
FM-HOL, A HIGHER-ORDER THEORY OF NAMES

MURDOCH J. GABBAY

Abstract. FM (Fraenkel-Mostowski) set theory techniques were developed to give
good support to inductive reasoning on formal syntax in the presence of α-equivalence

and variable binding. The original set theory has inspired a Higher-Order Logic (HOL)
theory, FM-HOL, presented in this paper. FM-HOL has similar facilities for handling
syntax-with-binding to the original set theory, but is mathematically more powerful,

introduces several novel features, and is much better suited to machine automation.
This paper concentrates on the mathematical aspect of FM-HOL, presenting it as an
improved foundation in which to analyse syntax-with-binding.

1. Introduction

This paper is about the the problem of variable binding and α-equivalence. Consider,
for example, unwanted variable capture in the λ-calculus: we do not expect (λx.λy.x) y
to evaluate to λy.y, but to λy′.y for some ‘fresh’, ‘local’ y′. The underlying function is
capture-avoiding substitution [y/x]λx.y which is expected to rename y to y′. Old
versions of LISP displayed this phenomenon, when LISP macros with local variables can
see them accidentally captured by the global context into which they were expanded.

So what is happening mathematically, and how are we to specify elementary functions
like substitution and α-equivalence? One way is to take the type of variable names to
be the natural numbers N, and choose increasingly larger ‘fresh’ numbers as names. For
example, we could define a type of terms for the λ-calculus by

(1) Λ def= Var of N + App of Λ× Λ + Lam of N× Λ

and α-equivalence =α on Λ by

(2)
t =α t

′ def= n = n′ ← t = Var(n), t′ = Var(n′)

s1 =α s
′
1, s2 =α s

′
2 ← t = App(s1, s2), t′ = App(s′1, s

′
2)

[u/n]s =α [u/n′]s′ ← t = Lam(n, s), t′ = Lam(n′, s′), u > t, t′

where ‘u > t, t′’ denotes some u which is larger than any v occuring in t and t′ and hence
does not occur in t.

Remark 1.1. But there are problems. For example do we mean “for all such u” or
“for one such u”. The former choice is good for doing induction going down (where we
want a strong hypothesis), the latter for doing induction going up (where we want a weak
proof-obligation). There seems to be no happy compromise (see R5.6).

Here, at least, we can get away with [u/n]s denoting simple textual substitution, be-
cause we have assumed u completely fresh for t, t′. Later on, when we define evaluation
relations, we may have to consider full capture-substitution. The technical details of
choosing fresh variable names only causes further problems. 3

Remark 1.2 (Existing accounts). All analyses agree in taking Λ of the form

(3) Λ def= Var of varset + App of Λ× Λ + Lam of (abstractions of (Λ)).

Date: March 15, 2002.
Many thanks to Andrew Pitts and Michael Norrish for their comments. Thanks also to UK EPSRC

grant GR/R07615 which partly funded this research.
1

2 MURDOCH J. GABBAY

De Bruijn indices typically model varset by N and abstractions of (Λ) by Λ itself. This
works because we so to speak ‘twist’ the meaning of the variable symbols under the binder
Lam so that 0 refers to the abstracted variable symbol, 1 refers to variable 0, 2 to 1, and
so on. This leads to rather ‘twisted’ inductive definitions out of this datatype, as we
inductively ‘untwist’ going under abstractions (incrementing and decrementing variable
numbers according as we add or remove abstractions from above them, at a likely cost of
O(n) in the size of the term).

HOAS models abstractions either as varset → Λ or Λ → Λ, where varset may be
N, or may be a new type. The technique tends to suffer technical difficulties, for further
discussion see [3, paragraph 33.2].

There are many other approaches ranging from category theoretic constructions which
work by moving into a more-or-less exotic foundational system (for just one example see
[6]), to work by Pollack and others [9]. 3

Remark 1.3 (FM and the literature). FM is a new approach with a pleasantly elemen-
tary feel, and which seems close to informal practice. FM is not a particular theory, but a
collection of principles which we try to realise in the context of a set theory, programming
language, etc.

The original FM theory, which motivates most of the principles and definitions in this
paper, was FM sets. FM stands for “Fraenkel-Mostowski”, who invented permutation
models of set theory to prove the independence of the axiom of choice, see [14]. Sixty
years later Pitts and I hijacked the idea of set-theoretic atoms to be variable names
(varset in (3)), and the Fraenkel-Mostowski atom-permutation on the set universe to
rename variable names on sets denoting terms of syntax ([u/n]s in (2)). See A and π.x in
R3.3, and §2.

