338};

(3) Tp = { 0.9305, 0.9705, -0.9338, -0.9338, -

0.9338};

(4) Tp = Tp = Tp .

CILP systems are introduced to transform a logic program

to a neural network which is proved to have the ability to

approximate the fixpoint operator of the corresponding

program and compute out the fixed point. However,

compared to a Tp-neural network, a CILP system is more

powerful in the sense that it has the capability to do

machine learning due to the non-linear activation function.

The logic program P is viewed as background knowledge.

A CILP network can be trained with examples efficiently,

then refining the background knowledge.

3 A logic programming interface

Design

According to the specification for a logic programming

interface in the Introduction Section, this interface is

supposed to consist of the following components:

1. A code editor, with which users can present a

general logic program in a prolog-like declarative

language;

2. A translator, which can analyse syntax and

semantics of the logic program and set up

neural-symbolic systems according to the logic

program;

3. A model of Tp neural networks and a model of

CILP-neural networks;

4. An interpreter and a result reader

Models of neural-symbolic systems

A model of Tp-neural networks

Given a general logic program P, let there be q definite

clauses, n propositional variables. A Tp-neural network

translated from P owns n input neurons, q hidden neurons

and n output neurons with a n-by-q matrix W1 – weights

between the input layer and the hidden layer and an q-by-n

matrix W2 – weights between the hidden layer and the

output layer. In the output layer there are n thresholds,

whose values are set 0.5. In the hidden layer there are q

thresholds, whose values are determined by W1.

`

 9

Model For a Tp-neural network, a tuple (n, q, W1, W2)

determines all the properties of the Tp-neural network. q

is the number of clauses. n is the number of all

propositional variables. W1 is a n-by-q matrix; and W2 is

an q-by-n matrix. They represent the connections between

clauses‘ bodies and their corresponding heads. The q

thresholds θ l (l [1,…,q]) in the hidden layer are

calculated as follows:

 For l [1,…,q], denote the number of positive value

in the l-th column of W1 as pl . θ l = pl -0.5.

A model of CILP-neural networks

Given a general logic program P, let there be q definite

clauses, n propositional variables. A CILP-neural network

translated from P owns n input neurons, q hidden neurons

and n output neurons with a q*n matrix W1’ – weights

between the input layer and the hidden layer and an q*n

matrix W2’– weights between the hidden layer and the

output layer. W1 is derived if W1’ divide by W; and W2 is

derived if W2’ divide by W. W1 and W2 determine W1‘,

W2‘, thresholds in the hidden layer θ l (l [1,…,q]) and

thresholds in the output layer θ o (o [1,…,n]) in the

neural-symbolic system.

Model For a CILP-neural network, a tuple (n, q , W1, W2)

determines all the properties of the CILP-neural network.

q is the number of clauses. n is the number of all

propositional variables. W1 is a k*r matrix; and W2 is an

r*k matrix. They represent the connections between

clauses‘ bodies and their corresponding heads.

W, Amin, thresholds in the hidden layer θ l (l [1,…,q]) and

thresholds in the output layer θ o (o [1,…,n]), ⃑⃑⃑ , ⃑ are

calculated as follows:

 For l [1,…,q], kl equals the number of non-zero

values in the l-th column of W1.

 For each clause Cl has a head Al, the y-th neuron

stands for the atom Al. Then μl equals the number of

positive values in the y-th column of W2.

 Calculate
 (⃑⃑ ⃑ ⃑⃑)

 (⃑⃑ ⃑ ⃑⃑)

 Calculate

 (⃑⃑ ⃑ ⃑⃑)

 Calculate the weights between the input layer and the

hidden layer- W1‘

W1‘=W1*W

 Calculate the weights between the hidden layer and

the output layer –W2‘

W2‘=W2*W

 For thresholds l [1,…,q] in the hidden layer ,

calculate

 .

 For o [1,…,n] in the output layer, denote the

number of positive values in the o-th column of W2

as ro , calculate

 .

It is clearly seen that the model of a Tp-neural network

and the model of a CILP-neural network have the same

tuple (n, q, W1, W2) for a general logic program.

A declarative language and a code editor

The users would like to use a declarative language for

Logic programming, which would better to be similar to

the well-known logic programming. The following

language introduced in this report is very similar to the

turbo-prolog language.

A general logic program consists of facts, rules and

questions. In order to present facts, rules and questions

well, a general logic program in is designed to have four

sections – Domains, Predicates, Goals, Rules.

In Domains section, we define terms and classify them

into domains. In Predicates section, we define predicates

which are used in logic clauses. In Goals section, we state

questions which are supposed to be answered by machine.

In Rules section, we present the facts and logic clauses.

The deliberate grammar design of a general logic program

in is shown as follows:

1. Domains‘ Format:

<domain name> = { <list of terms> }.

2. Predicates‘ Format:

<predicate name> = (<list of domain>).

3. Goals‘ Format:

?<predicate name> (<list of terms or variables>).

4. Rules divide into facts and clauses.

Facts‘ format:

<predicate name> (<list of terms>).

 Clauses‘ format:

<predicate name> (<list of terms or variables>) :-

<predicate name> (<list of terms or variables>)

{;<predicate name> (<list of terms or variables>) }.

Example 4.1.3.1 Considering the following program P:

Domains

 Suspect = {Harry,Jane,Stephen }.

Predicates

 HaveKeys (Suspect).

 HaveSmallFeet (Suspect).

 Smoke (Suspect) .

 Criminal(Suspect) .

Goals

 Criminal(X).

Clauses

 HaveKeys(Harry).

 HaveKeys(Jane).

 HaveKeys(Stephen).

 HaveSmallFeet(Stephen).

 HaveSmallFeet(Jane).

 Smoke(Stephen).

