
A Type-theoretic Approach to Resolution ?

Peng Fu, Ekaterina Komendantskaya

Computer Science, University of Dundee

Abstract. We propose a new type-theoretic approach to SLD-resolution
and Horn-clause logic programming. It views Horn formulas as types, and
derivations for a given query as a construction of the inhabitant (a proof-
term) for the type given by the query. We propose a method of program
transformation that allows to transform logic programs in such a way
that proof evidence is computed alongside SLD-derivations. We discuss
two applications of this approach: in recently proposed productivity the-
ory of structural resolution, and in type class inference.
Keywords: Logic Programming, Typed lambda calculus, Realizability
Transformation, Reduction Systems, Structural Resolution.

1 Introduction

Logic Programming (LP) is a programming paradigm based on first-order Horn
formulas. Informally, given a logic program Φ and a query A, LP provides a
mechanism for automatically inferring whether or not Φ ` A holds, i.e., whether
or not Φ logically entails A. The inference mechanism is based on the SLD-
resolution, which uses the resolution rule together with first-order unification.

Example 1. Consider the following logic program Φ, consisting of Horn formulas
labelled by κ1, κ2, κ3, defining connectivity for a graph with three nodes:

κ1 : ∀x.∀y.∀z.Connect(x, y),Connect(y, z) ⇒ Connect(x, z)
κ2 : ⇒ Connect(Node1,Node2)
κ3 : ⇒ Connect(Node2,Node3)

In the above program, Connect is a predicate, and Node1 – Node3 are constants.
SLD-derivation for the query Connect(x, y) can be represented as the following
reduction:

Φ ` {Connect(x, y)} κ1,[x/x1,y/z1]

{Connect(x, y1),Connect(y1, y)} κ2,[Node1/x,Node2/y1,Node1/x1,y/z1]

{Connect(Node2, y)} κ3,[Node3/y,Node1/x,Node2/y1,Node1/x1,Node3/z1] ∅

The first reduction κ1,[x/x1,y/z1] unifies the query Connect(x, y) with the head
of the rule κ1 (which is Connect(x1, z1) after renaming) with the substitution
[x/x1, y/z1] (x1 is replaced by x and z1 is replaced by y). So the query is resolved
with κ1, producing the next queries: Connect(x, y1), Connect(y1, y). Note that
the substitution in the subscript of is a state that will be updated alongside
the derivation.
? This work was funded by EPSRC grant EP/K031864/1.

Viewing a program as a collection of Horn clauses, the above derivation
first assumed that Connect(x, y) is false, and then deduced a contradiction (an
empty goal) from the assumption. As every SLD-derivation is essentially a proof
by contradiction, traditionally the exact content of such proofs plays little role in
determining entailment. However, it is desirable to have methods which capture
the proof-theoretic content of SLD-derivations. For example, one may wish to
reason in a proof-relevant way, and compute not just Φ ` A, but Φ ` p : A,
where p is the proof-witness for the query A and the program Φ. LP and its
dialects are used as part of type inference engines underlying functional [11,6]
and dependently typed [4] languages. These applications require proof-relevant
automated reasoning.

In type class inference (e.g. Haskell), a type class can be seen as an atomic
formula and an instance declaration – as a Horn formula. The instance resolution
process in type class inference can then be seen as an SLD-derivation, with one
additional requirement: this SLD-derivation must compute the evidence for the
type class (or construct a dictionary). For example, the following declaration
specifies a way to construct equality class instances for datatypes List and Char:

κ1 : ∀x.Eq(x) ⇒ Eq(List(x))
κ2 : ⇒ Eq(Char)

Here List is a function symbol, Char is a constant and x is a variable; κ1, κ2 will
be used as primitives for the evidence construction. When we make a comparison
of two lists of characters, such as (eq [′a′] [′b′]), the compiler will insert the
evidence d of the type Eq(List(Char)) in (eq d [′a′] [′b′]). The construction of
this evidence can be viewed as resolving the query Eq(List(Char)), which is
witnessed by applying Horn formulas κ1 and κ2. Thus, (κ1 κ2) is the evidence
we want for d.

In order to specify the proof-theoretic meaning of derivations, we introduce a
type-theoretic approach to recover the notion of proof in LP. It has been noticed
by Girard [3], that the resolution rule A∨B ¬B∨D

A∨D can be expressed by means

of the cut rule in intuitionistic sequent calculus: A⇒B B⇒D
A⇒D . Although the

resolution rule is classically equivalent to the cut rule, the cut rule is better suited
for performing computation while preserving constructive content. In Section 2
we present a type system reflecting this intuition: if p1 is the proof of A ⇒ B
and p2 is the proof of B ⇒ D, then λx.p2 (p1 x) is the proof of A ⇒ D. Thus,
proof can be recorded alongside with each cut rule.

We prove that SLD-resolution is sound with respect to the type system (Sec-
tion 2). We give a formulation of SLD-resolution in the form of a reduction rule,
called LP-Unif. The soundness result shows that, given a logic program Φ and
a query A, if A can be LP-Unif reduced to the empty goal with a substitution γ
as an answer, then a proof term can be constructed for γA.

In Section 3, we introduce a technique called realizability transformation,
that, given a program Φ, produces a program F (Φ) in which one extra argument
is added to every predicate, in order to record the proof-evidence in derivations.
The proof evidence is computed by applying substitution to variables held by

2

this additional argument in the course of running SLD-resolution. Let us revisit
the List example. Its transformed version will look as follows:

κ1 : ∀x.∀u1.Eq(x, u1) ⇒ Eq(List(x), fκ1(u1))
κ2 : ⇒ Eq(Char, cκ2)

The query Eq(List(Char)) of the original program becomes Eq(List(Char), u)
after the transformation, where u is a variable. The derivation reaches the empty
goal and outputs the substitution [fκ1(cκ2)/u], which corresponds to the proof
term (κ1 κ2) for the query Eq(List(Char)).

Realizability transformation bears resemblance to Kleene’s [7] method under
the same name. We show that realizability transformation preserves the proof-
theoretic meaning of the original program and the computational behaviour of
LP-Unif reductions. With the help of the transformation, we prove completeness
of LP-Unif with repect to the type system.

Together, Sections 2 and 3 introduce a method of constructing proof evi-
dence in the process of LP derivations. Recently, a variant of resolution for Horn
Clauses, called structural resolution (S-resolution) has been introduced [5]. S-
resolution represents derivations by SLD-resolution as a combination of deriva-
tions by term-matching and by substitution. We explain this idea in detail in
Section 4. The main reason for separating out two components of SLD-resolution
in such a way is to make use of structural properties of term-matching that have
already been exploited in functional programming and term-rewriting. In partic-
ular, S-resolution allowed to define a theory of universal productivity for LP that
resembles a similar theory in functional programming[2]: given a potentially in-
finite derivation by S-resolution, termination of term-matching derivations that
comprise it determines productivity of the derivation (or in other words, observ-
ability of finite fragments of the infinite computation).

We conjecture that the combination of the two ideas – the theory of produc-
tivity introduced by S-resolution and the proof-witness construction introduced
in this paper bear promise for future development of resolution-based methods.
This is why, in Section 4 we give a full formal study of how these two methods can
be formally combined. We show how S-resolution can be represented by means
of LP-Struct reductions, combining term-matching reductions and unification.
We extend the type-theoretic semantics to S-Resolution. We define conditions
which guarantee equivalence of S-Resolution and SLD-resolution, one of which
happens to be exactly the property of productivity. We use the realizability
transformation as a method for guaranteeing productivity of programs.

Finally, in Section 5 we conclude and explain how the combination of S-
Resolution and the type-theoretic approach of this paper could be used in non-
terminating cases of type class inference. Detailed proofs for lemmas and theo-
rems in this paper may be found in the extended version1.

1 Extended version is available at both authors’ homepages.

3

2 A Type System for LP: Horn-Formulas as Types

We first formulate a type system to model LP. We show that LP-Unif is sound
with respect to the type system.

