
A statistical relational learning challenge – extracting proof
strategies from exemplar proofs

Gudmund Grov ggrov@staffmail.ed.ac.uk

University of Edinburgh, United Kingdom

Ekaterina Komendantskaya katya@computing.dundee.ac.uk

University of Dundee, United Kingdom

Alan Bundy bundy@staffmail.ed.ac.uk

University of Edinburgh, United Kingdom

Abstract

Proof automation is becoming a bottleneck
in both mechanised mathematics and partic-
ularly industrial use of formal development
methods. In this challenge paper, we ar-
gue that statistical relational learning can be
used to discover and extract proof strategies,
which can aid with this automation. We out-
line what we believe are key problems and
possible approaches to solve these questions.

1. Introduction

Modern theorem provers are used both to ensure that
a proof is correct (so called proof-checking), and to
perform the actual proof search. Interactive theorem
provers (ITPs), are the provers that require user in-
teraction to guide the proof. Examples of interac-
tive theorem provers are Coq, Isabelle, HOL and HOL
light. In such provers, the user typically works back-
wards from a goal towards the hypothesis or previously
proven lemmas. For large systems, thousands of lem-
mas may be available in a well-developed theory, and
hundreds of hypothesis may be present in a given proof
state – with most of them having no significance for
the particular proof (although it is hard to find out
which are the important ones). A proof in such sys-
tem is a finite combination of tactics, which can be
seen as a function from a goal to a set of subgoals that
has to be proven to justify the overall goal, thus form-
ing a tree where the nodes are tactics and edges are
the goal states. All such steps are verified using the

Appearing in Workshop on Statistical Relational Learning
2012, Edinburgh, Scotland, UK, 2012. Copyright 2012 by
the author(s)/owner(s).

underlying type theory.

Recently, automation within ITPs has greatly in-
creased mainly due to integration of (automatic) reso-
lution provers and SMT solvers. However, user inter-
action is still required to verify significant mathemat-
ical results or verification of industrial sized software
and hardware systems. For industrial application of
formal methods beyond niche markets, the cost of the
resulting interactive proofs has become a bottleneck.

Many proofs in ITPs follow a similar pattern — and
once the user has managed to discharge one proof,
many proofs follow (almost!) the same combination of
tactics. Automated discovery of such common proof
patterns by utilising machine learning tools could po-
tentially provide the much sought automatisation for
statistically similar proof-steps; as was argued e.g. in
(Denzinger et al., 1999; Denzinger & Schulz, 2000;
Duncan, 2002; Lloyd, 2003; Tsivtsivadze et al., 2011;
Urban et al., 2008). With this in mind our overall
research hypothesis is that

it is possible to detect proof patterns where
we can extract proof strategies which can au-
tomate the proofs of ‘similar conjectures’.

As was clarified in (Denzinger et al., 1999), appli-
cations of machine-learning assistants to mechanised
proofs can be divided into symbolic (akin e.g. Induc-
tive logic programming), numeric (akin neural net-
works or kernels), and hybrid (Lloyd, 2003; d’Avila
Garcez et al., 2002; Getoor & Taskar, 2007), which
combine symbolic and numeric methods. The ad-
vantages of the numeric methods over symbolic is
tolerance to noise and uncertainty, as well as avail-
ability of powerful learning functions. For exam-
ple, the standard multi-layer perceptrons with error



Extracting proof strategies from exemplar proofs

back-propagation algorithm are capable of approxi-
mating any function from finite-dimensional vector
spaces with arbitrary precision. In this case, it is not
the power of the learning paradigm, but the feature
selection and representation method that sets the lim-
its. Symbolic methods, on the other hand, may be
tuned better to account for the syntactic aspects of
the theorem provers. It may also be more suitable to
handle the relational nature of the properties, as well
as better guiding the necessary generalisations.