Criminal(X):-HaveKeys(X);HaveSmallFeet(X);Smoke(X).

`

 10

In P there are one domain, four predicates, one goal, six

facts and one rules. Either a domain name or a predicate

name is a string of laterals. A term is also a string of

laterals; but it must start with a lower-case letter. A

variable is a string of laterals which starts with an upper-

case letter; and its scope is the current sentence in where it

is. The design of a general logic program must obey the

procedure – define domains, declare Predicates, set Goals,

present Clauses (Facts and Rules), which is shown in the

example above.

The code editor is a simple text editor, on which users

write logic programs in .

A translator

A translator is a necessary component which connects the

symbolic logic programming component to the

connectionist computing systems. It is supposed to

transform a general logic program written in into a tuple

(n, q, W1, W2) which either the model of a Tp-neural

network or the model of a CILP-neural network could use

to build a neural-symbolic system that can compute

deduction.

The translator is very similar to a single pass compiler

which consists of two stages. In the first stage, the

translator performs lexical analysis, syntactic analysis and

creates a token table. In the second stage, it performs

intermediate representation generation and target tuple (n,

q, W1, W2) creation.

Lexical analysis is a relatively simple phase in which

symbols (or tokens) of the language are formed. It is

supposed to indentify predicates, terms, variables,

conjunctions.

The set of acceptable symbols is shown as follows:

1. A string –a sequence of laterals

2. ‗.‘

3. ‗=‘

4. ―:-‖

5. ―~‖

6. ‗{‗ and ‗}‘

7. ‗(‘ and ‗)‘

8. ‗,‘ and ‗;‘

Syntax analysis is a phase to in which the overall structure

of a program is identified, and involves an understanding

of the order in which the symbols in a program may

appear. According the declarative language , there are

four sections in a logic program. For each section, it has a

label to mark it and there is a piece of syntax which is used

to define its contents. The syntax for a general logic

program in is defined in a regular grammar as follows:

1. Labels/Key words: Domains, Predicates, Goals, Rules

Its syntax is defined as follow:

S -> Domains | Predicates | Goals | Rules

2. Domains

Its syntax is defined as follow:

S -> DOMAIN = { B }.

B ->TERM

T ->TERM, B

DOMAIN -> [a-zA-Z]

DOMAIN -> [a-zA-Z]，DOMAIN

TERM -> [a-z] [a-zA-Z]*

3. Predicates

Its syntax is defined as follow:

S-> PREDICATE = (B) .

B -> DOMAIN

B -> DOMAIN, B

PREDICATE -> [a-zA-Z] [a-zA-Z]*

DOMAIN -> [a-zA-Z] [a-zA-Z]*

4. Goals

Its syntax is defined as follow:

S -> ? PREDICATE (B) .

PREDICATE -> [a-zA-Z] [a-zA-Z]*

B -> TERM

B -> TERM, B

B -> VARIABLE

B -> VARIABLE, B

TERM -> [a-z] [a-zA-Z]*

VARIABLE -> [A-Z] [a-zA-Z]*

5. Facts

Its syntax is defined as follow:

S -> PREDICATE (B) .

PREDICATE -> [a-zA-Z] [a-zA-Z]*

B -> TERM

B -> TERM, B

B -> VARIABLE

B -> VARIABLE, B

TERM -> [a-z] [a-zA-Z]*

VARIABLE -> [A-Z] [a-zA-Z]*

`

 11

6. Clauses

Its syntax is defined as follow:

S -> A :- T .

T -> A

T -> ~A

T -> A; T

T -> ~A; T

A -> PREDICATE (B)

PREDICATE -> [a-zA-Z] [a-zA-Z]*

B -> TERM

B -> TERM, B

B -> VARIABLE

B -> VARIABLE, B

TERM -> [a-z] [a-zA-Z]*

VARIABLE -> [A-Z] [a-zA-Z]*

According these grammars, the syntax analyser (or parser)

can fit a sequence of tokens into a specified syntax. A

parsing problem consists of finding a derivation (if one

exists) of a particular sentence using a given grammar. In

this translator, the parser is a left to right bottom-up parser

with one symbol lookahead LR (1). The LR (1) is a very

common algorithm in complier design, which will not be

introduced here, see [7, 11].

Intermediate representation generation is a phase to

transform each statement in the original code of a general

logic program to intermediate data according to a

particular syntax.

Given a general logic program P, the translator is

supposed to generate appropriate intermediate data which

it can use to create the target tuple to construct a neural-

symbolic network representing P. Four types of

intermediate data are defined as follows:

(1) n, the number of neurons of the input layer or the

output layer;

(2) q, the number of neurons of the hidden layer;

(3) Input-hidden-connection :(inputi , hiddenj, weightij),

a connection between a neuron in the input layer

and a neuron in the hidden layer with a weight.

(4) Hidden-output-connection:(hiddenj,outputk,weightjk),

a connection between a neuron in the hidden layer

and a neuron in the output layer weight.

When the translator identifies the syntax of a statement, it

will either create a new item of intermediate data or amend

the value of a previous item of intermediate data. When a

domain statement or a predicate statement is encountered,

n will be amended. When a fact or a clause is encountered,

q will be amended; and input hidden connections will be

created.

Target tuple creation is a simple phase to create a tuple (n,

q, W1, W2) according to the intermediate data. n is

assigned the final value of n in the intermediate data. q is

also assigned the final value of q in the intermediate data.

W1 is a n-by-q matrix which is initialised with 0s. For

each input-hidden-connection :(inputi, hiddenj, weightij),

the entry W1 [inputi , hiddenj] is assigned weightij. W2 is a

q-by-n matrix which is initialised with 0s. For each

Hidden-output-connection :(hiddenj,outputk, weightjk), the

entry W2[hiddenj, outputk] is assigned weightjk.