Definition 1.
Term t ::= x | f(t1, ..., tn)
Atomic Formula A,B,C,D ::= P (t1, ..., tn)
(Horn) Formula F ::= [∀x].A1, ..., An ⇒ A
Proof Term p, e ::= κ | a | λa.e | e e′
Axioms/LP Programs Φ ::= · | κ : F,Φ

Functions of arity zero are called term constants, FV(t) returns all free term
variables of t. We use A to denote A1, ..., An, when the number n is unimportant.
If n is zero for A ⇒ B, then we write ⇒ B. Note that B is an atomic formula,
but⇒ B is a formula, we distinguish the notion of atomic formulas from (Horn)
formulas. The formula A1, ..., An ⇒ B can be informally read as “the conjunction
of Ai implies B”. We write ∀x.F for quantifying over all the free term variables in
F ; [∀x].F denotes F or ∀x.F . LP program B ⇐ A are represented as ∀x.A⇒ B
and query is an atomic formula. Proof terms are lambda terms, where κ denotes
a proof term constant and a denotes a proof term variable. We write A 7→σ A

′

(resp. A ∼γ A′) to mean A is matchable (resp. unifiable) to A′ with substitution
σ (resp. γ), i.e. σA ≡ A′ (resp. γA ≡ γA′).

The following is a new formulation of a type system intended to provide a
type theoretic interpretation for LP.

Definition 2 (Horn-Formulas-as-Types System for LP).

e : F
e : ∀x.F

gen
e1 : A⇒ D e2 : B,D ⇒ C

λa.λb.(e2 b) (e1 a) : A,B ⇒ C
cut

e : ∀x.F
e : [t/x]F

inst
(κ : ∀x.F) ∈ Φ

κ : ∀x.F axiom

Note that the notion of type is identified with Horn formulas (atomic intuition-
istic sequent), not atomic formulas. The usual sequent turnstile ` is internalized
as intuitionistic implication⇒. The rule for first order quantification ∀ is placed
outside of the sequent. The cut rule is the only rule that produces new proof
terms. In the cut rule, λa.t denotes λa1....λan.t and t b denotes (...(t b1)...bn).
The size of a is the same as A and the size of b is the same as B, and a, b are
not free in e1, e2.

Our formulation is given in the style of typed lambda calculus and sequent
calculus, the intention for this formulation is to model LP type-theoretically. It
has been observed that the cut rule and proper axioms in intuitionistic sequent
calculus can emulate LP [3](§13.4). Here we add a proof term annotation and
make use of explicit quantifiers. Our formulation uses Curry-style in the sense
that for the gen and inst rule, we do not modify the structure of the proof

4

terms. Curry-style formulation allows us to focus on the proof terms generated
by applying the cut rule.

Below is a formulation of SLD-derivation as a reduction system [9].

Definition 3 (LP-Unif reduction). Given axioms Φ. We define a reduction
relation on the multiset of atomic formulas:
Φ ` {A1, ..., Ai, ..., An} κ,γ·γ′ {γA1, ..., γB1, ..., γBm, ..., γAn} for any substitu-
tion γ′, if there exists κ : ∀x.B1, ..., Bn ⇒ C ∈ Φ such that C ∼γ Ai.

The second subscript in the reduction is intended as a state, it will be updated
along with reductions. We assume implicit renaming of all quantified variables
each time the above rule is applied. We write when we leave the underlining
state implicit. We use ∗ to denote the reflexive and transitive closure of .
Notation ∗γ is used when the final state along the reduction path is γ.

Given a program Φ and a set of queries {B1, . . . , Bn}, LP-Unif uses only
unification reduction to reduce {B1, . . . , Bn}:

Definition 4 (LP-Unif). Given a logic program Φ, LP-Unif is given by an
abstract reduction system (Φ,).

Lemma 1. If Φ ` {A1, ..., An} ∗γ ∅, then there exist proofs e1 : ∀x. ⇒
γA1, ..., en : ∀x.⇒ γAn, given axioms Φ.

Proof. By induction on the length of the reduction.
Base Case. Suppose the length is one, namely, Φ ` {A} κ,γ ∅. It implies that
there exists (κ : ∀x.⇒ C) ∈ Φ, such that C ∼γ A. So we have κ : ⇒ γC by the
inst rule. Thus κ : ⇒ γA by γC ≡ γA. Hence κ : ∀x.⇒ γA by the gen rule.
Step Case. Suppose Φ ` {A1, ..., Ai, ..., An} κ,γ {γA1, ..., γB1, ..., γBm, ..., γAn}
 ∗γ′ ∅, where κ : ∀x.B1, ..., Bm ⇒ C and C ∼γ Ai. By inductive hypothesis(IH),
we know that there exist proofs e1 : ∀x. ⇒ γ′γA1, ..., p1 : ∀x. ⇒ γ′γB1, ..., pm :
∀x. ⇒ γ′γBm, ..., en : ∀x. ⇒ γ′γAn. We can use inst rule to instantiate the
quantifiers of κ using γ′ · γ, so we have κ : γ′γB1, ..., γ

′γBm ⇒ γ′γC. Since
γ′γAi ≡ γ′γC, we can construct a proof ei = κ p1 ... pm with ei : ⇒ γ′γAi, by
applying the cut rule m times. By gen, we have ei : ∀x. ⇒ γ′γAi. The substi-
tution generated by the unification is idempotent, and γ′ is accumulated from
γ, i.e. γ′ = γ′′ · γ for some γ′′, so γ′γAj ≡ γ′′γγAj ≡ γ′′γAj ≡ γ′Aj for any j.
Thus we have ej : ∀x.⇒ γ′Aj for any j.

Theorem 1 (Soundness of LP-Unif). If Φ ` {A} ∗γ ∅ , then there exists a
proof e : ∀x.⇒ γA given axioms Φ.

For example, by the soundness theorem above, the derivation in Example 1
yields the proof (λb.(κ1 b) κ3) κ2 for the formula ⇒ Connect(node1,node3).

Naturally, we would want to prove the following completeness theorem: If
e : ∀x. ⇒ A, then Φ ` {A} ∗γ ∅ for some γ. It is tempting to prove this
theorem by induction on the derivation of e : ∀x. ⇒ A. However, it becomes
quite involved. We will discuss a simpler way to prove this theorem at the end
of the next section, where we take advantage of the realizability transformation.

5

3 Realizability Transformation

We define realizability transformation in this section. Realizability [7](§82) is
a technique that uses a number representing the proof of a number-theoretic
formula. The transformation described here is similar in the sense that we use a
first order term to represent the proof of a formula. More specifically, we use a
first order term as an extra argument for a formula to represent a proof of that
formula. Before we define the transformation, we first state several basic results
about the type system in Definition 2.

Theorem 2 (Strong Normalization). Let beta-reduction on proof terms be
the congruence closure of the following relation: (λa.p)p′ →β [p′/a]p. If e : F ,
then e is strongly normalizable with respect to beta-reduction on proof terms.

The proof of strong normalization (SN) is an adaptation of Tait-Girard’s
reducibility proof. Since the first order quantification does not impact the proof
term, the proof is very similar to the SN proof of simply typed lambda calculus.

Lemma 2. If e : [∀x.]A ⇒ B given axioms Φ, then either e is a proof term
constant or it is normalizable to the form λa.n, where n is first order normal
proof term.

Theorem 3. If e : [∀x.]⇒ B, then e is normalizable to a first order proof term.

Lemma 2 and Theorem 3 show that we can use first order terms to represent
normalized proof terms; and thus pave the way to realizability transformation.

Definition 5 (Representing First Order Proof Terms). Let φ be a map-
ping from proof term variables to first order terms. We define a representation
function J·Kφ from first order normal proof terms to first order terms.
– JaKφ = φ(a).
– Jκ p1...pnKφ = fκ(Jp1Kφ, ..., JpnKφ), where fκ is a function symbol.

Definition 6. Let A ≡ P (t1, ..., tn) be an atomic formula, we write A[t′], where
(
⋃
i FV(ti)) ∩ FV(t′) = ∅, to abbreviate a new atomic formula P (t1, ..., tn, t

′).

