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Chapter 1

Basic Concepts

1.1 Introduction

This is a tutorial on how to use Isabelle/HOL as a specification and ver-
ification system. Isabelle is a generic system for implementing logical for-
malisms, and Isabelle/HOL is the specialization of Isabelle for HOL, which
abbreviates Higher-Order Logic. We introduce HOL step by step following
the equation

HOL = Functional Programming + Logic.

We assume that the reader is familiar with the basic concepts of both fields.
For excellent introductions to functional programming consult the textbooks
by Bird and Wadler [1] or Paulson [8]. Although this tutorial initially con-
centrates on functional programming, do not be misled: HOL can express
most mathematical concepts, and functional programming is just one par-
ticularly simple and ubiquitous instance.

A tutorial is by definition incomplete. To fully exploit the power of the
system you need to consult the Isabelle Reference Manual [6] for details
about Isabelle and the Isabelle/HOL manual [5] for details relating to HOL.
Both manuals have a comprehensive index.

1.2 Theories, proofs and interaction

Working with Isabelle means creating two different kinds of documents:
theories and proof scripts. Roughly speaking, a theory is a named collection
of types and functions, much like a module in a programming language or
a specification in a specification language. In fact, theories in HOL can be
either. Theories must reside in files with the suffix .thy. The general format
of a theory file T.thy is

T = B1 + · · · + Bn +

〈declarations〉
end

where B1, . . . , Bn are the names of existing theories that T is based on and
〈declarations〉 stands for the newly introduced concepts (types, functions

1



CHAPTER 1. BASIC CONCEPTS 2

etc). The Bi are the direct parent theories of T. Everything defined in the
parent theories (and their parents . . . ) is automatically visible. To avoid
name clashes, identifiers can be qualified by theory names as in T.f and
B.f. HOL’s theory library is available online at

http://www.cl.cam.ac.uk/Research/HVG/Isabelle/library/
http://isabelle.in.tum.de/library/

and is recommended browsing.

! HOL contains a theory Main, the union of all the basic predefined theories like
arithmetic, lists, sets, etc. (see the online library). Unless you know what you

are doing, always include Main as a direct or indirect parent theory of all your
theories.

This tutorial is concerned with introducing you to the different linguis-
tic constructs that can fill 〈declarations〉 in the above theory template. A
complete grammar of the basic constructs is found in Appendix A of [6], for
reference in times of doubt.

The tutorial is also concerned with showing you how to prove theorems
about the concepts in a theory. This involves invoking predefined theorem
proving commands. Because Isabelle is written in the programming language
ML,1 interacting with Isabelle means calling ML functions. Hence proof
scripts are sequences of calls to ML functions that perform specific theorem
proving tasks. Nevertheless, familiarity with ML is absolutely not required.
All proof scripts for theory T (defined in file T.thy) should be contained in
file T.ML. Theory and proof scripts are loaded (and checked!) by calling the
ML function use_thy:

use_thy "T";

There are more advanced interfaces for Isabelle that hide the ML level
from you and replace function calls by menu selection. There is even a
special font with mathematical symbols. For details see the Isabelle home
page. This tutorial concentrates on the bare essentials and ignores such
niceties.

1.3 Types, terms and formulae

Embedded in the declarations of a theory are the types, terms and formulae
of HOL. HOL is a typed logic whose type system resembles that of functional
programming languages like ML or Haskell. Thus there are

base types, in particular bool, the type of truth values, and nat, the type
of natural numbers.

1Many concepts in HOL and ML are similar. Make sure you do not confuse the two
levels.

http://www.cl.cam.ac.uk/Research/HVG/Isabelle/library/
http://isabelle.in.tum.de/library/
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type constructors, in particular list, the type of lists, and set, the type
of sets. Type constructors are written postfix, e.g. (nat)list is the
type of lists whose elements are natural numbers. Parentheses around
single arguments can be dropped (as in nat list), multiple arguments
are separated by commas (as in (bool,nat)foo).

function types, denoted by =>. In HOL => represents total functions only.
As is customary, τ1 => τ2 => τ3 means τ1 => (τ2 => τ3). Isabelle
also supports the notation [τ1, . . . , τn] => τ which abbreviates τ1 =>
· · · => τn => τ .

type variables, denoted by ’a, ’b etc, just like in ML. They give rise to
polymorphic types like ’a => ’a, the type of the identity function.

! Types are extremely important because they prevent us from writing nonsense.
Isabelle insists that all terms and formulae must be well-typed and will print an

error message if a type mismatch is encountered. To reduce the amount of explicit
type information that needs to be provided by the user, Isabelle infers the type of
all variables automatically (this is called type inference) and keeps quiet about
it. Occasionally this may lead to misunderstandings between you and the system.
If anything strange happens, we recommend to set the flag show_types that tells
Isabelle to display type information that is usually suppressed: simply type

set show_types;

at the ML-level. This can be reversed by reset show_types;.