The final task for the translator is to with set up a neural-

symbolic system with the tuple(n, q, W1, W2). The neural-

symbolic system could be either a Tp-neural network or a

CILP neural network, which depends on the choice of

users.

An interpreter and a result reader

An interpreter is a component that interprets the execution

result of a neural-symbolic system into propositional

variables‘ truth value and gives symbolic answers to the

goals of P.

According the record of the meaning (model) of the

neurons in the output layer, it is easy to judge a

propositional variable‘ truth value. For a Tp-neural

network, if the value of a neuron is greater than or equal to

0.5, then its corresponding propositional variable is

considered to own a true value; otherwise the

propositional variable owns a false value. For a CILP-

neural network, if the value of a neuron is greater than or

equal to Amin, then its corresponding propositional variable

is considered to own a true value.

The interpreter is supposed to understand the meaning of

goals in a logic program, search answers and then format

answers in a symbolic way. There are two types of goals.

One has no variable and the other one has. A goal with no

variable expects an answer whether the corresponding

proposition variable is true or not. A goal with variables

expects an answer that presents the sets of variables‘ value

that make the goal‘s propositional variable true.

`

 12

A result reader is a component that either presents the

interpreter‘s answers to goals in P or states all errors when

P has grammar errors.

Implementation

The Logic Programming Interface is implemented in C#. It

consists of three class libraries and one windows

application shown in detail as follows:

1. Linear-Algebra-Library Class Library, which provides

RVector and RMatrix structures with proper algebra

operations, see [10].

2. Tp-Neural-Network Class Library, which provides a

Tp-Neural-Network class with the following methods:

a) Tp(leteralsNum,clauseNum,W1,W2), which is

the constructer;

b) Generate(), which is a method that generates a

entire Tp-neural network, which includes

neurons, weights and thresholds;

c) TpFixedPoint(), which is a method that a Tp-

neural network iterate itself doing massively

parallel computing to obtain the Fixed Point.

3. CILP-Neural-Network Class Library, which provides

a CILP-Neural-Network class with the following

methods:

a) CILP(leteralsNum,clauseNum,W1,W2), which

is the constructer;

b) Generate(), which is a method that generates a

entire CILP-neural network, which includes

neurons, weights, threasholds, Amin and W;

c) CILPFixedPoint(), which is a method that a

CILP-neural network iterate itself doing

massively parallel computing to obtain the

Fixed Point.

4. Logic-Interface Windows Application, which

provides a code editor, a translator , an interpreter and

a result reader.

Example 5.1.1 Consider the logic program in Example

2.1.1. A simple procedure to use application shown as

follows:

1. Type in a logic program P which accords to the

grammar of the language .

2. Choose a neural-symbolic system model from TpNN

and CILPNN, both of which can do deduction.Then

the application translates P and set ups the model.

3. The neural symbolic system iterates massively

parallel computing and obtains the fixed pointed. The

interpreter will generate answers to Goals in P. The

result reader shows the result as follows.

4 A knowledge refining system

Specification

Knowledge refining is to insert background knowledge (or

coarse knowledge) of a particular domain into a neural

network and obtain fine knowledge by learning with

example data. One kind of Neural-symbolic systems –

CILP is very suitable to do knowledge refining. Not only

CILP has the capability to present Background Knowledge

into neural networks, but also it can use back-propagation

to get networks trained with examples.

Using the interface above to translate a logic program to a

CILP-neural network can be considered as the first step of

knowledge refining. The second step is to deploy standard

back-propagation to train the CILP-neural network.

Using the interface to do knowledge refining has two

merits:

1. An easy way to generate neurocomputing models. We

use a logic programming language to build a neural

network with background knowledge. The logic

programming language is syntactically similar to the

way people reason, which makes for a general and

easily accessible interface for users with diverse

backgrounds to do knowledge refining.

2. Neural networks will incorporate rules rather than

eliminate them when trained with examples. During

the process of training, the embedded knowledge in a

CILP-neural network is refined and coarse knowledge

becomes fine knowledge.

Design

Consider the neural network software which the police

officer has, it is could be the outcome of a knowledge

refining system. In this report, it will show how to obtain

such a system.

`

 13

First, we will introduce some basic knowledge about real

crime analysis and a model to solve crime detective

problems. Then we will show how to present the

knowledge in a logic programming language. Finally we

obtain a CILP neural network which could be trained with

examples, and we how to train it.

Crime detection knowledge

Some terminology in crime detection:

1. The categorical trinity—means, motive, opportunity.

Respectively, they refer to: the ability of the suspect

to commit the crime (means), the reason the suspect

had to commit the crime (motive), and whether or not

the suspect had the chance to commit the crime

(opportunity), see [13].

2. Evidence. Evidence may be left on the scene after

criminals have committed a crime. Some people may

see the crime and become a witness.

3. Witness. A witness is someone who has firsthand

knowledge about a crime through his or her senses

(e.g. seeing, hearing, and smelling).

4. Abnormal behaviour. Criminals tend to have

abnormal behaviour after the crime. The most

common one is lying.

As shown above, six elements have to be taken into

consideration to judge who criminals are. They are Means,

Motive, Opportunity, Evidence, Witness, and Abnormal

Behaviour. The following graph shows their attribution to

determine a criminal in a clear way.

Logic programming representation

Instead of using the decision architecture above, the police

officer may have the following logic when deciding who

criminals are:

1. Categorical-trinity(x) <- Means(x), Motive(x),

Opportunity(x)

2. Criminal(x) <- Categorical-trinity(x), Evidence(x),

Abnormal-behaviour(x)

3. Criminal(x) <- Categorical-trinity(x),Witness(x),

Abnormal-behaviour(x)

4. Criminal(x) <- Evidence(x), Witness(x), Abnormal-

behaviour(x)

With such logic, a CILP neural network can be obtained.