Definition 7 (Realizability Transformation). We define a transformation
F on a formula and its normalized proof term:

– F (κ : ∀x.A1, ..., Am ⇒ B) = κ : ∀x.∀y.A1[y1], ..., Am[ym]⇒ B[fκ(y1, ..., ym)],
where y1, ..., ym are all fresh and distinct.

– F (λa.n : [∀x].A1, ..., Am ⇒ B) = λa.n : [∀x.∀y].A1[y1], ..., Am[ym]⇒
B[JnK[y/a]], where y1, ..., ym are all fresh and distinct.

The realizability transformation systematically associates a proof to each
predicate, so that the proof can be recorded alongside with reductions.

Example 2. The following logic program is the result of applying realizability
transformation on the program in Example 1.

6

κ1 : ∀x.∀y.∀u1.∀u2.Connect(x, y, u1),Connect(y, z, u2) ⇒ Connect(x, z, fκ1(u1, u2))
κ2 : ⇒ Connect(node1, node2, cκ2)
κ3 : ⇒ Connect(node2, node3, cκ3)

Before the realizability transformation, we have the following judgement:

λb.(κ1 b) κ2 : Connect(node2, z) ⇒ Connect(node1, z)

We can apply the transformation, we get:

λb.(κ1 b) κ2 : Connect(node2, z, u1) ⇒ Connect(node1, z, J(κ1 b) κ2K[u1/b])

which is the same as

λb.(κ1 b) κ2 : Connect(node2, z, u1) ⇒ Connect(node1, z, fκ1(u1, cκ2))

Observe that the transformed formula:
Connect(node2, z, u1)⇒ Connect(node1, z, fκ1(u1, cκ2)) is provable by λb.(κ1 b) κ2
using the transformed program.

Let F (Φ) mean applying the realizability transformation to every axiom in
Φ. We write (F (Φ),), to mean given axioms F (Φ), use LP-Unif to reduce a
given query. Note that for query A in (Φ,), it becomes query A[t] for some t
such that FV(A) ∩ FV(t) = ∅ in (F (Φ),).

The following theorem shows that realizability transformation does not change
the proof-theoretic meaning of a program. This is important because it means
we can apply different resolution strategies to resolve the query on the trans-
formed program without worrying about the change of meaning. Later we will
see that the behavior of LP-Struct is different for the original program and the
transformed program.

Theorem 4. Given axioms Φ, if e : [∀x].A ⇒ B holds with e in normal form,
then F (e : [∀x].A⇒ B) holds for axioms F (Φ).

The other direction for the theorem above is not true if we ignore the trans-
formation F , namely, if e : ∀x.⇒ A[t] for axioms Φ, it may not be the case that
e : ∀x. ⇒ A, since the axioms Φ may not be set up in a way such that t is a
representation of proof e. The following theorem shows that the extra argument
is used to record the term representation of the corresponding proof.

Theorem 5. Suppose F (Φ) ` {A[y]} ∗γ ∅. We have p : ∀x. ⇒ γA[γy] for
F (Φ), where p is in normal form and JpK∅ = γy.

Now we are able to show that realizability transformation will not change
the unification reduction behaviour.

Lemma 3. Φ ` {A1, ..., An} ∗ ∅ iff F (Φ) ` {A1[y1], ..., An[yn]} ∗ ∅.

Proof. For each direction, by induction on the length of the reduction. Each
proof will be similar to the proof of Lemma 1.

Theorem 6. Φ ` {A} ∗ ∅ iff F (Φ) ` {A[y]} ∗ ∅.

7

Example 3. Consider the logic program after realizability transformation in Ex-
ample 2. Realizability transformation does not change the behaviour of LP-
Unif, we still have the following successful unification reduction path for query
Connect(x, y, u):

F (Φ) ` {Connect(x, y, u)} κ1,[x/x1,y/z1,fκ1 (u3,u4)/u]

{Connect(x, y1, u3),Connect(y1, y, u4)}
 κ2,[cκ2/u3,node1/x,node2/y1,node1/x1,b/z1,fκ1 (cκ2 ,u4)/u]

{Connect(node2, y, u4)}
 κ3,[cκ3/u4,cκ2/u3,node3/y,node1/x,node2/y1,node1/x1,node3/z1,fκ1 (cκ2 ,cκ3)/u] ∅

Now let us come back to the completeness theorem. The following lemma
shows that completeness result holds for the transformed program.

Lemma 4. For F (Φ), if n : ⇒ A[JnK∅] where n is in normal form, then F (Φ) `
{A[JnK∅]} ∗ ∅.

Proof. By induction on the structure of n.

– Base Case: n = κ. In this case, JnK∅ = fκ, κ : ∀x. ⇒ A′[fκ] ∈ F (Φ)
and γ(A′[fκ]) ≡ A[fκ] for some substitution γ. Thus A′[fκ] ∼γ A[fκ], which
implies F (Φ) ` {A[fκ]} κ,γ ∅.

– Step Case: n = κ n1 n2 ... nm. In this case, JnK∅ = fκ(Jn1K∅, ..., JnmK∅), κ :
∀xy. C1[y1], ..., Cm[ym]⇒ B[fκ(y1, ..., ym)] ∈ F (Φ). To obtain n :⇒ A[JnK∅],
we have to use κ : ∀x. C1[Jn1K∅], ..., Cm[JnmK∅] ⇒ B[fκ(Jn1K∅, ..., JnmK∅)]
with γ(B[fκ(Jn1K∅, ..., JnmK∅)]) ≡ A[JnK∅]. By the inst rule, we have κ :
γC1[Jn1K∅], ..., γCm[JnmK∅] ⇒ γB[fκ(Jn1K∅, ..., JnmK∅)]. Furthermore, it has
to be the case that n1 : ⇒ γC1[Jn1K∅], ..., nm : ⇒ γCm[JnmK∅]. Thus we
have F (Φ) ` {A[JnK∅]} κ,γ {γC1[Jn1K∅], ..., γCm[JnmK∅]}. By IH, we have
F (Φ) ` {γC1[Jn1K∅]} ∗γ1 ∅. So F (Φ) ` {A[JnK∅]} κ,γ · ∗γ1
{γ1γC2[Jn2K∅], ..., γ1γCm[JnmK∅]. Again, we have n2 :⇒ γ1γC2[Jn2K∅], ..., nm :
⇒ γ1γCm[JnmK∅]. By applying IH repeatedly, we obtain F (Φ) ` {A[JnK∅]} ∗
∅.

Lemma 5. For F (Φ), if F (Φ) ` {A1[t1], ..., An[tn]} ∗ ∅ with FV(ti) = ∅ for
all i, then Φ ` {A1, ..., An} ∗ ∅.

Proof. By induction on the length of ∗.

– Base Case: F (Φ) ` {A[fκ]} ∗ ∅. We have κ :⇒ A′ ∈ Φ such that A′ ∼γ A.
Thus Φ ` {A} κ ∅.

– Step Case: F (Φ) ` {A1[t1], ..., Ai[ti], ..., An[tn]} κ,γ

{γA1[t1], ..., γB1[t′1], ..., γBl[t
′
l], ..., γAn[tn]} ∗ ∅ with ti ≡ fκ(t′1, ..., t

′
l) and

κ : B1, ..., Bl ⇒ C ∈ Φ where C ∼γ Ai. So by IH, we have Φ ` {A1, ..., An} κ,γ

{γA1, ..., γB1, ..., γBl, ..., γAn} ∗ ∅.

Now we are ready to prove the completeness result.

Theorem 7 (Completeness). If n : [∀x]. ⇒ A, where n is in normal form,
then Φ ` {A} ∗γ ∅.

8

Proof. By Theorem 4, we have n : [∀x]. ⇒ A[JnK∅] holds in F (Φ). By Lemma
4, we have F (Φ) ` {A[JnK∅]} ∗ ∅. By Lemma 5, we have Φ ` {A} ∗γ ∅.

The completeness result relies on realizability transformation to record the
proof steps for a query, so the LP-Unif reduction can just follow the proof steps to
reduce the query to the empty set. Together with Theorem 1, this proof system
gives new semantics for derivations in LP.