Existing literature on FM techniques includes [3] (my thesis), [1] and [2] (twin papers
which first presented FM set theories in refereed publications), [11] (a first-order logic
by Pitts with elements of FM), and [12] (on a version of ML extended with constructs
inspired by FM for manipulating syntax up to α-equivalence). The literature is growing.
Besides this paper, [5] (a discussion of an implementation and testing of FM techniques
in the machine environment Isabelle) has been submitted for publication. Work proceeds
on the programming language and also principles of unification for logics with formulae
describing binding, and tutorial papers are in preparation. 3

Remark 1.4 (Contribution of this paper). In this paper I discuss a recently-invented
theory FM-HOL, a Higher-Order Logic (HOL) with elements of FM. It carries out a
similar programme in HOL to that of the set theories [1] and [2]. But I see this paper
as more than a change of foundations. We significantly extend FM with many novel
definitions. For example the treatment of small sets of atoms in D4.2, the methods of
construction of abstraction sets in §6, and the concept of ‘nameable atoms’ introduced in
R7.8 and discussed in the surrounding text.

FM-HOL is also designed to be far better for computer implementation than FM sets.
I argue the case for this in a description of an FM-HOL implementation in Isabelle [5].
I believe that this too is a very significant plus for FM-HOL and I refer the interested
reader to that paper. 3

2. Overview

Notation 2.1 (Types). We write ‘t of type α’ as tα or t : α. FM-HOL has no poly-
morphic types but we will want to refer to type-indexed constants such as λxα.Inl(x) :
V aries(α). We call this a type-scheme and write it

∧
α. V aries(α) or just V aries(α).

FM theories have an equality type of atoms A along with an action of permutations π
of A at all types, written π.x for some xσ, see D3.1. A is the varset of (3), its elements are
intended to represent variable symbols of an object language whose syntax is constructed

FM-HOL, A HIGHER-ORDER THEORY OF NAMES 3

(as an inductive datatype) in FM-HOL. Thus the Λ of (1) can be implemented in FM as

(4) Λ def= Var of A + App of Λ× Λ + Lam of A× Λ.

The significance of the permutation action is a little more subtle. Consider a transpo-
sition (a b) for a, b :A and its action on Lamf.Lamx.f(x) in the Λ of (4). We shall prefer
the informal λ notation λf.λx.f(x) for readability. Observe that

(5) (f x).λf.λx.f(x) = λx.λf.x(f) =α λf.λx.f(x).

Thus transposition provides a notion of atom-swapping which by being an isomorphism
on A avoids some of the problems of [f/x]λf.λx.f(x) when [f/x] identifies f and x to
λf.λf.f(f). There is no loss in expressive power, e.g. in the third line of (2), (u n) and
(u n′) will do just as well as [u/n] and [u/n′]. There is a good case that atom-permutation
is more elementary than capture-avoiding atom-substitution, and mathematically better-
behaved than näıve atom-substitution. Cf. [2, Chapter 2].

Using this dedicated type of atoms A and its permutation action at all types, we find
in §6 that we can define a type A.α of abstractions of α of “elements xα with one
distinguished bound atom a”. This plays the rôle of (abstractions of (Λ)) in (3) and
allows us to define an inductive datatype of syntax-with-binding, e.g. an inductively
defined type of λ-terms up to α-equivalence (see (26), (30)). The motivation for using
A.α is that it seems better-behaved than many of the alternatives, for example A→ α in
HOAS or α itself (‘twisted’, as discussed above) in the de Bruijn indeces approach.

Furthermore, A.α comes with well-behaved logical and functional tools for reasoning
and programming with types of syntax-with-binding, e.g. the new quantifier Nwhose
excellent properties are described in §5. To my knowledge these tools are unique to the
FM approach.

We finish the mathematical development in §7 with a discussion of axioms of definite
and indefinite choice in HOL with FM, which are in some sense final elements in the
development of a fully-fledged, implementable, theory.

For the reader unfamiliar with FM, this paper presents FM-HOL as a workable environ-
ment for manipulating syntax-with-binding. For the FM practitioner, the paper contains
a new FM theory, as well as various new definitions and principles of proof which I have
found useful and wish to showcase.

3. HOL+lift

Definition 3.1 (HOL+lift). HOL+lift is a classical higher-order logic with a type of
atoms A and a (polymorphic) constant lift : APerm → α → α (where APerm denotes the
type of permutations of A):

A is a type(A)

lift : APerm → α→ α(lift)

For brevity write ‘liftαπx’ as ‘π.x’. Using the notation of N3.2, A and lift satisfy the
following axioms:

π.π′.x = (π ◦ π′).x(L◦)
π.a = π(aA)(LA)

(t ~x) = π.
(
t (π−1.~x)

)
when t closed.(LE)

Notation 3.2. A finite list xi, i = 1, . . . , n is a vector written ~x or (xi)i. For π ∈
APerm, π.~x denotes π applied pointwise on each element of ~x.
π1 ◦ π2 denotes composition of permutations in APerm.
tα is closed when as syntax it contains no free variables. Thus >B and λxA.x are closed

but (λxB.>)(yB) is not (though it β-reduces to >). This is a property of syntax and not
any underlying denotation.

4 MURDOCH J. GABBAY

It is convenient to write Id for the identity function λx : α.x. We use this notation
frequently to denote the Id on A, which is in APerm (e.g. R3.4).