However, such a network obviously cannot help the police

officer to find suspects and rule out the suspension of

unrelated people. Things are complicated and uncertain in

real crime scenarios. The police officer wants the problem-

solving assistant to help me make judgements with

uncertain information or incomplete information.

Knowledge refining

According to Theory of Uncertain Reasoning, there is a

notion called the credibility, which defines the extent to

which one person believes one thing or one event due to

experience. We borrow this notion to CILP neural

networks. For each neuron in the input layer and the

output layer, it has a domain ranging from -1 to 1. If we

define the credibility I [-1, 1] for each neuron, then we

can interpreter neurons in the CILP neural network as

follows:

 If I is equal to -1, it is certain that the model of the

neuron does not exist.

 If I is equal to 1, it is certain that the model of the

neuron does exist.

 If I is equal to 1, it implies that no evidence proves the

existence of the model of the neuron.

 If I (0, 1), the model of the neuron has a probability

of existence.

 If I (-1, 0), the model of the neuron has a probability

of nonexistence.

If we have sufficient examples to train the CILP neural

network, the deduction knowledge can be refined so that

the police officer can use the neural network software to

do uncertain reasoning. This illustration gives a design of

a knowledge refining system which can assist police

officer to solve crime problems. However, in terms of the

fact that this is an undergraduate honours project, our

design is not implemented because no example data are

available. It can be regarded as a methodology to use a

neural-symbolic system to do knowledge refining.

Implementation

In this report, we conduct a test by using the cancer data

set from the UCI Machine Learning Repository, see [14].

These data consisted of 9 clinical parameters (clump

thickness, uniformity of cell size, uniformity of cell shape,

marginal adhesion, single epithelial cell size, bare nuclei,

bland chromatin, normal nucleoli, and mitoses) and 699

examples. Sixteen samples of this data set are including

uncompleted data set. We used remained 683 examples in

which 444 are benignant examples and 239 are malignant

examples. The detailed information could be found in the

appendix, see Figure 1 – Figure 9.

All nine parameters may be important risk factors for

development of breast cancer. Inspired by [15], we

acquired the coarse knowledge about the relationship

`

 14

between these factors and breast cancer by using the

machine learning method, then the knowledge was

mapped to the structure of a neural network which is a

CILP neural network. Then the CILP neural network was

trained with the data set and got a better prediction. The

operations are shown as follows:

1) We used Matlab to build a 3-layer neural network

and trained it with the data set.

2) We deploy the pedagogical approach to get the

coarse knowledge as follows:

i. For 9 input neurons, we simulate 2
9
 input data sets

where each of 9 neurons either has a value of 0.1

or 1.

ii. From the result, we conclude the coarse knowledge

as follows:

a) If the value of Bare Nuclei is large, then it is

Malignant.

b) If the value of Clump Thickness is large and

the value of one attribute from Uniformity of

Cell Size, Uniformity of Cell Shape,Marginal

Adhesion, Single Epithelial Cell Size, Bland

Chomatin, Normal Nucleoli and Mitoses is

large, then it is Malignant.

c) If the value of Uniformity of Cell Size is large

and the value of one attribute from Bland

Chomatin, Normal Nucleoli and Mitoses is

large, then it is Malignant.

d) If the value of Uniformity of Cell Shape is

large and the value of one attribute from

Bland Chomatin, Normal Nucleoli and

Mitoses is large, then it is Malignant.

e) If the value of Marginal Adhesion and the

value of Normal Nucleoli are both large, then

it is Malignant.

f) If the value of Single Epithelial Cell Size and

the value of Mitoses are both large, then it is

Malignant.

g) If the value of Clump Thickness is small and

the value of one attribute from Uniformity of

Cell Shape, Marginal Adhesion, Single

Epithelial Cell Size, Bare Nuclei, Bland

Chomatin, Normal Nucleoli and Mitoses is

small, then it is Benign.

3) According to the coarse knowledge, we use the

interface to generate the CILP neural network.

4) We copy the CILP neural network to Matlab and get

trained with the cancer data set.

5) The test outcome is satisfying because the trained

CILP has achieved the similar correctness as the pure

machine method does. Moreover, the trained CILP

neural network has a neat structure; and it can be

interpreted to the symbolic knowledge. According to

Figure 10 and Figure 11 in the appendix, all the rules

above in the 2nd item hold. What is interesting is that

`

 15

the performance of the CILP neural network cannot

be improved by setting a better training goal while a

general neural network can. This implies the

knowledge embedded in the CILP neural network

does not accept some data (to be exact, 23data).

5 Einstein’s Riddle

Specification

The Einstein's Riddle is world-famous for its hardness. It

is also said that 98% of the world population couldn't find

a solution in the late 1800s. Such a difficult problem can

arise in real crime solving. Imagine that, in Example 2.1.1

the police found the cigarette was Dunhill‘s and the feet

prints led to a street exactly like the street in Einstein‘s

Riddle below. The goal is to find in which of the houses

the offenders lives.

There are many efficient techniques to solve this question,

for example, constraint programming. In this report, we

give a model in logic programming to solve this riddle.

The following is one version of the Einstein's Riddle:

 There are five houses in a row, each of different

colours.

 Each has an owner of a different nationality.

 Each owner has a unique favourite drink, type of

cigarette, and a pet.

 The question is: Who owns the fish?

 Necessary clues:

1. The Englishman lives in the red house.

2. The Swede keeps dogs.

3. The Dane drinks tea.

4. The green house is just to the left of the white one.

5. The owner of the green house drinks coffee.

6. The Pall Mall smoker keeps birds.

7. The owner of the yellow house smokes Dunhills.

8. The man in the centre house drinks milk.

9. The Norwegian lives in the first house.

10. The Blend smoker has a neighbour who keeps

cats.