We do not believe that this domain is suitable for the
application of numeric or symbolic methods alone:

• the proofs contains a lot of noise and non-patterns
(as well as different patterns), which is not han-
dled well by symbolic machine learning tech-
niques;

• the tactic combinations in a sequence are not iden-
tical within a pattern. We cannot thus simply
reuse the tactic sequence, but we will need a gen-
eralisation of them, where symbolic methods have
their strengths.

We can thus restate our research hypothesis as:

by utilising numeric machine learning tech-
niques to detect proof patterns and generalise
them into proof strategies by symbolic ma-
chine learning methods it is possible to au-
tomate the proofs of ‘similar conjectures’.

Our own experience and related work mentioned
above make us classify various challenges in practi-
cal machine-learning of proof strategies into two main
classes.

1. The first set of challenges comes from the com-
plexity of the notion of a proof in higher-order
interactive theorem provers: there are different
levels at which one approaches the proof, which
results in a hierarchy of proof-patterns; as we con-
sider in §3.

2. The second set of challenges comes from the fact
that relational and symbolic learning has to be
intertwined, in order to balance statistical and
logical patterns arising in mechanised proofs; §4
discusses that.

2. Proofs and proof strategies

We start with an illustration of what we mean by
proofs and proof strategy, and give some examples us-
ing an Isabelle syntax. The respective proof trees are

shown graphically in Figure 11. We first develop our
proofs in the manner that visually is similar to what
a programmer sees when working with an interactive
theorem prover; we also call it the level of tactics.

lemma lem1: A→ A
apply (rule impI)

apply assumption
done

Here, the first step in the proof reduces the goal to
A ` A which can be proved by the assumption. In

lemma lem2: A→ (B → A)
apply (rule impI)

apply (rule impI)

apply assumption
done

this step has to be done twice, first to get the goal
A ` B → A, then A,B ` A which can be discharged
by an assumption. Finally, in

lemma lem3: (B ∧A)→ (A ∧B)
apply (rule impI)

apply (rule conjI)

apply (erule conjE)
apply assumption
apply (erule conjE)
apply assumption
done

the first step gives B ∧A ` A∧B and the second step
gives two subgoals: B ∧ A ` A and B ∧ A ` B, which
both can be solved by removing ∧ in the assumption,
producing the goals B,A ` A and B,A ` B. Both of
them can be proven by an assumption.

We will now focus on one of the patterns in this proof,
and that is the underlined steps above. These are actu-
ally examples of a well-known tactic often called intros
which removes certain symbols of the goal2. What we
are hoping for is a system which not only recognises
that this is a pattern, even if the use of it is not iden-
tical in any of the proofs, but it also realises in which
cases it can be applied and what the result of applying
it is — i.e. a strategy looking something like:

PRE top level symbol ∈ {→,∧}
WHILE top level symbol ∈ {→,∧}

(apply (rule impI)) OR (apply (rule conjI))

1The examples are deliberately kept simple (proposi-
tional) to ease reading, and thus do not illustrate the issue
with expressiveness and size.

2Dale Miller calls the result of applying intros ‘normal
proofs’.



Extracting proof strategies from exemplar proofs

POST top level symbol /∈ {→,∧}

We believe such generalisation, and the encoding of
(features of) the expected input and output goals are
the key to success for our ambitious research goal.
Without encoding pre- and post-conditions we will not
be able to know when to apply a learned tactic and
when to stop a repeated application of it.

The examples we have considered so far hide some in-
formation that drives the proof engine: for example,
the types and shapes of subgoals to which the tactics
are applied, cf. Figure 1. Finally, the overall proof-
structure, also called a proof-tree, is often hidden from
the prover’s interface, we illustrate it in Figure 1.

3. Hierarchical proof-pattern
recognition

The learning of structured data is recognised as one
of the paramount challenges in machine learning, and
many sophisticated techniques have been suggested to
address it (Bakir et al., 2007). However, in the case of
higher-order proofs, we deal with a hierarchy of struc-
tures and patterns. Depending on this hierarchy, it is
likely that different methods from the arsenal of (Bakir
et al., 2007) will be useful at different stages.