Remark 3.3. So HOL+lift is a HOL with a distinguished type of atoms A and an
atom-permutation action π.x at all types (given by lift), just as discussed in R1.3 and
§2. (L◦) is a standard property of a ‘permutation action’, (LA) says it acts at A in the
reasonable way. Further standard properties of a permutation action, e.g. Id.x = x
(N3.2), are considered in L3.5. 3

Remark 3.4 (Equivariance). (LE) is the interesting axiom. In general mathematical
terms, the standard permutation action on an n-ary function f is π.f = λ~x.π.f(π−1.~x)
(cf. Item 4 of L3.5). (LE) can be read as asserting that A-permutation has no action on
functions f = t specified by a closed term t and that in this sense the meta-language is
blind to the identities of individual atoms.

In the light of Item 1 of L3.5 below, we now know—immediately, without any
induction—that for example in (4),

(a b).App(s1, s2) = App((a b).s1, (a b).s2).

Such equalities are very useful, as is the fact that they are immediate and do not require
inductive proof: the inductive action we see in equalities such as

[b/a]App(s1, s2) = App([b/a]s1, [b/a]s2)

are given to us ‘for free’ by the theory by virtue of its equivariance.
3

Another significant feature of this theory is the fact that the permutation action is
defined at all types, not just by induction on types of syntax. This allows us to permute
atoms in elements that are not obviously syntactic. For example, we can rename atoms in
elements of types of abstractions A.α (first mentioned in §6). Just to look at the definition
of elements of abstraction type, (21) and (22) in D6.1, it is by no means clear that a.s is a
syntactic entity in the same way as, say, <s1, s2> (assuming s, s1, s2 are). Nevertheless,
we can rename the atoms inside a.x : A.α using the permutation action. And indeed, we
need the permutation action in the proofs of §6 to prove the necessary results which show
that a.x is ‘x with a bound’, see R6.7.

Michael Norrish has suggested an alternative formulation of (LE). I do not discuss it
here but it is important. See [5, {5.15}] and future publications.

Lemma 3.5 (Technical results). Various basic properties of the permutation action
follow from D3.1:

1. Permutation distributes over meta-language functions: π.t(x1, . . . , xn) =
t(π.x1, . . . , π.xn), for t a closed term. Note in the case n = 0 we have π.t = t:
the meta-language may not contain object-level variable symbols.

2. π.π−1.x = x (and π−1.π.x = x).
3. Id.x = x.
4. Permutations acts on functions in the standard way: π.(f x) = (π.f π.x), and
π.f = λx.π.(f (π−1.x)).

Proof. 1. Direct from (LE), applying π to both sides.
2. From (LE) taking t = λx.x.
3. Combining Item 2 with (L◦). For Id see N3.2.
4. Again from (LE) taking t = λf, x.(f x) and using Item 2 to simplify.

�

We come to the second step of constructing our theory:

4. FM-HOL−ι

Notation 4.1 (Predicates and HOL sets). We may call P : α → B a function into B
a predicate, or also a (HOL)-set. Sets are usually written X,Y, Z, . . . : α → B with

FM-HOL, A HIGHER-ORDER THEORY OF NAMES 5

elements x, y, z, . . . : α. We borrow set-theoretic notation. E.g. for a HOL-set X, x ∈ X
denotes (X x). We may write ∅ or ⊥ for the ‘empty’ set λxα.⊥, and α or > for λxα.>.
We borrow other notation as convenient, e.g. X ⊆ Y .

Definition 4.2 (Small). Define a predicate S : P(A)→ B given by

(6) X ∈ S
def⇐⇒ (X well-orderable)∧ (A \X not well-orderable)∧ (X ↪→ A \X).

(X ↪→ Y means “there is an injection from X to Y ”.)
We call X small when X ∈ S and large when A \X ∈ S.
A picture might illustrate the point:

(7)
| �

X

small
- |(�A \X

large
. . . -)

| �
x1,x2,x3,...- |(�x′

1,x′
2,x′

3,...- � . . . -)

S is a theory of small sets of atoms (object-level variable names). X is ‘small’ when we
can enumerate it, when A \X is not enumerable, and also large enough to contain copies
of X itself.

Remark 4.3 (Small=well-orderable). A reader familiar with FM, perhaps from any
one of [1], [2], or [4], will recognise this as a generalisation of the situation in FM set
theory, where ‘small’=‘finite’. Here the slogan is ‘small’=‘well-orderable’.

This principle, and the details of the definition of smallness (6), give the notion of
smallness excellent properties which make possible the development in the rest of this
paper. D4.2 is one of the contributions of this paper to FM theory as a whole. 3

Lemma 4.4 (Closure properties). S is closed under finite unions and finite (nonempty)
intersections. In fact, S is closed under unions indexed by small I ∈ S. Proof from the
properties of well-orderings. The slogan is “small unions of small sets are small”.

Definition 4.5 (Support). For X ⊆ A and π : APerm a permutation on atoms write

(8) π fixes X for “∀x ∈ X. π.x = x”.

For an arbitrary zα, read

(9) “∀π : APerm. π fixes X =⇒ π.z = z” as “X supports z”.