11. The man who smokes Blue Masters drinks bier.

12. The man who keeps horses lives next to the

Dunhill smoker.

13. The German smokes Prince.

14. The Norwegian lives next to the blue house.

15. The Blend smoker has a neighbour who drinks

water.

Design

According the riddle above, we can get three types of

information as follows:

1. Direct information from clues;

2. Indirect information from clues;

3. Constraint information.

Example 4.3.1 Consider clue 1- ―The Englishman lives in

the red house.‖

1. Two pieces of direct information: (a) If the

Englishman lives in House N, then House N are red.

(b) If House N is red, then the Englishman lives in

House N.

2. Eight pieces of indirect information: (a) If a man (not

English, can be Norwegian, Dane, German or

Swedish) live in House N, and then House N is not

red. (b) If House N is one colour form Yellow, Blue,

Green and White, then the English doesn‘t live in

House N.

3. Four pieces of constraint information: (a) If House N

is none of Yellow, Blue, Green and White, and then

House N is red. (b) If none of the Norwegian, Dane,

German or Swedish lives in House N, then the

English lives in House N.(c) If House N is Red, then

House N is none of Yellow, Blue, Green and White.

(d) If the English lives in House N, then none of the

Norwegian, Dane, German or Swedish lives in House

N.

The information needs to be reformed in a definite logic

program. In order to express the presence of negation, we

need to use extended logic programs, which has been

introduced in Definition 3.4.1, Definition 3.4.2 and

Theorem 3.4.1. In the following, we introduce a solution

to solve Einstein‘s Riddle in the positive form P* of an

extended logic program P with using the logic

programming interface. We define domains and predicates

for P* as follows:

Domains

 HouseNumber={1,2,3,4,5}.

 Color={Yellow,Blue,Red,Green,White}.

Nationality={Norwegian,Dane,English,German,Swede}.

Drink={Water,Tea,Milk,Coffee,Beer}.

Cigarette={Dunhill,Blend,PallMall,Prince,BlueMaster}.

 Pets={Cats,Horses,Birds,Fish,Dogs}.

Predicates

 HouseColor(HouseNumber,Color).

 NegatedHouseColor(HouseNumber,Color).

 OwnerIs(HouseNumber,Nationality).

 NegatedOwnerIs(HouseNumber,Nationality).

 OwnerDrink(HouseNumber,Drink).

 NegatedOwnerDrink(HouseNumber,Drink).

 OwnerSmoke(HouseNumber,Cigarette).

 NegatedOwnerSmoke(HouseNumber,Cigarette).

 OwnerPet(HouseNumber,Pets).

 NegatedOwnerPet(HouseNumber,Pets).

HouseColor(1,Red) is an atom that House 1 is Red.

NegatedHouseColor(1, Red) is also an atom that House 1

is not Red. NegatedHouseColor is the negation of

`

 16

HouseColor, which expresses the negation in an explicit

way. For each of the predicates, there is a positive form

with a prefix - negated to express the negation of the

predicate.

Example 4.3.2 Consider Example 4.3.1. The information

is reformed as follows:

Direct information:

(a) OwnerIs(X,English):-HouseColor(X,Red).

(b) HouseColor(X,Red):-OwnerIs(X,English).

Indirect information:

(a)NegatedHouseColor(X,Red):-wnerIs(X,Norwegian).

(b)NegatedHouseColor(X,Red):-OwnerIs(X,Dane).

(c)NegatedHouseColor(X,Red):-OwnerIs(X,German).

(d)NegatedHouseColor(X,Red):-OwnerIs(X,Swede).

(e)NegatedOwnerIs(X,English):HouseColor(X,Yellow).

(f)NegatedOwnerIs(X,English):-HouseColor(X,Blue).

(g)NegatedOwnerIs(X,English):-HouseColor(X,Green).

(h)NegatedOwnerIs(X,English):-HouseColor(X,White).

Constraint information:

(a) HouseColor(X,Red):-

 NegatedHouseColor(X, Yellow);

NegatedHouseColor(X, Blue);

NegatedHouseColor(X, Green);

NegatedHouseColor(X, White);

(b)OwnerIs(X, English):-

NegatedOwnerIs(X, Norwegian);

NegatedOwnerIs(X, Dane);

NegatedOwnerIs(X, German);

NegatedOwnerIs(X, Swede).

(c)NegatedHouseColor(X, Yellow):-

HouseColor(X, Red).

NegatedHouseColor(X, Blue):-HouseColor(X, Red).

NegatedHouseColor(X, Green):-HouseColor(X, Red).

NegatedHouseColor(X, White):-HouseColor(X, Red).

(d)NegatedOwnerIs(X, Norwegian):-

OwnerIs(X, English).

NegatedOwnerIs(X, Dane):-

OwnerIs(X, English).

NegatedOwnerIs(X, German):-

OwnerIs(X, English).

NegatedOwnerIs(X, Swede):-

OwnerIs(X, English).

In this solution, we need find direct information and

indirect information for all clues and constraint

information for every atom, then reform the information in

a logic program. Then we can use neither a Tp-neural

network nor a CILP system to compute the answer set.

Discussion about this solution:

1. An extended program. In order to solve this question

in logic programming, we need a way to express the

negation explicitly. The extended program can do that.

However, there is no logic programming tool that we

can deploy in practice to use an extended logic

program to do deduction. We resort to the positive

form of an extended logic program. Consequently

inconsistency may happen if the logic program is not

well-behaved. Fortunately the result of this solution is

a well-behaved logic program.