4 Structual Resolution

S-resolution [5] is a newly proposed alternative to SLD-resolution that allows a
systematic separation of derivations into term-matching and unification steps.
A logic program is called productive if the term-matching reduction is termi-
nating for any query. For productive programs with coinductive meaning, finite
term-rewriting reductions can be seen as measures of observation in an infinite
derivation. The ability to handle corecursion in a productive way is an attractive
computational feature of S-resolution.

Example 4. The following program defines the predicate Stream:

κ1 : ∀x.∀y.Stream(y) ⇒ Stream(Cons(x, y))

It will result in infinite LP-Unif reduction:

Φ ` {Stream(Cons(x, y))} κ1,[x/x1,y/y1] {Stream(y)} κ1,[Cons(x2,y2)/y]

{Stream(y2)} κ1,[Cons(x3,y3)/y2] . . .

But it will yield finite term-matching reduction since Stream(y) can not be
matched by the head of κ1 (Stream(Cons(x, y))):

Φ ` {Stream(Cons(x, y))} →κ1 {Stream(y)} 6→

In general, term-matching reductions are not complete relative to LP-Unif re-
ductions, but we can combine them with substitutional steps to complete deriva-
tions. This is exactly the idea behind S-resolution.

Example 5. The following program defines bits and lists of bits:

κ1 : ⇒ Bit(0)
κ2 : ⇒ Bit(1)

κ3 : ⇒ BList(Nil)
κ4 : ∀x.∀y.BList(y),Bit(x) ⇒ BList(Cons(x, y))

LP-Unif would give a complete reduction:

Φ ` {BList(Cons(x, y))} κ4,[x/x1,y/y1] {Bit(x),BList(y)} κ1,[0/x,0/x1,y/y1]

{BList(y)} κ3,[Nil/y,0/x,0/x1,Nil/y1] ∅

But term-matching reduction will not be able to compute an answer in this case.

Φ ` {BList(Cons(x, y))} →κ4 {Bit(x),BList(y)} 6→

9

This is why, S-resolution combines term-matching reductions with additional
substitutional steps, in order to compute the same answer:

Φ ` {BList(Cons(x, y))} →κ4 {Bit(x),BList(y)} ↪→κ1,[0/x] {Bit(0),BList(y)} →κ1,[0/x]

{BList(y)} ↪→κ3,[0/x,Nil/y] {BList(Nil)} →κ3,[0/x,Nil/y] ∅

Completing derivation for Stream in the same way will result in an infinite
derivation, in which every term-matching reduction is finite.

In this section, we embed S-resolution into the type theoretic framework we
have developed in the previous sections. We first define S-derivations in terms
of LP-Struct reductions, in the uniform style with LP-Unif reductions, thereby
also defining LP-TM reductions, which resemble reductions in term-rewriting
systems [10]. We then prove that LP-Unif and LP-Struct are operationally equiv-
alent subject to two conditions: productivity and non-overlapping. Finally, we
show how realizability transformation can be used to guarantee productivity of
logic programs in the setting of S-resolution.

4.1 S-resolution in the Type-Theoretic Setting

Definition 8.

– Term-matching(LP-TM) reduction:
Φ ` {A1, ..., Ai, ..., An} →κ,γ′ {A1, ..., σB1, ..., σBm, ..., An} for any substitu-
tion γ′, if there exists κ : ∀x.B1, ..., Bn ⇒ C ∈ Φ such that C 7→σ Ai.

– Substitutional reduction:
Φ ` {A1, ..., Ai, ..., An} ↪→κ,γ·γ′ {γA1, ..., γAi, ..., γAn} for any substitution
γ′, if there exists κ : ∀x.B1, ..., Bn ⇒ C ∈ Φ such that C ∼γ Ai.

The second subscript of term-matching reduction is used to store the substi-
tutions obtained by unification, it is only used when we combine term-matching
reductions with substitutional reductions. The second subscript in the substitu-
tional reduction is intended as a state, it will be updated along with reductions.

Given a program Φ and a set of queries {B1, . . . , Bn}, LP-TM uses only
term-matching reduction to reduce {B1, . . . , Bn}:

Definition 9 (LP-TM). Given a logic program Φ, LP-TM is given by an
abstract reduction system (Φ,→).

LP-TM is also sound w.r.t. the type system of Definition 2, which implies
that we can obtain a proof for each successful query.

Theorem 8 (Soundness of LP-TM). If Φ ` {A} →∗ ∅ , then there exists a
proof e : ∀x.⇒ A given axioms Φ.

Comparing Theorem 1 and Theorem 8, we see that for LP-TM, there is no
need to accumulate substitutions, and the resulting formula is proven as stated.
This difference is due to the use of term-matching instead of unification for the
reduction. The following example shows that the LP-TM is incomplete with
respect to the type system.

10

Example 6. Consider the following program Φ.

κ1 : ⇒ Q(C)
κ2 : ∀x.∀y.Q(x)⇒ P (y)

For query P (C), we have Φ ` {P (C)} →κ2
{Q(x)} 6→. However, there exist a

proof (κ2 κ1) : ⇒ P (C), by instantiating x, y to C in κ2.

We use→µ to denote a reduction path to a→-normal form. If the→-normal
form does not exist, then →µ denotes an infinite reduction path. We write ↪→1

to denote at most one step of ↪→.
We can now formally define S-Resolution within our formal framework. Given

a program Φ and a set of queries {B1, . . . , Bn}, LP-Struct first uses term-
matching reduction to reduce {B1, . . . , Bn} to a normal form, then performs
one step substitutional reduction, and then repeats this process.

Definition 10 (Structural Resolution (LP-Struct)). Given a logic pro-
gram Φ, LP-Struct is given by an abstract reduction system (Φ,→µ · ↪→1).

If a finite term-matching reduction path does not exist, then→µ · ↪→1 denotes
an infinite path. When we write Φ ` {A}(→µ · ↪→1)∗{C}, it means a nontrivial
finite path will be of the shape Φ ` {A} →µ · ↪→ ·...· →µ · ↪→ · →µ {C}.

Now let us see the execution trace of Stream using LP-Struct:

Φ ` {Stream(Cons(x, y))} →κ1 {Stream(y)} ↪→κ1,[Cons(x2,y2)/y]

{Stream(Cons(x2, y2))} →κ1,[Cons(x2,y2)/y]

{Stream(y2)} ↪→κ1,[Cons(x3,y3)/y2,Cons(x2,Cons(x3,y3))/y]

{Stream(Cons(x3, y3))} →κ1,[Cons(x3,y3)/y2,Cons(x2,Cons(x3,y3))/y] {Stream(y3)} . . .

Note that the overall reduction is infinite, but each LP-TM reduction is finite.

4.2 LP-Struct and LP-Unif

The next question one may ask is how LP-Struct compares to LP-Unif. They
are not equivalent. Consider the program and the finite LP-Unif derivation of
Example 1. LP-Unif has a finite successful derivation for the query Connect(x, y),
but we have the following non-terminating reduction by LP-Struct:

Φ ` {Connect(x, y)} →κ1 {Connect(x, y1),Connect(y1, y)}
→κ1 {Connect(x, y2),Connect(y2, y1),Connect(y1, y)} →κ1 ...

The diverging behavior above is due to the divergence of LP-TM reduction.
Therefore, the program of Example 1 is not productive in the sense of [8,5].

Definition 11 (Productivity). We say a program Φ is productive iff every
→-reduction is finite.

Perhaps LP-Unif and LP-Struct are operationally equivalent for all produc-
tive programs? The following example shows this is not the case.

11

Example 7.

κ1 : ⇒ P (C)
κ2 : ∀x.Q(x) ⇒ P (x)

Here C is a constant. The program is →-terminating. However, for query P (x),
we have Φ ` {P (x)} κ1,[C/x] ∅ with LP-Unif, but Φ ` {P (x)} →κ2

{Q(x)} 6↪→
for LP-Struct.