Using this notation we define Supp : α→ P(A) by

(10) Supp(zα) def=
⋂ {

X ∈ S
∣∣ X supports z

}
.

Supp(z) is a notion of the “variable names inside z”. Indeed,
Remark 4.6. For X ∈ S, Supp(X) = X = Supp(A \ X). Also, for terms of a

datatype such as t : Λ as defined in (4), Supp(t) is precisely the atoms occuring in t.
Proofs omitted. 3

But in (10) we take an intersection over small X supporting zσ. In the case z = X ∈ S
or z = t ∈ Λ it is clear that at least one such exists. But what of arbitrary zσ? We
introduce an axiom:

Definition 4.7 (FM-HOL−ι). FM-HOL−ι is HOL+lift augmented with an axiom

(11) Supp(z) ∈ S.

Lemma 4.8. Every zσ has some (not necessarily minimal) small supporting set. The
slogan is “all elements have small support”.

Lemma 4.9. Supp(z) supports z and, by construction, is a minimal supporting set.

Proof. Using the technical lemmas and definitions below (for a comment on the fact that
we can prove them, see R4.3). �

6 MURDOCH J. GABBAY

Lemma 4.10 (Technical properties of S).

1. For any X : P(A), either X = Supp(X) or A \X = Supp(X).
2. For any X : P(A), X ∈ S iff A \X ∈ S.
3. For all X : P(A), either X ∈ S or A \X ∈ S, and not both.
4. Supp(∅) = ∅ = Supp(A), so ∅ is small and A is large.
5. Hence A is infinite and cannot be well-ordered.
6. For X ∈ S, X ↪→ A \X.

Proof. 1. By calculation.
2. Observing the diagram (7).
3. Supp(X) ∈ S always by (11), use previous results in this list.
4. Observing Supp(∅) = ∅ and using the above.
5. That A is large was observed above. Large sets cannot be well-ordered by
definition (cf. (7)).

6. Again, see (7).
�

Definition 4.11 (N). In view of L4.10 we write X is large when it is not small, and
write the set of large sets of atoms N(cf. R4.16). Observe that P(A) = S ∪ Nand recall
from L4.10 that X ∈ S ⇐⇒ A \X ∈ N.

Lemma 4.12. Any small set X injects into any large set Z.

Proof. By L4.10 we know X and A \Z are small. By L4.4, X ∪ (A \Z) is small. We now
consult the picture (7) to inject X ∪ (A \ Z) into its complement (A \X) ∩ Z, and hence
X into Z. �

The following technical result is highly significant. It brings together the properties of
small sets of atoms (see (6) and (7)) with the permutation action to prove that for any
xσ we can ‘shift’ its support Supp(x) = U to a fresh U ′.

Lemma 4.13 (Renaming Lemma). Recall that any xσ has small support by (11). From
the proof of L4.12 we see that for any xσ and any L ∈ Nthere is an x′σ with Supp(x′) ⊆ L
and ψ such that x

ψ↔ x′.
Here x

ψ↔ x′ means ψ.x = x′, ψ.x′ = x, and ψ is the identity off Supp(x) ∪ Supp(x′).
Call ψ a renaming permutation. It “shifts the support of x to be (somewhere) inside
L”, and this result asserts that for any L, at least one such a ψ exists:

(12)
| �Supp(x)

small
- | �

stuff
- | � L

large
. . . -)

| �Supp(x′)

x′ = ψ.x
- |

This all works towards the following two results:
Lemma 4.14. If X and Y support z then X ∩ Y supports z.

Proof. The proof is technical but I include it because it has a certain beauty. To visualise
it, see the bracketed comment at the end of this proof. If X ⊆ Y or Y ⊆ X then we are
done. So let U = X \ Y 6= ∅. Consider some π fixing X and Y . We prove π fixes X ∩ Y ,
which completes the proof.

Choose L ∈ Nlarge and disjoint from X,Y,Supp(π). Let ψ be a renaming permutation

for U and L, U
ψ↔ U ′ for U ′ ⊆ L as discussed in L4.13.

Observe that ψ fixes Y . It follows by our assumption that Y supports z that ψ.z = z,
whence

(ψ−1 ◦ π ◦ ψ).z = π.z.

FM-HOL, A HIGHER-ORDER THEORY OF NAMES 7

However, ψ−1◦π◦ψ fixes X. So by our assumption that X supports z, we have π.z = z as
required. (I would draw a picture of this proof. I suggest a two-dimensional Venn diagram,
with small sets X, Y represented by intersecting circles inside a large box A.) �

Lemma 4.15. Any descending chain of small sets X1 ⊇ X2 ⊇ X3 . . . terminates. This
property is inherited from the corresponding property of well-orderings (ordinals).

Proof of L4.9. Suppose Supp(z) does not support z. We examine the definition (10) and
using L4.14 deduce the existence of a non-terminating descending chain of supporting sets
above Supp(z). This contradicts L4.15. �

Remark 4.16. We now continue to develop a theory of syntax-with-binding using A
as object-level variable names. The reader may wonder why we called the large atoms N
instead of, say, L for large. Nstands for ‘new’ and gives rise to a novel quantifier whose
theory we now develop: 3

5. # and N

Recall from D4.11 we introduced the notation Nfor the set of large sets of atoms.
Definition 5.1. Write NP or Na. P (a) for “P ∈ N”.