2. Comparison with Constraint Programming. Constraint

Programming is based on Constraint propagation and

Backtracking while neural-symbolic systems are

based on Fixed Pointed Theorem. Therefore the

search for a solution is trivial while the solving

process of logic programming is monotonic.

Implementation

Solving the Einstein‘s Riddle in practice involves the

follow procedures:

1. Type in the logic program with classical negation.

2.
3. Choose a neural-symbolic system model from

TpNN and CILPNN, both of which can solve this

logic program.

4. The result is show as follows:

`

 17

By comparing the execution time (0.817592s on averages)

of this logic program and the execution (0.000000 on

averages) of a constraint program using the Minion solver,

the solver is quicker. However, the result doesn‘t mean

that monotonic deduction is worse than repeated search

with constraint propagation.

6 An Experiment on Classical Negation

Specification

In this section, we propose a new model of neural-

symbolic networks to enable classical negation.

[1] ―According to Lifschitz and McCarthy, commonsense

knowledge can be represented more easily when classical

negation (¬), sometimes called explicit negation, is

available. In [12], Gelfond and Lifschitz have extended the

notion of stable models to programs with classical

negation.‖

[1] General logic programs provide negative information

implicitly, by the closed-world assumption, while

extended programs include explicit negation, allowing the

presence of incomplete information in the data base. In the

language of extended programs, we can distinguish

between a query which fails in the sense that it does not

succeed, and a query which fails in stronger sense that its

negation succeeds.

Example [1,12] ―Consider the following problem, due to

John McCarthy, illustrate such a difference: a school bus

may cross railway tracks unless there is an approaching

train. This would be expressed in a general logic program

by the rule cross ~train, in which case the absence of

train in the database is interpreted as the absence of an

approaching train, i.e. using the closed-world assumption.

Such an assumption is unacceptable if one reasons with

incomplete information. However, if we use classical

negation and represent the above knowledge as the

extended program: cross ¬train, the cross will be derived

not be derived until the fact ¬train is added to the

database.‖

Definition 3.4.1 [12] An extended logic program is a finite

set of clauses of the form L0 L1, … , Lm, ~ Lm+1, … , ~

Ln, where Li (0 i n) is literal (an atom or the classical

negation of an atom, denoted by ¬) and ~ is default

negation (or negation-as-failure).

It is clearly seen that an atom A has four states:

1. A, positive existence

2. ¬A, classical negative existence

3. ~A , default negation of positive existence

4. ~¬A, default negation of classical negative

existence.

In [1], Artur S. D'Avila Garcez, Krysia Broda and Dov M.

Gabbay extended CILP to incorporate classical negation

by using the positive form of an extended logic program.

Definition 3.4.2 [1]The positive form (P*) of an extended

logic program (P) is defined as follows: For any negative

literal ¬A occurring in P, let A‘ be a positive literal form

of ¬A. P* is obtained from P by replacing all the negative

literals of each rule of P by its positive form.

Note: It can be clearly seen that P* is just an ordinary

definite logic program.

In the positive form of an extended logic program, the

original atom A becomes two atoms A and ¬A with four

states as follows:

Theorem 3.4.1 [1] For each extended logic program P,

there exists a feedforward artificial network N with

exactly one hidden layer and semilinear neurons such that

N computes TP*, where P* is the positive form of P.

Note: Given a extended logic program P, there also exists

a Tp-neural network which can compute TP*, where P* is

the positive form of P.

By far, no matter it is a general logic program or an

extended logic program, each of the atoms has only two

states – true and default negation. In other words, each of

the neurons in the input layer or the output layer of its

corresponding neural-symbolic network also has only two

states. However a neuron with real number value can have

as many states as possible. Why do we need two neurons

to present the three states – truth, negation, default (or

state unknown) of an atom in an extended logic program?

Is there an alternative to incorporate classical negation into

neural-symbolic systems?

An experiment that tries to build a new model of neural-

symbolic systems which incorporates classical negation is

to change the model of Tp-neural networks so that it can

do deduction with classical negation. This new model is

supposed to meet the following requirements:

1. It has to incorporate classical negation into logic

programs.

`

 18

2. It should provide a translation algorithm to translate

a logic program with classical negation to a

connectionist system, which can compute Tp.

3. It should provide an algorithm such that the

corresponding connectionist system of a logic

program with classical negation can perform

massively parallel deduction.

Design

In this report, we give a logic program with classical

negation, its semantics, a Translation Algorithm to a

symbolic-neural system and a Massively Parallel

Deduction Algorithm.

Definition 4.4.1 A logic program with classical negation

is a finite set of clauses of the form L0 A1 m,

 Am+1 An (0 n), where L0 is a literal (an atom

A0 or the classical negation of an atom ¬A0) and Ai denote

an atom.

In such a logic program P, an atom A has three states –

truth, classical negation, default (or state unknown). For a

clause L0 A1 m, Am+1 An (0 n), L0

will be concluded only if Ai (1 i m) has a truth state and

Ai (m+1 i n) has a classical negation state; otherwise the

atom A0 will have a default state.

A logic program with classical negation has a different

semantics from the semantics of a definite logic program.

In the following we borrow notions from extended

programs to explain the semantics of a logic program with

classic negation.

[12] Let Lit be the set of ground literals of a logic program

with classical negation. The Answer Set is a smallest

subset S of Lit such that

1. for any rule L0 L1, …, Lm, if L1, …, Lm S, then L0

 S;

2. if S contains a pair of complementary literals (e.g.

A,¬A), then S =Lit.

A well-behaved logic program with classical negation has

exactly one answer set, and the set is consistent. The

answer that a logic program with classical negation returns

for a ground query (A) is yes, no, or unknown, depending

on whether its answer set contains A, ¬A or neither.