Thus, productivity is insufficient for establishing the relation between LP-
Struct and LP-Unif. In Example 7, the problem is caused by the overlapping
heads P (C) and P (x). Motivated by the notion of non-overlapping rules in term
rewriting systems ([10,1]), we introduce the following definition.

Definition 12 (Non-overlapping Condition). Axioms Φ are non-overlapping
if for any two formulas ∀x.B ⇒ C,∀x.D ⇒ E ∈ Φ, there are no substitution σ, δ
such that σC ≡ δE.

Theorem 9. Suppose Φ is non-overlapping. Φ ` {A1, ..., An} ∗γ {C1, ..., Cm}
with {C1, ..., Cm} in -normal form iff Φ ` {A1, ..., An}(→µ · ↪→1)∗γ{C1, ..., Cm}
with {C1, ..., Cm} in →µ · ↪→1-normal form.

The theorem above still requires the termination of the to establish equiva-
lence LP-Unif and LP-Struct. We can weaken this requirement by only requiring
termination of the →-reduction, i.e. by requiring productivity.

Theorem 10 (Equivalence of LP-Struct and LP-Unif). Suppose Φ is
non-overlapping and productive.

1. If Φ ` {A1, ..., An} {B1, ..., Bm}, then Φ ` {A1, ..., An}(→µ · ↪→1)∗{C1, ..., Cl}
and Φ ` {B1, ..., Bm} →∗ {C1, ..., Cl}.

2. If Φ ` {A1, ..., An}(→µ · ↪→1)∗{B1, ..., Bm}, then Φ ` {A1, ..., An} ∗
{B1, ..., Bm}.

Note that the above theorem does not rely on termination of LP-Unif re-
ductions and therefore establishes equivalence of LP-Unif and LP-Struct even
for coinductive programs like Stream of Example 4, as long as they are produc-
tive and non-overlapping. This effect of productivity has not been described in
previous work.

4.3 Realizability Transformation and LP-Struct

Even when programs are overlapping and unproductive (as e.g. the program of
Example 1), we would still like to obtain a meaningful execution behaviour for
LP-Struct, especially if LP-Unif allows successful derivations for the programs.
Luckily, we already have a method to achieve that, it is the realizability trans-
formation defined in Section 3:

Proposition 1. For any program Φ, F (Φ) is productive and non-overlapping.

12

Proof. First, we need to show→-reduction is strongly normalizing in (F (Φ),→).
By Definition 7, we can establish a decreasing measurement(from right to left,
using the strict subterm relation) for each rule in F (Φ), since the last argument
in the head of each rule is strictly larger than the ones in the body. Then, non-
overlapping property is due to the fact that all the heads of the rules in F (Φ)
will be guarded by the unique function symbol in Definition 7.

Corollary 1.
F (Φ) ` {A1, ..., An}(→µ · ↪→1)∗{B1, ..., Bm} iff F (Φ) ` {A1, ..., An} ∗

{B1, ..., Bm}.

Proof. By Theorem 10 and Theorem 1.

Example 8. For the program in Example 2, the query Connect(x, y, u) can be
reduced by LP-Struct successfully:

F (Φ) ` {Connect(x, y, u)} ↪→κ1,[x/x1,y/z1,fκ1 (u3,u4)/u]

{Connect(x, y, fκ1(u3, u4))} →κ1 {Connect(x, y1, u3),Connect(y1, y, u4)}
↪→κ2,[cκ2/u3,node1/x,node2/y1,node1/x1,b/z1,fκ1 (cκ2 ,u4)/u]

{Connect(node1, node2, cκ2),Connect(node2, y, u4)} →κ2 {Connect(node2, y, u4)}
↪→κ3,[cκ3/u4,cκ2/u3,node3/y,node1/x,node2/y1,node1/x1,node3/z1,fκ1 (cκ2 ,cκ3)/u]

{Connect(node2,node3, cκ3)} →κ3 ∅

Note that the answer for u is fκ1
(cκ2

, cκ3
), which is the first order term repre-

sentation of the proof of ⇒ Connect(node1,node3).

Realizability transformation uses the extra argument as decreasing measure-
ment in the program to achieve termination of →-reduction. At the same time
this extra argument makes the program non-overlapping. Realizability transfor-
mation does not modify the proof-theoretic meaning and the execution behaviour
of LP-Unif. The next example shows that not every transformation technique
for obtaining structurally decreasing LP-TM reductions has such properties:

Example 9. Consider the following program:

κ1 : ⇒ P (Int)
κ2 : ∀x.P (x), P (List(x)) ⇒ P (List(x))

It is a folklore method to add a structurally decreasing argument as a measure-
ment to ensure finiteness of →µ.

κ1 : ⇒ P (Int, 0)
κ2 : ∀x.∀y.P (x, y), P (List(x), y) ⇒ P (List(x), s(y))

We denote the above program as Φ′. Indeed with the measurement we add,
the term-matching reduction in Φ′ will be finite. But the reduction for query
P (List(Int), z) using unification will fail:

Φ′ ` {P (List(Int), z)} κ2,[Int/x,s(y1)/z]

{P (Int, y1), P (List(Int), y1)} κ2,[0/y1,Int/x,s(0)/z] {P (List(Int), 0)} 6

13

However, the query P (List(Int)) on the original program using unification reduc-
tion will diverge. Divergence and failure are operationally different. Thus adding
arbitrary measurement may modify the execution behaviour of a program (and
hence the meaning of the program). In contrast, by Theorems 4-6, realizability
transformation does not modify the execution behaviour of unification reduction.

Example 10. Consider the following non-productive and non-overlapping pro-
gram and its version after the realizability transformation:

Original program: κ : ∀x.P (x)⇒ P (x)
After transformation: κ : ∀x.∀u.P (x, u)⇒ P (x, fκ(u))

Both LP-Struct and LP-Unif will diverge for the queries P (x), P (x, y) in both
original and transformed versions. LP-Struct reduction diverges for different rea-
sons in the two cases, one is due to divergence of →-reduction:
Φ ` {P (x)} → {P (x)} → {P (x)}...
The another is due to ↪→-reduction:
Φ ` {P (x, y)} ↪→ {P (x, fk(u))} → {P (x, u)} ↪→ {P (x, fk(u′))} → {P (x, u′)}...

Note that a single step of LP-Unif reduction for the original program corre-
sponds to infinite steps of term-matching reduction in LP-Struct. For the trans-
formed version, a single step of LP-Unif reduction corresponds to finite steps of
LP-Struct reduction, which is exactly the correspondence we were looking for.

5 Conclusions and Future Work

We proposed a type system that gives a proof theoretic interpretation for LP:
Horn formulas correspond to the notion of type, and a successful query yields a
first order proof term. The type system also provided us with a precise tool to
show that realizability transformation preserves both proof-theoretic meaning of
the program and the operational behaviour of LP-Unif.

We formulated S-resolution as LP-Struct reduction, which can be seen as a
reduction strategy that combines term-matching reduction with substitutional
reduction. This formulation allowed us to study the operational relation be-
tween LP-Struct and LP-Unif. The operational equivalence of LP-Struct and
LP-Unif is by no means obvious. Previous work ([5,8]) only gives soundness and
completeness of LP-Struct with respect to the Herbrand models. We identified
that productivity and non-overlapping are essential for showing their operational
equivalence.

Realizability transformation proposed here ensures that the resulting pro-
grams are productive and non-overlapping. It preserves the proof-theoretic mean-
ing of the program, in a formally defined sense of Theorems 4-6. It is general,
applies to any logic program, and can be easily mechanised. Finally, it allows to
automatically record the proof content in the course of reductions, as Theorem 5
establishes, which helps to prove completeness of LP-Unif (Theorem 7).

With the proof system for LP-reductions we proposed, we are planning to
further investigate the interaction of LP-TM/Unif/Struct with typed functional

14

languages. We expect to find a tight connection between our work and the type
class inference, cf. [11,6].