Nthe quantifier has excellent properties:
Lemma 5.2. Ndistributes over all structure of the HOL logic. That is:

Na. P (a) ∧ Na. Q(a) ⇐⇒ Na. P (a) ∧Q(a)(13)

Na. P (a) ∨ Na. Q(a) ⇐⇒ Na. P (a) ∨Q(a)(14)

Na. ¬P (a) ⇐⇒ ¬ Na. P (a)(15)

Na. >(16)

¬ Na. ⊥(17)

(Na. P (a)) ∧Q ⇐⇒ Na. (P (a) ∧Q)(18)

Proof. From L4.4 and L4.10 we can deduce that S and Nare closed under pairwise meets
and joins, ∅ ∈ S and A ∈ N. This proves all formulae save the last. To prove that, observe
that FM-HOL is classical so for any QB we know Q = > or Q = ⊥, proceed by cases. �

The significance of L5.2 is that we may choose two fresh atoms in different proofs of
NP and NQ, and it does not matter which ones because we can always use L5.2 to deduce
Na. P (a)∧Q(a). Similarly, in a proof if we wish to prove NQ from NP it suffices to prove
Na. P (a)→ Q(a), that is, to ‘choose a fresh atom’ a and prove P (a)→ Q(a).
Definition 5.3. Write

a 6∈ Supp(x) as a#x,

and read this as “a is fresh for x” or sometimes “a is not ‘in’ x”.
Observe that a predicate P :A→ B is just a set of atoms X, hence subject to L4.10. We

can use this and our new definition D5.3 to turn D5.1 into directed intro- and elim-rules
for N:

Lemma 5.4 (Nintroduction). a#P ∧ P (a) =⇒ Na. P (a).

Proof. By L4.10 P = Supp(P) or P = A \ Supp(P). Since P (a) and a 6∈ Supp(P) we
have P = A \ Supp(P). Since Supp(P) ∈ S, we have P ∈ Nas required. �

Lemma 5.5 (Nelimination). (Na. P (a)) ∧ a#P =⇒ P (a).

Proof. We have assumed P ∈ Nand a 6∈ Supp(P). Since Supp(P) ∈ S we know
P = A \ Supp(P) so P (a) as required. �

8 MURDOCH J. GABBAY

Remark 5.6. Thus Nis a fully-fledged binder with well-defined intro- and elim-rules.
Note how they pleasingly combine (the best) aspects of ∀ and ∃ rules. Recall R1.1.
When doing induction, to prove Na. P (a) it suffices to establish it for one fresh a, and
conversely when we know Na. P (a) we have P (a) for any fresh a. In FM, we have the
‘happy compromise’ spoken of in R1.1. 3

We conclude by using Nto rewrite (2), a definition of =α on the Λ of (1), in FM style
on Λ of (4):

(19) Λ def= Var of A + App of Λ× Λ + Lam of A× Λ

(20)
t =α t

′ def= n = n′ ← t = Var(n), t′ = Var(n′)

s1 =α s
′
1, s2 =α s

′
2 ← t = App(s1, s2), t′ = App(s′1, s

′
2)

Nu. (u n).s =α (u n′).s′ ← t = Lam(n, s), t′ = Lam(n′, s′)

It remains however to bind atoms in syntax:

6. Construction of a.x

Definition 6.1. Define

(21) a.xα
def=

⋂ {
X ⊆ A× α

∣∣ <a, x> ∈ X ∧ Supp(X) ⊆ Supp(x) \ {a}
}
.

More generally, for types α and β, we may define

(22) xα.yβ
def=

⋂ {
X ⊆ α× β

∣∣ <x, y> ∈ X ∧ Supp(X) ⊆ Supp(y) \ Supp(x)
}
.

Definition 6.2. Define new type-constructors by

(23) A.α def=
{
aA.xα

}
and α.β

def=
{
xα.yβ

}
.

The coincidence between the special case of α = A is deliberate, they are the same type,
proof omitted.1

Lemma 6.3. Supp(x.y) ⊆ Supp(y) \ Supp(x) and in particular a#a.x. The proof is
a simple corollary of the technical lemma Supp(

⋂
iXi) ⊆

⋃
i Supp(Xi).

Lemma 6.4 (Alternative characterisation). An alternative characterisation of xα.yσ

is as the equivalence-class [<x, y>]∼ where

(24) <x, y> ∼ <x′, y′> def= Rx
φ→ x′. y′ = φ.y.

R binds only φ, read Rx
φ→ x′. P (x, φ) as “rename x to x′ (by φ) in P”. It is defined by

(25) Rx
φ:AP erm

→ x′. P (x, φ) def=

∃φ : APerm. P (x, φ) ∧ x
φ↔ x′ ∧ Supp(x′) ∩ Supp(P) ⊆ Supp(x)

where x
φ↔ x′ is defined in L4.13.