Let P be a logic program with classical negation. Let B be

the set of all grounded atoms and their classical negations

determined by P. The collection of the states of all the

atoms in B is an interpretation, denoted as I. Then 2
B
 is the

set of all possible interpretations.

Definition 4.4.2 Let P be a logic program with classical

negation. The mapping Tp: 2
B 2

B
is defined as follows.

Let I be an interpretation of B; then Tp (I) = {L0| L0 ←

L1, . . . , Ln is a clause in P and { L1, . . . , Ln } I}.

Proposition 4.4.1 Let P be a well-behaved logic program

with classical negation. The answer set S = Tp w.

For a logic program with classical negation P, there exists

a three-layer feedforward artificial network N such that N

computes TP. the following is the translation algorithm.

Translation Algorithm

Let p and q be the number of propositional variables and

the number of clauses occurring in P, respectively.

Without loss of generality we may assume that the

grounded atoms are numbered from 1 to p. The network

associated with P can now be constructed as follows:

1) The input and output layer is a vector of p neurons,

where the ith neuron represents the atom Ai, 1 p.

The threshold of each neuron occurring in the input or

output layer is set to 0.

The activation function in the hidden layer is the

linear limit function (y = x).

The activation function in the hidden layer is the hard

limit function (y ={

).

The activation function in the output layer is the

function (y ={

).

2) For each clause of the form L0 A1 m, Am+1

 An (0 n),occurring in P do the following:

a) Add a binary threshold unit c to the hidden layer

of N.

b) Connect c to the unit representing L0 in the output

layer. If L0 is negated atom, set up the connection

with weight -1; otherwise set up the weight 1

c) For each Ai, 1 m, connect the neuron

representing Ai in the input layer of N to c, and

set the connection‘s weight to 1.

d) For each Ai, m+1 n, connect the neuron

representing Ai in the input layer of N to c, and

set the connection‘s weight to -1.

e) Set the threshold of c to n- 0.5.

Example 4.4.1Consider the following logic program P:

1) A B, C

2) A D,E

3) B

4) ¬D B

`

 19

The above neural network N is obtained by applying the

above algorithm to P. If B = 1 and C =-1 in the input layer

of N then A = 1 in the output layer of N, representing the

rule A ← B C of P. Similarly, B = 1 is always obtained

in the output layer of N, regardless of its input vector,

indicating that B is a fact. D = -1 is always obtained

because B is a fact and the rule ¬D B holds.

Proposition 4.4.1 Let P be a well-behaved program. There

exists a single hidden layer recurrent network such that

each computation starting with an arbitrary initial input I

converges to a stable state and yields the unique fixpoint

of Tp.

The following is the algorithm to compute the stable state

of P in a neural network mentioned above.

Massively Parallel Deduction Algorithm

Let p be the number of input neurons and the number of

output neurons in Tp-neural network N. The input is

defined by a vector I = (I1, … , Ip) and the output is given

by a vector O = (O1, . . . ,Op).

1. Initialize I = [0, 0, …, 0].

2. Loop:

4) Calculate O = feedforward(I);

5) If I is equal to O, then terminate;

6) If I is not equal to O, then for j in (1, …, p),

replace the value of Ij with the value of Oj in O.

Example 4.4.2 Consider the logic program in Example

4.4.1.As shown in Figure, N is recurrently connected, its

output vector feeds the input vector in an iteration of Tp.

Let the initial input vector I = (0, 0, 0, 0, 0). So the

deduction process would be as follows:

(5) Tp = {0, 0, 0, 0, 0};

(6) Tp = {0, 1, 0, 0, 0};

(7) Tp = {1, 1, 0, 0, -1};

(8) Tp = Tp = Tp .

Discussions about this model:

 Answer Set: Herbrand model does not work

because each atom has three states. We need a way

to represent a logic program in a set of grounded

instances (or literals).

 Inconsistency issue: Inconsistency may happen

when the logic program is not well-behaved.

Solutions can be borrowed from the positive form

of extended programs, see [1].

 ―¬Q not P‖ failure, see [12]. ―¬Q not P‖

means: Q has a classical negation state, if P has a

default state. But this model cannot do such

deduction.

 The translation algorithm is not well explained. For

clause ¬A0 A1 m, Am+1 An (0

 n), a neuron c will be added to the hidden layer.

The connection from c the A0 is weighted as -1.

Consider the clause ¬D B, a neuron c is added to

the hidden layer to represent this clause, the

connection between c and the neuron which

represent D is -1 which is easy to interpret it as D

 ¬B. However, if -1 can be taken as an inhibitory

signal, we might give an interpretation to ¬D B as

B will transmit an inhibitory signal to D and make

D in a state of inhibition if B receives an excitatory

signal.

 Merit one: The model can perform a certain type of

deduction with classical negation.

 Merit two: The model gives a means to use one

neuron to present the three states of one atom

instead of two neurons in the model of the positive

form of extended programs.

 CILP system can also be changed to incorporate

classical negation in a similar way.

Implementation

We implemented this new model of neural-symbolic

networks in the logic programming interface. It required a

library class, representing the model, which consists of a

constructor, Generate() and TpFixedPoint(). Another two

new components - a new translator and a new interpreter

are needed to be added to the Logic-Interface Windows

Application.

Example 5.4.1 The following is the procedure to use the

model to solve Einstein‘s Riddle.

1. Type in the logic program with classical negation.

`

 20

2. Choose the neural-symbolic system –

TPNNWithNegation.

3. The result is shown as follows:

This solution needs 2104 neurons and 463500 weights

while the solution using the positive form of an extended

program needs 2354 neurons and 927000 weights. Both

solutions need 14 iterations to arrive at the fixed point.

Definitely it will save a lot of memory and execution time.