In the context of type class inference [11,6], the infinite term-matching be-
haviour seems pervasive. The example below specifies a possible equality instance
declaration for nested datatype such as
data Bush a = Nil | Con a (Bush (Bush a)):

κ1 : Eq(x),Eq(Bush(Bush(x))) ⇒ Eq(Bush(x))
κ2 : ⇒ Eq(Char)

Here Bush is a function symbol, Char is a constant and x is variable. Consider
the query Eq(Bush(Char)), both LP-Unif and LP-Struct will generate an infinite
reduction path by repeatedly applying κ1. Using the realizability transformation,
we can obtain a well-behaved (productive) program:

κ1 : Eq(x, y1),Eq(Bush(Bush(x)), y2) ⇒ Eq(Bush(x), fκ1(y1, y2))
κ2 : ⇒ Eq(Char, cκ2)

The substitution for u in the query Eq(Bush(Char), u) will be an infinite term.
But we need a finite representation for such infinite term to construct a dic-
tionary. Such coinductive dictionary construction is the subject of our further
investigations. We would also like to investigate generalizing the type-theoretic
approach from Horn formulas to implicational intuitionistic formulas, the type
system in this case will correspond to a version of simply type lambda calculus.

References

1. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, New York, NY, USA, 1998.

2. Y. Bertot and E. Komendantskaya. Inductive and coinductive components of
corecursive functions in coq. Electronic notes in theoretical computer science,
203(5):25–47, 2008.

3. J.-Y. Girard, P. Taylor, and Y. Lafont. Proofs and Types. Cambridge University
Press, New York, NY, USA, 1989.

4. G. Gonthier, B. Ziliani, A. Nanevski, and D. Dreyer. How to make ad hoc proof
automation less ad hoc. ACM SIGPLAN Notices, 46(9):163–175, 2011.

5. P. Johann, E. Komendantskaya, and V. Komendantskiy. Structural resolution for
logic programming. In Technical Communications, ICLP, 2015.

6. M. P. Jones. Qualified types: theory and practice. Cambridge University Press,
2003.

7. S. C. Kleene. Introduction to metamathematics. North-Holland Publishing Com-
pany, 1952. Co-publisher: Wolters–Noordhoff; 8th revised ed.1980.

8. E. Komendantskaya, J. Power, and M. Schmidt. Coalgebraic logic programming:
from semantics to implementation. Journal of Logic and Computation, 2014.

9. U. Nilsson and J. Ma luszyński. Logic, programming and Prolog. Wiley Chichester,
1990.

10. Terese. Term rewriting systems. Cambridge University Press, 2003.
11. P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. In

Symposium on Principles of Programming Languages, pages 60–76. ACM, 1989.

15

A Proof of Theorem 2 and 3

We are going to prove a nontrival property about the type system that we just
set up. The proof is a simplification of Tait-Girard’s reducibility method.

Definition 13 (Reducibility Set). Let N denotes the set of all strong nor-
malizing proof terms. We define reducibility set REDF by induction on structure
of F :

– p ∈ REDA1,...,An⇒B with n ≥ 0 iff for any pi ∈ N , p p1 ... pn ∈ N .
– p ∈ RED∀x.A1,...,An⇒B iff p ∈ REDA1,...,An⇒B.

Lemma 6. REDA⇒B = REDφA⇒φB.

Lemma 7. If p ∈ REDF , then p ∈ N .

Proof. By Induction on F :

– Base Case: F is of the form A1, ..., An ⇒ B. By definition, p p1 ... pn ∈ N
for any pi ∈ N . Thus p ∈ N .

– Step Case: F is of the form ∀x.A1, ..., An ⇒ B. p ∈ RED∀x.A1,...,An⇒B implies
p ∈ REDA1,...,An⇒B . Thus by IH, p ∈ N .

Lemma 8. If e : F , e ∈ REDF .

Proof. By induction on derivation of e : F .

– Base Case:

κ : ∀x.⇒ B
This case κ ∈ N .

– Base Case:

κ : ∀x.A1, ..., An ⇒ B
Since κ is a constant, thus for any pi ∈ N , κ p1 ... pn ∈ N . So κ ∈
REDA1,...,An⇒B , thus κ ∈ RED∀x.A1,...,An⇒B .

– Step Case:
e1 : A⇒ D e2 : B,D ⇒ C

λa.λb.(e2 b) (e1 a) : A,B ⇒ C
cut

We need to show λa.λb.(e2 b) (e1 a) ∈ REDA,B⇒C . By IH, we know that
(e2 b) (e1 a) ∈ N . Let p1 ∈ N, ..., pn ∈ N, q1 ∈ N, ..., qm ∈ N . We are going
to show for any e with (λa.λb.(e2 b) (e1 a)) p q →β e, then e ∈ N . We
proceed by induction on (µ((e2 b) (e1 a)), µ(p), µ(q)), where µ is a function
to get the length of the reduction path to normal form.
• Base Case: (µ((e2 b) (e1 a)), µ(p), µ(q)) = (0, ..., 0). The only reduction

possible is (λa.λb.(e2 b) (e1 a)) p q →β (e2 q) (e1 p). We know that
(e2 q) (e1 p) ∈ N .

• Step Case: There are several possible reductions, but all will decrease
(µ((e2 b) (e1 a)), µ(p), µ(q)), thus we conclude that by induction hy-
pothesis.

So λa.λb.(e2 b) (e1 a) ∈ N .

16

– Step Case:
e : ∀x.F
e : [t/x]F

inst

By IH, we konw that e ∈ RED∀x.F , so by definition we know that e ∈ REDF .
By Lemma 6, e ∈ RED[t/x]F .

– Step Case:
e : F

e : ∀x.F
gen

By IH, we know that e ∈ REDF , so we know that e ∈ RED∀x.F .

Theorem 11 (Strong Normalization). If e : F , then e ∈ N .

Proof. By Lemma 8.

Definition 14 (First Orderness). We say p is first order inductively:

– A proof term variable a or proof term constant κ is first order.
– if n, n′ are first order, then n n′ is first order.

Lemma 9. If n, n′ are first order, then [n′/a]n is first order.

Lemma 10. If e : [∀x.]A ⇒ B, then either e is a proof term constant or it is
normalizable to the form λa.n, where n is first order normal term.

Proof. By induction on the derivation of e : [∀x.]A⇒ B.

– Base Cases: Axioms, in this case e is a proof term constant.
– Step Case:

e1 : A⇒ D e2 : B,D ⇒ C

λa.λb.(e2 b) (e1 a) : A,B ⇒ C
cut

By IH, we know that e1 = κ or e1 = λa.n1; e2 = κ′ or e2 = λbd.n2. We
know that e1a will be normalizable to a first order proof term. And e2b will
be normalized to either κ′b or λd.n2. So by Lemma 9, we conclude that
λa.λb.(e2 b) (e1 a) is normalizable to λa.λb.n for some first order normal
term n.

– The other cases are straightforward.

Theorem 12. If e : [∀x.] ⇒ B, then e is normalizable to a first order proof
term.

Proof. By lemma 10, subject reduction and strong normalization theorem.

B Proof of Theorem 4

Theorem 13. Given axioms Φ, if e : [∀x].A⇒ B holds with e in normal form,
then F (e : [∀x].A⇒ B) holds for axioms F (Φ).

Proof. By induction on the derivation of e : [∀x].A⇒ B.

17

– Base Case:

κ : ∀x.A⇒ B

In this case, we know that F (κ : ∀x.A⇒ B) = κ : ∀x.∀y.A1[y1], ..., An[yn]⇒
B[fκ(y1, ..., yn)] ∈ F (Φ).

– Step Case:

e1 : A⇒ D e2 : B,D ⇒ C

λa.λb.(e2 b) (e1 a) : A,B ⇒ C
cut

We know that the normal form of e1 must be κ1 or λa.n1; the normal form
of e1 must be κ2 or λbd.n2, with n1, n2 are first order.

• e1 ≡ κ1, e2 ≡ κ2. By IH, we know that F (κ1 : A ⇒ D) = κ1 :
A1[y1], ..., A1[y1] ⇒ D[fκ1

(y1, ..., yn)] and F (κ2 : B,D ⇒ C) = κ2 :
B1[z1], ..., Bm[zm], D[y]⇒ C[fκ2(z1, ..., zm, y)] hold. So by gen and inst,
we have

κ2 : B1[z1], ..., Bm[zm], D[fκ1
(y1, ..., yn)]⇒ C[fκ2

(z, fκ1
(y))].