Proof. We prove ∼ an equivalence relation. We then use a technique similar to that in
the proof of L4.12 to find z, y′ such that <x, y> ∼ <z, y′> and z has support completely
fresh for the context, and use this to deduce Supp(x) is disjoint from Supp([<x, y>]∼).
Clearly <x, y> ∈ [<x, y>]∼. From all this we can conclude [<x, y>]∼ = x.y. �

Lemma 6.5. Supp(x.y) = Supp(y) \ Supp(x). Proof using L6.4.
Lemma 6.6. For x, y : α and a fixed a : A, a.x = a.y ⇔ x = y. Proof omitted.
Remark 6.7. L6.3, L6.4, and L6.5 tell an attractive story: abstraction x.y simply

forms the pair <x, y>, but also binds precisely those atoms which may occur free in x.
L6.6 completes the picture and tells us that in particular, A.α =

{
aA.xα

}
is the type

of xα with one distinguished bound atom a. 3

1Generalised abstraction was discovered independently by Pitts.

FM-HOL, A HIGHER-ORDER THEORY OF NAMES 9

Remark 6.8. This morally justifies our usage of the following as a datatype of λ-terms
up to α-equivalence:

(26) Λα
def= Var of A + App of Λα × Λα + Lam of A.Λα.

Here the term λa.a is represented by Lam(a.Var(a)). a.Var(a) plays the rôle of
Lam(λaA.Var(a)) in (one flavour of) HOAS, Lam(Var(0)) in De Bruijn, or simply
Lam<a,Var(a)> in a näıve representation.

The formal justification for the claim that Λα is λ-terms up to α-equivalence is by
defining a function from Λ in (4) and (19) to (26)

(27)
q : Λ→ Λα

def= Var(a) 7→ Var(a)

App(s1, s2) 7→ App(q(s1), q(s2))

Lam(a, s) 7→ Lam(a.(q(s)))

and proving q surjective and that its kernel is =α as defined in (20). Details omitted. 3

Thus we have a definition Λα of λ-terms Λ quotiented by =α, Λ/ =α. The top-level
structure of Λα is not a quotient, but an inductive datatype. Thus the definition of some
standard function on Λα, e.g. capture-avoiding substitution, is purely inductive, but to
construct it (see (30)) we need definite choice ι:

7. Axioms of choice and consistency

Lemma 7.1. HOL+lift and FM-HOL−ι both have easy models in FM sets with types
as sets and function types as sets of function-sets. Thus, these theories are consistent.

Proof. Write the semantic mapping function [[−]] . Then [[A]] is the set of atoms A,
[[TranA→A→α→α]] is set-transposition restricted to the function-set of its action on [[α]] .

There is only one significant detail: types do have to be interpreted as equivariant sets
(“[[α]] is equivariant for all α”, see R3.4) so that for all a = [[aA]] , b = [[bA]] ∈ A and x ∈ [[α]] ,
[[Tran]] (a, b, x) ∈ [[α]] always. �

Remark 7.2. In an automated environment it is extremely useful to mediate between
predicates and functions. That is, if we construct a predicate P (x, y) we want to be able
to derive from it a function symbol fP (x) such that P (x, fP (x)). No sugar—we want
an actual closed term f : (α → α → B) → (α → B), and we want to be able to prove
P (x, f(P)(x)) in the logic.

The two usual candidates for constructing such an f are indefinite choice, also known
as Hilbert’s ε, and definite choice, written ι. ε is a polymorphic constant symbol ε : (α→
B)→ α with axiom (∃x. P (x))⇒ P (ε P). Given that, we take f to be λx.εy. P (x, y).
ι is a polymorphic constant symbol ι : (α → B) → α such that (∃!x. P (x)) ⇒ P (ι P).

We can take f to be λx.ιy. P (x, y), which lets us form a function-term from the term for
its graph.

To me ι seems vital, because forming functions from graphs is common practice which
an automated HOL should support. 3

Lemma 7.3. HOL+lift, and therefore FM-HOL−ι, are inconsistent with Hilbert’s ε
R7.2. Cf. the corresponding FM sets phenomenon in [2, Remark 4.6].

Proof. Consider two terms

aA def= εxA.> and bA def= εxA. x 6= a.

Observe that both a and b are closed terms yet (a b).a 6= a. This contradicts (LE) for
t = a and π = (a b). �

However. . .

10 MURDOCH J. GABBAY

Lemma 7.4. Call a type α pure when every xα is equivariant (for all a, b:A, (a b).x =
x, see R3.4 and cf. [2, Remark 4.2]), standard examples are B and N. If α and β are
pure then so is α → β, proof omitted. Thus the type-class of pure types is closed under
function-types. It is consistent to postulate Hilbert’s ε : (α → B) → α for α of that class,
proof omitted.

Thus in an automated environment with type-classes, such as Isabelle/HOL, we do not
actually lose any theory, since the standard theories of real numbers, groups, and so on,
are carried out in the pure types.