7 Conclusion

A logic programming interface which deploys neural-

symbolic systems to do deduction been proposed in this

report. Based on it, we proposed a novel approach to build

knowledge refining systems and tested it with the breast

cancer problem. Then we tested the soundness of the

interface by solving the Einstein‘s Riddle. Finally, we

proposed a new type of neural-symbolic systems which

enables classical negation. Future work will focus on a

deep research on knowledge refining systems and a better

solution to build a neural-symbolic system which enables

classical negation.

Acknowledgments

I owe sincere and earnest thankfulness to Dr Ekaterina

Komendantskaya who is my supervisor during this project.

She gave me a lot of motivation to do my best to do my

project. It is always her who got me in the correct way

before I went further in the wrong direction. I also would

like to thank my friend Huo Shuaipeng for encouraging

me to work hard on this project all the time.

References

[1] Artur S. D'Avila Garcez, Krysia Broda, Dov M.

Gabbay. Neural-Symbolic Learning Systems[M]. Berlin:

Springer. 2002

[2] S. Holldobler, Y. Kalinke, Towards a massively

parallelcomputational model for logic programming[J],

in:Proc. ECAI-94 Workshop on Combining Symbolic and

Connectionist Processing, 1994

[3] Ekaterina Komendantskaya. Learning and Deducion in

Neural Networks and Logic[D], Ireland: Department of

Mathematics, University College, Cork (UCC), 2007

[4] Andries P. Engelbrecht. Computational Intelligence:

An Introduction [M], John Wiley, New York,2003.

[5] Artur S. D'Avila Garcez, Luís C. Lamb, Dov M.

Gabbay. Neural-symbolic cognitive reasoning[M], Berlin:

Springer. 2009

[6] Sebastian Bader and Pascal Hitzler. Integrating Logic

Programs and Connectionist Systems - Introductory

Course at ESSLLI 2008. Hamburg, Germany, August

2008. From http://www.neural-symbolic.org/

[7] Robin Hunter. THE ESSENCE OF COMPILERS[M].

London: Prentice Hall, 1999

[8] Nancy Ide. CMPU 331: Compiler Design. Spring 2009.

From http://www.cs.vassar.edu/~cs331/

[9] Richard O. Duda, Peter E. Hart, David G. Stork,

Pattern Classification, 2nd Edition, Wiley, 2000, ISBN

978-0-471-05669-0

[10] Dos Passos Waldemar. Numerical methods,

algorithms, and tools in C♯.CRC Press, 2009,ISBN:

0849374790

[11] Dick Grune, Ceriel J. H. Jacobs, Koen G.
Langendoen.Modern Compiler Design. John Wiley,

New York,2000

[12] M. Gelfond and V. Lifschitz. Classical negation in

logic programs and disjunctive databases. New Generation

Computing, 9:365-385,1991.

[13] See Wikipedia, Means, motive, and opportunity.

http://en.wikipedia.org/wiki/Means,_motive,_and_opportu

nity (as of 11
th

 April, 2011, 22:50 GMT).

[14] Murphy,P.M., Aha, D.W. (1994). UCI Repository of

machine learning databases. Irvine, CA: University of

California, Department of Information and Computer

Science.

From http://www.ics.uci.edu/~mlearn/MLRepository.html

[15] Jicheng Wang. A Knowledge Acquisition System

Based on Symbolic Neural Network. Acta Electronica

Sinica, Vol 26 No 8. Aug. 1998.

http://www.google.co.uk/search?tbo=p&tbm=bks&q=+inauthor:%22Dick+Grune%22
http://www.google.co.uk/search?tbo=p&tbm=bks&q=+inauthor:%22Ceriel+J.+H.+Jacobs%22
http://www.google.co.uk/search?tbo=p&tbm=bks&q=+inauthor:%22Koen+G.+Langendoen%22
http://www.google.co.uk/search?tbo=p&tbm=bks&q=+inauthor:%22Koen+G.+Langendoen%22

`

 21

Appendices

Figure 1. Histogram for the clump thickness attributes in the training data. The average is 4.442167.

Figure 2. Histogram for the uniformity of Cell Size thickness attributes in the training data. The average is 3.150805.

Figure 3. Histogram for the uniformity of Cell Shape thickness attributes in the training data. The average is 3.215227.

.

139

50

104

79

128

33
23

44

14

69

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10

Clump Thickness

373

45 52 38 30 25 19 28
6

67

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10

Uniformity of Cell Size

346

58 53 43 32 29 30 27
7

58

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10

Uniformity of Cell Shape

`

 22

Figure 4. Histogram for the marginal adhesion attributes in the training data. The average is 2.830161.

Figure 5. Histogram for the single epithelial cell size attributes in the training data. The average is 3.234261.

Figure 6. Histogram for the bare nuclei in the training data. The average is 2.14082.

393

58 58
33 23 21 13 25

4

55

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9 10

Marginal Adhesion

44

376

71
48 39 40

11 21
2

31

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10

Single Epithelial Cell Size

402

30 28 19 30
4 8 21 9 10

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9 10

Bare Nuclei

`

 23

Figure 7. Histogram for the bland chromatin attributes in the training data. The average is 3.445095.

Figure 8. Histogram for the normal nucleoli attributes in the training data. The average is 2.869693.

Figure 9. Histogram for the mitoses attributes in the training data. The average is 1.6032211.

150
160 161

39 34

9

71

28

11
20

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10

Bland Chromatin

432

36 42
18 19 22 16 23 15

60

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10

Normal Nucleoli

563

35 33 12 6 3 9 8 0 14

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10

Mitoses

`

 24

Figure 10. The input-hidden weights

Figure 11. The hidden-output weights

`

 25

Figure 12. The thresholds of neurons in the hidden layer

Figure 13. The thresholds of neurons in the output layer