Consider the examples of §2. One proof has the fol-
lowing layers of structure:

? The level of goal structures (i.e. the edges of Fig-
ure 1). For example, for every given sequence of sub-
goals, there is an apparent pattern in the structure
of the formulas, as one proof-step changes another.
This type of feature abstraction has been used for
learning the inputs for automatic provers, e.g. (Ur-
ban et al., 2008; Denzinger & Schulz, 2000) – which
has later been extended to interactive proofs (Tsivtsi-
vadze et al., 2011); we will also call this kind of proof-
pattern recognition the term-pattern recognition. As
the related work shows, geometric kernels and sim-
ilar methods are appropriate for investigating term-
structures in the proofs. However, the overall proof
structure and information of how the goal is produced
are lost. Additional questions here are:

• Should we look at the goal in isolation or how they
are changed by a tactic? E.g. a feature could be
the size of a term, but it could also be a parameter
indicating whether or not the term-size is reduced
in a proof step.

• Should we look at the goal or include the hypoth-
esis (and other background information) in the
feature space? The examples we have shown are

very small, and had at the most 2 assumptions –
a more realistic example could have hundreds of
assumptions, with some being just noise. Other
background information, like properties we have
proved about certain operators, are also impor-
tant.

• Object- or meta-level properties? Object-level
could refer to properties such as x has the value 5,
while meta-level properties could e.g. relate the
goal to an assumption or other known facts. For
example, the assumption tactic requires an iden-
tical3 term to the goal is in one of the hypothesis.

?? The level of tactics (i.e. the nodes in Figure 1, usu-
ally given by proof script text directly). Sequences of
tactics applied at every level of the proof bear some
apparent patterns, as well. There is always a finite
number of tactics for any given proof, and therefore,
they may serve well as features for statistical learning.
Previous work on learning proof strategies (Jamnik
et al., 2002; Duncan, 2002) has taken this approach;
we also call it tactic-pattern recognition. It is impor-
tant to note that there may be proofs in which the
goal structures do not bear any evident pattern; how-
ever, the sequence of applied tactics does. Also, as an
additional complication, there is normally a great va-
riety of tactic combinations that lead to a successful
automated proof for one goal; and vice versa, different
goals may have the same sequences of tactics in suc-
cessful proofs. Moreover, tactics often have complex
configurations, which can both be hidden or given as
arguments (e.g. rules to apply or instantiations of vari-
ables). For tactic-pattern recognition, variable-length
hidden Markov models (Duncan, 2002), rather than
kernels seems more promising – in particular, recent
tree-versions of variable-length hidden Markov mod-
els which we understand have been developed in the
natural language learning domain. The down-side of
such tactic-pattern recognition is that any knowledge
of when and why a tactic is applied, as well as its
result is lost (except with respect to other tactic ap-
plications).

? ? ? Finally, there is a level of a proof tree (i.e. the
complete trees of Figure 1) – that shows relations be-
tween different proof branches and subgoals and gives
a better view of the overall proof flow; this approach
was tested in (Komendantskaya et al., 2012). This
set of experiments was done using multi-layer neural
networks and kernels; and we call it proof-tree pat-
tern recognition. As opposed to tactic chain discovery,
Markov chains do not seem convenient for this pur-

3Unifiable to be precise.



Extracting proof strategies from exemplar proofs

`A→A
��

impI

A `A
��

assumption

`A→(B→A)
��

impI

A `B→A

��
impI

A,B `A
��

assumption

`(A∧B)→(A∧B)
��

impI

(A∧B) `(A∧B)

��
conjI

(A∧B) `A

yysssssssss
(A∧B) `B

%%KKKKKKKKK

conjE

A,B `A
��

conjE

A,B `B
��

assumption assumption

lem1 lem2 lem3

Figure 1. Proof trees

pose. Again, it may happen that, for a set of com-
puter proofs, there is no apparent pattern in either
subgoal structure or the tactic sequence, but the proof-
tree structure is common.