Then by the cut rule, we have

λa.λb.κ2b(κ1a) : A1[y1], ..., A1[y1], B1[z1], ..., Bm[zm]⇒ C[fκ2
(z, fκ1

(y))].
We can see that Jκ2b(κ1a)K[y/a,z/b] = fκ2(z, fκ1(y)).

• e1 ≡ λa.n1, e2 ≡ λbd.n2. By IH, we know that F (λa.n1 : A ⇒ D) =
λa.n1 : A1[y1], ..., A1[y1] ⇒ D[Jn1K[y/a]] and F (λbd.n2 : B,D ⇒ C) =

λbd.n2 : B1[z1], ..., Bm[zm], D[y] ⇒ C[Jn2K[z/b,y/d]] hold. So by gen and
inst, we have

λbd.n2 : B1[z1], ..., Bm[zm], D[Jn1K[y/a]]⇒ C[Jn2K[z/b,Jn1K[y/a]/d]].

Then by the cut rule and beta reductions, we have λa.λb.([n1/d]n2) :
A1[y1], ..., A1[y1], B1[z1], ..., Bm[zm] ⇒ C[Jn2K[z/b,Jn1K[y/a]/d]]. We know

that J[n1/d]n2K[y/a,z/b] = Jn2K[z/b,Jn1K[y/a]/d].

• The other cases are handle similarly.

– Step Case:

λa.n : ∀x.A⇒ B

λa.n : [t/x]A⇒ [t/x]B
inst

By IH, we know that F (λa.n : ∀x.A⇒ B) = λa.n : ∀x.∀y.A1[y1], ..., An[yn]⇒
B[JnK[y/a]] holds for F (Φ). By Inst rule, we instantiate yi with yi, we have

λa.n : [t/x]A1[y1], ..., [t/x]An[yn]⇒ [t/x]B[JnK[y/a]]
– Step Case:

e : F
e : ∀x.F

gen

This case is straightforwardly by IH.

18

C Proof of Theorem 5

Lemma 11. If F (Φ) ` {A1[y1], ..., An[yn]} ∗γ ∅, and y1, ..., yn are fresh, then
there exists proofs e1 : ∀x.⇒ γA1[γy1], ..., en : ∀x.⇒ γAn[γyn] with JeiK∅ = γyi
given axioms F (Φ).

Proof. By induction on the length of the reduction.

– Base Case. Suppose the length is one, namely, F (Φ) ` {A[y]} κ,γ1 ∅. Thus
there exists (κ : ∀x. ⇒ C[fκ]) ∈ F (Φ)(here fκ is a constant), such that
C[fκ] ∼γ1 A[y]. Thus γ1(C[fκ]) ≡ γ1A[γ1y]. So γ1y ≡ fκ and γ1C ≡ γ1A.
We have κ : ⇒ γ1C[fκ] by the inst rule, thus κ : ⇒ γ1A[γ1y], hence κ :
∀x.⇒ γ1A[γ1y] by the gen rule and JκK∅ = fκ.

– Step Case. Suppose F (Φ) ` {A1[y1], ..., Ai[yi], ..., An[yn]} κ,γ1

{γ1A1[y1], ..., γ1B1[z1], ..., γ1Bm[zm], ..., γ1An[yn]} ∗γ ∅,
where κ : ∀x.∀z.B1[zm], ..., Bn[zm]⇒ C[fκ(z1, ..., zm)] ∈ F (Φ),
and C[fκ(z1, ..., zm)] ∼γ1 Ai[yi]. So we know γ1C[fκ(z1, ..., zm)] ≡ γ1Ai[γ1yi],
γ1yi ≡ fκ(z1, ..., zm), γ1C ≡ γ1Ai and
dom(γ1) ∩ {z1, ..., zm, y1, .., yi−1, yi+1, yn} = ∅. By IH, we know that there
exists proofs e1 : ∀x. ⇒ γγ1A1[γy1], ..., p1 : ∀x. ⇒ γγ1B1[γz1], ..., pm :
∀x. ⇒ γγ1Bm[γzm], ..., en : ∀x. ⇒ γγ1An[γyn] and Je1K∅ = γy1, ..., Jp1K∅ =
γz1, ..., JenK∅ = γyn . We can construct a proof ei = κ p1 ...pm with ei :
∀x. ⇒ γγ1Ai[γγ1yi], by first use the inst to instantiate the quantifiers of
κ, then applying the cut rule m times. Moreover, we have Jκ p1 ...pmK∅ =
fκ(Jp1K∅, ..., JpmK∅) = γ(fκ(z1, ..., zm)) = γγ1yi.

Theorem 14. Given axioms Φ, suppose F (Φ) ` {A[y]} ∗γ ∅. We have p :
∀x.⇒ γA[γy] where p is in normal form and JpK∅ = γy.

Proof. By Lemma 11.

D Proof of Lemma 3

Lemma 12. If Φ ` {A1, ..., An} ∗ ∅, then F (Φ) ` {A1[y1], ..., An[yn]} ∗ ∅
with yi fresh.

Proof. By induction on the length of reduction.

– Base Case. Suppose the length is one, namely, Φ ` {A} κ,γ1 ∅. Then there
exists (κ : ∀x. ⇒ C) ∈ Φ such that C ∼γ1 A. Thus κ : ∀x. ⇒ C[fκ] ∈ F (Φ)
and (C[fκ]) ∼γ1[fκ/y] A[y]. So F (Φ) ` A[y] ∅.

– Step Case. Suppose
Φ ` {A1, ..., Ai, ..., An} κ,γ1 {γ1A1, ..., γ1B1, ..., γ1Bm, ..., γ1An} ∗γ ∅,
where κ : ∀x.B1, ..., Bm ⇒ C ∈ Φ, C ∼γ1 Ai. So we know that
κ : ∀x.B1[z1], ..., Bm[zm] ⇒ C[fκ(z)] ∈ F (Φ) and C[fκ(z)] ∼γ1[fκ(z)/yi]
Ai[yi]. Thus F (Φ) ` {A1[y1], ..., Ai[yi], ..., An[yn]} κ,γ1[fκ(z)/yi]

{γ1[fκ(z)/yi]A1[y1], ..., γ1[fκ(z)/yi]B1[z1], ..., γ1[fκ(z)/yi]Bm[zm], ..., γ1[fκ(z)/yi]An[yn]} ≡
{γ1A1[y1], ..., γ1B1[z1], ..., γ1Bm[zm], ..., γ1An[yn]}. By IH,
F (Φ) ` {γ1A1[y1], ..., γ1B1[z1], ..., γ1Bm[zm], ..., γ1An[yn]} ∗ ∅.

19

Lemma 13. If F (Φ) ` {A1[y1], ..., An[yn]} ∗ ∅, then Φ ` {A1, ..., An} ∗ ∅.

Proof. By induction on the length of reduction.

– Base Case. Suppose the length is one, namely, F (Φ) ` {A[y]} κ,γ1 ∅. Thus
there exists (κ : ∀x. ⇒ C[fκ]) ∈ F (Φ) such that C[fκ] ∼γ1 A[y]. Thus
C ∼γ1−[fκ/y] A. So Φ ` A ∅.

– Step Case. Suppose F (Φ) ` {A1[y1], ..., Ai[yi], ..., An[yn]} κ,γ1

{γ1A1[y1], ..., γ1B1[z1], ..., γ1Bm[zm], ..., γ1An[yn]} ∗γ ∅,
where κ : ∀x.∀z.B1[zm], ..., Bm[zm]⇒ C[fκ(z1, ..., zm)] ∈ F (Φ),
and C[fκ(z1, ..., zm)] ∼γ1 Ai[yi]. So we know C ∼γ1−[fκ(z)/yi] Ai. Let γ =
γ1 − [fκ(z)/yi]. We have
Φ ` {A1, ..., Ai, ..., An} {γA1, ..., γB1, ..., γBm, ..., γAn}
≡ {γ1A1, ..., γ1B1, ..., γ1Bm, ..., γ1An}. By IH, we know
Φ ` {γ1A1, ..., γ1B1, ..., γ1Bm, ..., γ1An} ∗ ∅.