Terms are formed as in functional programming by applying functions
to arguments. If f is a function of type τ1 => τ2 and t is a term of type τ1

then f t is a term of type τ2. HOL also supports infix functions like + and
some basic constructs from functional programming:

if b then t1 else t2 means what you think it means and requires that b
is of type bool and t1 and t2 are of the same type.

let x = t in u is equivalent to u where all occurrences of x have been
replaced by t . For example, let x = 0 in x+x means 0+0. Multiple
bindings are separated by semicolons: let x1 = t1; ...; xn = tn

in u.

case e of c1 => e1 | ...| cn => en evaluates to ei if e is of the form
ci . See §2.4.4 for details.

Terms may also contain λ-abstractions. For example, λx .x + 1 is the
function that takes an argument x and returns x + 1. In Isabelle we write
%x. x+1. Instead of %x. %y. %z. t we can write %x y z. t.

Formulae are terms of type bool. There are the basic constants True
and False and the usual logical connectives (in decreasing order of priority):
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~ (‘not’), & (‘and’), | (‘or’) and --> (‘implies’), all of which (except the unary
~) associate to the right. In particular A --> B --> C means A --> (B -->
C) and is thus logically equivalent with A & B --> C (which is (A & B) -->
C).

Equality is available in the form of the infix function = of type ’a =>
’a => bool. Thus t1 = t2 is a formula provided t1 and t2 are terms of the
same type. In case t1 and t2 are of type bool, = acts as if-and-only-if.

The syntax for quantifiers is ! x.P (‘for all x ’) and ? x.P (‘exists x ’).
There is even ?! x.P , which means that there exists exactly one x that
satisfies P . Instead of ! and ? you may also write ALL and EX. Nested
quantifications can be abbreviated: !x y z.P means !x. !y. !z.P .

Despite type inference, it is sometimes necessary to attach explicit type
constraints to a term. The syntax is t::τ as in x < (y::nat). Note
that :: binds weakly and should therefore be enclosed in parentheses: x
< y::nat is ill-typed because it is interpreted as (x < y)::nat. The main
reason for type constraints are overloaded functions like +, * and <. (See
§?? for a full discussion of overloading.)

! In general, HOL’s concrete syntax tries to follow the conventions of functional
programming and mathematics. Below we list the main rules that you should

be familiar with to avoid certain syntactic traps. A particular problem for novices
can be the priority of operators. If you are unsure, use more rather than fewer
parentheses. In those cases where Isabelle echoes your input, you can see which
parentheses are dropped—they were superfluous. If you are unsure how to interpret
Isabelle’s output because you don’t know where the (dropped) parentheses go, set
(and possibly reset) the flag show_brackets:

set show_brackets; . . .; reset show_brackets;

• Remember that f t u means (f t) u and not f(t u)!

• Isabelle allows infix functions like +. The prefix form of function ap-
plication binds more strongly than anything else and hence f x + y
means (f x) + y and not f(x+y).

• Remember that in HOL if-and-only-if is expressed using equality. But
equality has a high priority, as befitting a relation, while if-and-only-if
typically has the lowest priority. Thus, ~ ~ P = P means ~ ~(P = P)
and not (~ ~P) = P. When using = to mean logical equivalence, en-
close both operands in parentheses, as in (A & B) = (B & A).

• Constructs with an opening but without a closing delimiter bind very
weakly and should therefore be enclosed in parentheses if they appear
in subterms, as in f = (%x. x). This includes if, let, case, % and
quantifiers.
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• Never write %x.x or !x.x=x because x.x is always read as a single
qualified identifier that refers to an item x in theory x. Write %x. x
and !x. x=x instead.

1.4 Variables

Isabelle distinguishes free and bound variables just as is customary. Bound
variables are automatically renamed to avoid clashes with free variables. In
addition, Isabelle has a third kind of variable, called a schematic variable
or unknown, which starts with a ?. Logically, an unknown is a free variable.
But it may be instantiated by another term during the proof process. For
example, the mathematical theorem x = x is represented in Isabelle as
?x = ?x, which means that Isabelle can instantiate it arbitrarily. This is
in contrast to ordinary variables, which remain fixed. The programming
language Prolog calls unknowns logical variables.

Most of the time you can and should ignore unknowns and work with
ordinary variables. Just don’t be surprised that after you have finished the
proof of a theorem, Isabelle (i.e. qed at the end of a proof) will turn your free
variables into unknowns: it merely indicates that Isabelle will automatically
instantiate those unknowns suitably when the theorem is used in some other
proof.