Definition 7.5 (FM-HOL). As the name suggests, FM-HOL−ι lacks ι. But it is
consistent to add it, as we discuss below, and we call the theory obtained FM-HOL.

Now adding ι to FM-HOL−ι leads to no obvious inconsistencies in the logic. However,
there is a snag proving consistency using the set-theoretic models we used in L7.1 to prove
consistency of FM-HOL−ι:

Remark 7.6. In a set-theoretic model of FM-HOL−ι as discussed in L7.1, consider
how to add [[ι]] for each type α. This is a function-set in ([[α]] → [[B]])→ [[α]] .

In fact FM sets has definite choice ι so we might think we could simply interpret the
HOL-ι as the function-set obtained restricting sets-ι to [[α]] → [[B]] .

But ι is typed as a total function and most Pα→B do not satisfy ∃!x. P (x). What
should [[ι]] ([[P]]) be for such a P? Sets-ι can default to some fixed set, e.g. ∅. [[ι]] cannot,
because the default value must be in [[α]] . Consider the case α = A. Whichever default
atom a ∈ [[A]] we choose for “bad P” the closed term t

def= ιxA.> will not satisfy (LE) in
the model, since for any b 6= a, (b a).[[t]] 6= [[t]] .

There are (at least) two solutions. Pitts suggests a domain-theoretic semantics so that
[[ι]] can default to ⊥. Personally I miss the simplicity of a set model of our HOL and want
to preserve it if I can. I think I know how to do so, and with honour too: 3

Remark 7.7. Introduce a constant symbol D : S with axiom

(28) ∀S : S. S ↪→ D.

(Recall the notation of D4.2: S ↪→ D means “S injects into D”.)
Now consider a system FM-HOL given by the above along with a modified version of

FM-HOL−ι such that (LE) is taken to be

(29) π fixes D =⇒ (t ~x) = π.
(
t (π−1.~x)

)
when t closed.

(‘π fixes D’ defined in (8).) 3

Remark 7.8 (Nameable atoms). Thus D gives us a stock of “nameable atoms” for
which equivariance (LE) need not apply, and such that we can consistently introduce into
the meta-language closed terms (names) c ∈ D for them. 3

Remark 7.9. In this paper we introduce D to solve the technical problem of modelling
ι also for badly-typed P (R7.2, R7.6), but it has independent motivations.

Suppose we want to represent in FM-HOL this common syntactic declaration: “Ele-
ments of widget are written x, y, z, . . . ∈ widget”. Are not x, y, z really these ‘nameable
atoms’? Similarly for other sources of distinguished atoms, such as ‘stderr’ (A is UNIX
filehandles) or ‘Bool’ (A is base types) and so on. We might introduce a separate type such
as N and use a sum type A+N for ‘x, y, z, and . . . ’, or ‘system filehandles and user-defined
ones’, etc. But in automation this carries a significant penalty in efficiency and readability
(note for experts: and of course if we look at the actual set-theoretic denotation, using
A + N just ‘hacks’ D in using the expressivity of the object-level).

An independent motivation for nameable atoms is as expressing atoms introduced by
an external context or ‘local theory declaration’. This is best explained by example. To
implement a theory of groups in some machine system it is convenient to open a ‘local
theory’, in which is declared a group G. We prove our theorems about this fixed but

FM-HOL, A HIGHER-ORDER THEORY OF NAMES 11

arbitrary G, then close the theory. When we do so G is eliminated and our theorems, Thm
say, are lifted over an extra hypothesis “G a group”, to become G a group⇒ Thm.

This avoids the clutter of a standing hypotheses “G a group” in the proof-script de-
veloping the theory of groups and is nowadays standard practice in proving environments,
which a FM-HOL implementation should accommodate (see for example [8] or [7, ‘Sec-
tions’, 1.1.1]). 3

Returning to the task of giving semantics to ι, we can construct an FM set theory with
corresponding set D and set equivariance axiom (29), and allow [[ι]] to default to some
value with support entirely in D in the case of ‘badly-typed’ input [[P]] . ∀S ∈ S. S ↪→ D
ensures D is at least as large as any set of names we can enumerate, so that we can always
find a new default error-value no matter what is in the context.

Lemma 7.10. FM-HOL with nameable atoms and unique choice ι, as described above,
is consistent. Further details of the proof omitted.

Using ι we can now give a sensible definition of substitution on Λα in (26), the type of
λ-terms up to α-equivalence:

(30)

[u/n]Var(n) = u

[u/n]Var(a) = Var(a) (a 6= n)

[u/n]App(t1, t2) = App([u/n]t1, [u/n]t2)

[u/n]Lam(a.t) = Lam(a.[u/n]t)

—which is what we would expect the definition to look like in an FM programming
language.

In the final clause of this definition, that for Lam, we have made some effort to present
matters attractively, as a user of an implemented HOL datatypes package might expect
to type in. The specification, expressed religiously in the FM language we have had the
space to develop in this paper, is

[u/n]Lam(tA.Λα
∗) = ιz. Na. ∃t.