E Proof of Theorem 9

Lemma 14. If Φ ` {D1, ..., Di, ..., Dn} →κ,γ {D1, .., σE1, ..., σEm, ..., Dn}, with
κ : ∀x.E ⇒ C ∈ Φ and C 7→σ Di for any γ, then Φ ` {D1, ..., Di, ..., Dn} κ,γ

{D1, .., σE1, ..., σEm, ..., Dn}.

Proof. Since for Φ ` {D1, ..., Di, ..., Dn} →κ,γ {D1, .., σE1, ..., σEm, ..., Dn}, with
κ : ∀x.E ⇒ C ∈ Φ and C 7→σ Di, we have Φ ` {D1, ..., Di, ..., Dn} κ,σ·γ
{σD1, .., σE1, ..., σEm, ..., σDn}. But dom(σ) ∈ FV(C), thus we have
Φ ` {D1, ..., Di, ..., Dn} κ,γ {D1, .., σE1, ..., σEm, ..., Dn}.

Lemma 15.
Given Φ is non-overlapping, if Φ ` {A1, ..., An}(↪→κ,γ · →µ

γ){C1, ..., Cm}, then
Φ ` {A1, ..., An} ∗γ {C1, ..., Cm}.

Proof. Given Φ ` {A1, ..., An}(↪→κ,γ · →µ
γ){C1, ..., Cm}, we know the actual re-

duction path must be of the form Φ ` {A1, ..., An} ↪→κ,γ {γA1, ..., γAn} →κ,γ

{γA1, ..., γB1, ..., γBn, ..., γAn} →µ
γ {C1, ..., Cm}. Note that γ is unchanged along

the term-matching reduction. The → following right after ↪→ can not use a dif-
ferent rule other than κ, it would mean γAi ≡ γC with κ : ∀x.B ⇒ C ∈ Φ
and Ai ≡ σB with κ′ : ∀x.D ⇒ B ∈ Φ. This implies γC ≡ γσB, contra-
dicting the non-overlapping restriction. Thus we have Φ ` {A1, ..., An} κ,γ

{γA1, ..., γB1, ..., γBn, ..., γAn}. By Lemma 14, we have Φ ` {A1, ..., An} κ,γ

{γA1, ..., γB1, ..., γBn, ..., γAn} ∗γ {C1, ..., Cm}

Lemma 16. Given Φ is non-overlapping, if Φ ` {A1, ..., An}(→µ · ↪→1)∗γ{C1, ..., Cm}
with {C1, ..., Cm} in→µ · ↪→1-normal form, then Φ ` {A1, ..., An} ∗γ {C1, ..., Cm}
with {C1, ..., Cm} in -normal form.

Proof. Since Φ ` {A1, ..., An}(→µ · ↪→1)∗γ{C1, ..., Cm}, this means the reduction
path must be of the form Φ ` {A1, ..., An} →µ · ↪→1 · →µ · ↪→1 ... →µ · ↪→1

· →µ {C1, ..., Cm}. Thus Φ ` {A1, ..., An} →µ ·(↪→1 · →µ) · (↪→1 ... →µ) · (↪→1

· →µ){C1, ..., Cm}. By Lemma 14 and Lemma 15, we have Φ ` {A1, ..., An} ∗γ
{C1, ..., Cm} with {C1, ..., Cm} in -normal form.

20

Lemma 17. Given Φ is a non-overlapping, if Φ ` {A1, ..., An} ∗γ {C1, ..., Cm}
with {C1, ..., Cm} in -normal form , then Φ ` {A1, ..., An}(→µ · ↪→1)∗γ{C1, ..., Cm}
with {C1, ..., Cm} in →µ · ↪→1-normal form.

Proof. By induction on the length of ∗γ .

– Base Case: Φ ` {A1, ..., Ai, ..., An} κ,γ {γA1, ..., γB1, ..., γBm..., γAn} with
κ : ∀x. B ⇒ C ∈ Φ, C ∼γ Ai and {γA1, ..., γB1, ..., γBm..., γAn} in -
normal form . We have Φ ` {A1, ..., Ai, ..., An} ↪→κ,γ {γA1, ..., γAi, ..., γAn} →κ

{γA1, ..., γB1, ..., γBm..., γAn} with {γA1, ..., γB1, ..., γBm..., γAn} in→µ · ↪→-
normal form. Note that there can not be another κ′ : ∀x.B ⇒ C ′ ∈ Φ such
that σC ′ ≡ Ai, since this would means γC ≡ γAi ≡ γσC ′, violating the
non-overlapping requirement.

– Step Case: Φ ` {A1, ..., Ai, ..., An} κ,γ {γA1, ..., γB1, ..., γBl, ..., γAn} ∗γ′

{C1, ..., Cm} with κ : ∀x.B1, ..., Bl ⇒ C ∈ Φ and C ∼γ Ai.
We have Φ ` {A1, ..., Ai, ..., An} ↪→κ,γ {γA1, ..., γAi, ..., γAn} →
{γA1, ..., γB1, ..., γBm, ..., γAn}. By the non-overlapping requirement, there
can not be another κ′ : ∀x.D ⇒ C ′ ∈ Φ such that σC ′ ≡ Ai.
By IH, we know Φ ` {γA1, ..., γB1, ..., γBm, ..., γAn}(→µ · ↪→)∗γ′{C1, ..., Cm}.
Thus we conclude that Φ ` {A1, ..., Ai, ..., An}(↪→ · →)∗γ′{C1, ..., Cm}.

F Proof of Theorem 10

We assume a non-overlapping and productive program Φ in this section.

Lemma 18. If Φ ` {A1, ..., An} {B1, ..., Bm}, then Φ ` {A1, ..., An}(→µ

· ↪→1)∗{C1, ..., Cl} and Φ ` {B1, ..., Bm} →∗ {C1, ..., Cl}.

Proof. Suppose Φ ` {A1, ..., An} κ,γ {γA1, ..., γE1, ..., γEl, ..., γAn}, with κ :
E ⇒ D ∈ Φ and D ∼γ Ai. Suppose D 67→γ Ai. In this case, we have Φ `
{A1, ..., An} ↪→κ,γ · →κ,γ {γA1, ..., γE1, ..., γEq, ..., γAn} →µ

γ {C1, ..., Cl}. Sup-
poseD 7→γ Ai, we have Φ ` {A1, ..., An} →κ,γ {γA1, ..., γE1, ..., γEq, ..., γAn} →µ

γ

{C1, ..., Cl}.

Lemma 19. If Φ ` {A1, ..., An} ↪→κ,γ {γA1, ..., γAn} →µ
γ {B1, ..., Bm}, then

Φ ` {A1, ..., An} ∗γ {B1, ..., Bm}.

Proof. Suppose Φ ` {A1, ..., An} ↪→κ,γ {γA1, ..., γAn} →µ
γ {B1, ..., Bm}, we

have Φ ` {A1, ..., An} ↪→κ,γ {γA1, ..., γAn} →κ {γA1, ..., γC1, ..., γCl.γAn} →µ
γ

{B1, ..., Bm} with κ : C ⇒ D ∈ Φ andD ∼γ Ai. Thus we have Φ ` {A1, ..., An} κ,γ

{γA1, ..., γC1, ..., γCl, ..., γAn}. By Lemma 14, we have Φ ` {A1, ..., An} κ,γ

{γA1, ..., γC1, ..., γCl,, γAn} ∗γ {B1, ..., Bm}.

Lemma 20. If Φ ` {A1, ..., An}(→µ · ↪→1)∗γ{B1, ..., Bm}, then Φ ` {A1, ..., An} ∗γ
{B1, ..., Bm}.

Proof. By Lemma 19.

21

	A Type-theoretic Approach to Resolution