It is still an open research question to find the best ap-
proach to grasp these rich hierarchies: is it best to keep
the learning process open, and look for patterns at all
levels? or is it best to data-mine patterns that span
all three layers? And what impact such decisions may
have on the tasks that machine-learning can perform
within the interactive proof-search? It is also impor-
tant to note that one would expect a pattern to be a
sub-sequence of tactic applications, or a sub-tree of a
proof trees.

The research questions, from a machine learning per-
spective, are:

• Is it fruitful to data-mine every structural level in-
dependently, thus not making premature assump-
tions about their connections, and allow the sta-
tistical methods to re-discover such connections
when they exist?

• Is it best to apply different statistical methods
(Bakir et al., 2007) at every level, or is it best to
use one (perhaps hybrid) method on all stages?

• Can we independently apply symbolic methods
and combine the results? For example, HR
(Colton, 2002) is a tool which has been success-
fully used to discover new concepts; ILP have
been successful in generalising relational data;

while (Krumnack et al., 2007) can handle higher-
order data, which is required in order to generalise
terms found in most interactive provers. Can we
then combine the results of these different sym-
bolic techniques?

• Can we borrow any machine-learning methods ap-
plied to different domains that require not only
the mix of statistical and relational models, but
also hierarchical models of learning (as e.g. in the
natural language domain) ?

4. Statistical and relational
proof-pattern recognition: the
balance

The second challenge in our current work is balanc-
ing the statistical and relational components. As-
suming the right machine-learning tools (e.g. from
(Bakir et al., 2007)) are used and tuned for pattern-
recognition at every level of the proof hierarchy,
and with very good statistical performance, cf. e.g.
(Komendantskaya et al., 2012), the following essential
tasks may not be achieved without interference of the
relational methods:

• Extraction of common features from a rich vari-
ety of proofs. Our initial experiments show that
unlike in case of e.g. face recognition, simple so-
lutions for automated feature extraction will not
apply. There is too much of variety in the length
and complexity of automated proofs; and track-



Extracting proof strategies from exemplar proofs

ing the features literally seen in the proof trees
will extend the number of features, and hence the
dimensions of the feature space to unreasonable
sizes, cf. (Komendantskaya et al., 2012). There-
fore, some initial pre-processing of the automated
proofs will be needed, so that extracted features
are no longer literal samples from the proofs, but
are proof-features in a more abstract sense. This
initial abstraction can only be achieved by sym-
bolic methods; cf. Figure 2.

Statistical
pattern-

recognition

Symbolic
feature

abstraction

?> =<
89 :;

Symbolic
generalisation
to strategies

?> =<
89 :;

::::::

��

oooo

������

AA

Figure 2. Balance of symbolic and relational methods in
proof pattern recognition

• Generalisation of common proof trees to proof
strategies. Suppose a proof-family is statistically
discovered, cf. (Komendantskaya et al., 2012). In
many cases, and unlike e.g. image recognition,
the bare fact that a proof belongs to some fam-
ily or cluster is not immediately and necessarily a
practical knowledge. The necessary step is to ask:
Which properties of this proof family lead to its
success or failure, in other words, is there a gen-
eral strategy that can be used for future proof dis-
covery? Note also that this general strategy may
concern one or more hierarchical levels, depending
on the proof-pattern discovered statistically.

We illustrate the generalisation process as follows.

Both rule impI and rule conjI from §2 perform a new
goal introduction step and we need to generalise this
into a new strategy intro, which can be seen as intro-
ducing an OR branch in the search (either apply rule
impI or apply rule conjI ). As a result of such gener-
alisation all underlined steps in the examples can be
seen as an application of intro. However, as discussed
in §2, the conditions in which to apply it, as well as
the results of applying it, has to be found – and can
only be achieved by symbolic methods.