(
t∗ = a.t ∧ z = Lam(a.[u/n]t)

)
.

This formula adds no particular mathematical context to the development: for new a
there always exists t such that t∗ = a.t, the underlying technical result supporting this is
the renaming lemma L4.13, and it does not matter which a we use, cf. §5 and R5.6. We
omit further discussion.

8. Implementing FM-HOL, Conclusions

An FM-HOL-like theory called Isabelle/HOL/FM has been implemented and is de-
scribed in [5]. It is not quite an implementation of FM-HOL. It uses a HOL meta-language
essentially identical to the FM-HOL−ι of §4. However, it constructs an FM set theory in
a type of individuals (‘the set universe’) i, rather than directly implementing FM struc-
tures (such as a.x, D6.1) in its own types. This was for reasons partly historical and
partly practical. Concerning history, the implementation started off as FM sets, see the
discussion at the start of §1. Concerning practicality, the inductive definitions package of
Isabelle set theory (see [10]) seems better-suited to theoretical work. It has an emphasis
on flexibility and doing everything inside the Isabelle theory which means if we hack the
Isabelle theory (e.g. to include elements of FM) the datatypes package changes with it
relatively painlessly. In contrast the inductive definitions package of Isabelle/HOL ([13,
Ch.6]) seems aimed at the end-user. It is highly-engineered with lots of powerful ML code
and slick user interfaces which assume certain things of the theory which FM is liable to
make false.

At my suggestion Berghofer, Paulson, and Wenzel kindly reengineered the Isabelle/HOL
system to make it independent of ε (see L7.3) except, apparently, for a hidden dependency
in the datatypes package. Implementing Isabelle/FM-HOL now seems feasible. Perhaps I

12 MURDOCH J. GABBAY

should simply go right in, hack Isabelle/HOL to Isabelle/FM-HOL, and if some ML code
breaks then so be it.

While writing, I have always had applications in mind: when I motivated a new constant
symbol, or a particular way of doing things, it was usually with reference to implemen-
tation. And yet I have tried to show the beauty of this logic as an abstract entity in its
own right. And this beauty charms me. I hope my reader has enjoyed the story too.

References

1. M. J. Gabbay and A. M. Pitts, A new approach to abstract syntax involving binders, 14th Annual

Symposium on Logic in Computer Science, IEEE Computer Society Press, Washington, 1999, pp. 214–
224.

2. M. J. Gabbay and A. M. Pitts, A new approach to abstract syntax with variable binding, Formal
Aspects of Computing ? (2001), ?–?, Special issue in honour of Rod Burstall. To appear.

3. Murdoch J. Gabbay, A theory of inductive definitions with alpha-equivalence, Ph.D. thesis, Cam-

bridge, UK, 2000.
4. , FM-HOL, a higher-order theory of names, 35 Years of Automath, Heriot-Watt University,

Edinburgh, Scotland, April 2002, Submitted.

5. , FM techniques in Isabelle, TPHOLS, August 2002, Submitted.
6. M. Hofmann, Semantical analysis of higher-order abstract syntax, 14th Annual Symposium on Logic

in Computer Science, IEEE Computer Society Press, Washington, 1999, pp. 204–213.

7. Paulin-Mohring Huet, Kahn, The COQ tutorial, v7.2, http://pauillac.inria.fr/coq/doc/tutorial.html,
LogiCal Project.

8. Florian Kammüller, Markus Wenzel, and Lawrence C. Paulson, Locales: A sectioning concept for
Isabelle, LNCS, vol. 1690, TPHOLS99, Springer, 1999.

9. James McKinna and Robert Pollack, Some lambda calculus and type theory formalized, Journal of
Automated Reasoning 23 (1999), no. 3-4, 373–409.

10. Lawrence C. Paulson, (Co)Inductive definitions in ZF, Isabelle System.
11. A. M. Pitts, Nominal logic: A first order theory of names and binding, Theoretical Aspects of

Computer Software, 4th International Symposium, TACS 2001, Sendai, Japan, October 29-31, 2001,
Proceedings (N. Kobayashi and B. C. Pierce, eds.), Lecture Notes in Computer Science, vol. 2215,
Springer-Verlag, Berlin, 2001, pp. 219–242.

12. A. M. Pitts and M. J. Gabbay, A metalanguage for programming with bound names modulo renaming,
Mathematics of Program Construction. 5th International Conference, MPC2000, Ponte de Lima,
Portugal, July 2000. Proceedings (R. Backhouse and J. N. Oliveira, eds.), Lecture Notes in Computer

Science, vol. 1837, Springer-Verlag, Heidelberg, 2000, pp. 230–255.
13. Larry Paulson Tobias Nipkow, Isabelle HOL: The tutorial (draft), February 2001, To be published by

Springer.
14. J. Truss, Permutations and the axiom of choice, Automorphisms of first order structures

(H.D.Macpherson R.Kaye, ed.), OUP, 1994, pp. 131–152.

M.J.Gabbay, mjg1003@cl.cam.ac.uk, Computer Laboratory, Cambridge University, UK