Moreover, suppose the generalisation above is done
and applied to the examples. Now it comes the time to
iterate again the process outlined in Figure 2, that is,
the features of the new generalised proofs need to be

abstracted, then patterns need to be statistically dis-
covered, after which another round of generalisation
can take place. For example, after the first learning
round, the first steps become intro, intro;intro and in-
tro;intro, respectively. Here, we see that intro is ap-
plied many times, and thus a generalisation would be
a repetition intro∗, with a corresponding termination
condition.

5. Conclusions

We have considered the three modes of proof-pattern
learning, which are term-pattern, tactic-pattern, and
proof-tree pattern recognition. We identified the set of
challenges in each, as well as the challenge of combin-
ing them efficiently. Finally, we considered the chal-
lenge of balancing the symbolic (relational) and statis-
tical tools in proof strategy learning. Our future work
is to experiment and implement the described tools.

Acknowledgments

We would like to thank the partners within the AI4FM
project and members of the MRG group in Edinburgh
for valuable discussion. The work has been funded by
EPSRC grants AI4FM: using AI to aid automation
of proof search in formal methods (EP/H024204/1)
and machine learning coalgebraic automated proofs
(EP/J014222/1).

References

Bakir, G., Hofmann, T., Scholkopf, B., Smola, A.,
Taskar, B., and Vishwanathan, S.V.N. Predicting
Structured Data. MIT, 2007.

Colton, S. Automated Theory Formation in Pure
Mathematics. Springer, 2002.

d’Avila Garcez, Arthur, Broda, K. B., and Gabbay,
D. M. Neural-Symbolic Learning Systems: Founda-
tions and Applications. Springer-Verlag, 2002.

Denzinger, J., Fuchs, M., Goller, C., and Schulz, S.
Learning from previous proof experience: A survey.
Technical report, Fakultat fr Informatik, Technische
Universitat Munich, 1999.

Denzinger, Jörg and Schulz, Stephan. Automatic ac-
quisition of search control knowledge from multiple
proof attempts. Inf. Comput., 162(1-2):59–79, 2000.

Duncan, Hazel. The use of Data-Mining for the Auto-
matic Formation of Tactics. PhD thesis, University
of Edinburgh, 2002.



Extracting proof strategies from exemplar proofs

Getoor, L. and Taskar, B. Introduction to Statistical
Relational Learning. MIT Press, 2007.

Jamnik, Mateja, Kerber, Manfred, and Benzmller,
Christoph. Automatic learning of proof methods in
proof planning. Technical report, L. J. of the IGPL,
2002.

Komendantskaya, E., Almaghairbe, R., and
K.Lichota. ML-CAP: the manual, soft-
ware and experimental data sets, 2012.
http://www.computing.dundee.ac.uk/staff/katya/MLCAP-
man/.

Krumnack, Ulf, Schwering, Angela, Gust, Helmar,
and Kühnberger, Kai-Uwe. Restricted higher-order
anti-unification for analogy making. In Orgun,
Mehmet A. and Thornton, John (eds.), AI 2007:
Advances in Artificial Intelligence, 20th Australian
Joint Conference on Artificial Intelligence, volume
4830 of Lecture Notes in Artificial Intelligence, pp.
273–282. Springer, 2007. ISBN 978-3-540-76926-2.

Lloyd, J.W. Logic for Learning: Learning Compre-
hensible Theories from Structured Data. Springer,
Cognitive Technologies Series, 2003.

Tsivtsivadze, E., Urban, J., Geuvers, H., and Heskes,
T. Semantic graph kernels for automated reasoning.
In Proc. 11th SIAM Int. Conf. on Data Mining, pp.
795–803. SIAM / Omnipress, 2011.

Urban, Josef, Sutcliffe, Geoff, Pudlák, Petr, and
Vyskocil, Jiŕı. Malarea sg1- machine learner for au-
tomated reasoning with semantic guidance. In IJ-
CAR, LNCS, pp. 441–456. Springer, 2008.