! The existential quantifier ? needs to be followed by a space. Otherwise ?x is
interpreted as a schematic variable.

1.5 Getting started

Assuming you have installed Isabelle, you start it by typing isabelle HOL
in a shell window.2 This presents you with Isabelle’s most basic ASCII
interface. In addition you need to open an editor window to create theo-
ries (.thy files) and proof scripts (.ML files). While you are developing a
proof, we recommend to type each proof command into the ML-file first and
then enter it into Isabelle by copy-and-paste, thus ensuring that you have a
complete record of your proof.

2Simply executing isabelle without an argument starts the default logic, which usually
is already HOL. This is controlled by the ISABELLE_LOGIC setting, see The Isabelle System
Manual for more details.



Chapter 2

Functional Programming in
HOL

Although on the surface this chapter is mainly concerned with how to write
functional programs in HOL and how to verify them, most of the constructs
and proof procedures introduced are general purpose and recur in any spec-
ification or verification task.

The dedicated functional programmer should be warned: HOL offers
only what could be called total functional programming — all functions in
HOL must be total; lazy data structures are not directly available. On
the positive side, functions in HOL need not be computable: HOL is a
specification language that goes well beyond what can be expressed as a
program. However, for the time being we concentrate on the computable.

2.1 An introductory theory

Functional programming needs datatypes and functions. Both of them can
be defined in a theory with a syntax reminiscent of languages like ML or
Haskell. As an example consider the theory in Fig. 2.1.

HOL already has a predefined theory of lists called List — ToyList is
merely a small fragment of it chosen as an example. In contrast to what
is recommended in §1.2, ToyList is not based on Main but on Datatype, a
theory that contains everything required for datatype definitions but does
not have List as a parent, thus avoiding ambiguities caused by defining lists
twice.

The datatype list introduces two constructors Nil and Cons, the
empty list and the operator that adds an element to the front of a list.
For example, the term Cons True (Cons False Nil) is a value of type
bool list, namely the list with the elements True and False. Because
this notation becomes unwieldy very quickly, the datatype declaration is
annotated with an alternative syntax: instead of Nil and Cons x xs we can
write [] and x # xs. In fact, this alternative syntax is the standard syntax.
Thus the list Cons True (Cons False Nil) becomes True # False # [].
The annotation infixr means that # associates to the right, i.e. the term x
# y # z is read as x # (y # z) and not as (x # y) # z .

6
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ToyList = Datatype +

datatype ’a list = Nil ("[]")

| Cons ’a (’a list) (infixr "#" 65)

consts app :: ’a list => ’a list => ’a list (infixr "@" 65)

rev :: ’a list => ’a list

primrec

"[] @ ys = ys"

"(x # xs) @ ys = x # (xs @ ys)"

primrec

"rev [] = []"

"rev (x # xs) = (rev xs) @ (x # [])"

end

Figure 2.1: A theory of lists

! Syntax annotations are a powerful but completely optional feature. You could
drop them from theory ToyList and go back to the identifiers Nil and Cons.

However, lists are such a central datatype that their syntax is highly customized.
We recommend that novices should not use syntax annotations in their own theories.

Next, the functions app and rev are declared. In contrast to ML, Isabelle
insists on explicit declarations of all functions (keyword consts). (Apart
from the declaration-before-use restriction, the order of items in a theory
file is unconstrained.) Function app is annotated with concrete syntax too.
Instead of the prefix syntax app xs ys the infix xs @ ys becomes the preferred
form.

Both functions are defined recursively. The equations for app and rev
hardly need comments: app appends two lists and rev reverses a list. The
keyword primrec indicates that the recursion is of a particularly primitive
kind where each recursive call peels off a datatype constructor from one of
the arguments (see §2.4). Thus the recursion always terminates, i.e. the
function is total.

The termination requirement is absolutely essential in HOL, a logic of
total functions. If we were to drop it, inconsistencies could quickly arise:
the “definition” f (n) = f (n) + 1 immediately leads to 0 = 1 by subtracting
f (n) on both sides.

! As we have indicated, the desire for total functions is not a gratuitously imposed
restriction but an essential characteristic of HOL. It is only because of totality

that reasoning in HOL is comparatively easy. More generally, the philosophy in
HOL is not to allow arbitrary axioms (such as function definitions whose totality
has not been proved) because they quickly lead to inconsistencies. Instead, fixed
constructs for introducing types and functions are offered (such as datatype and
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primrec) which are guaranteed to preserve consistency.

A remark about syntax. The textual definition of a theory follows a fixed
syntax with keywords like datatype and end (see Fig. A.1 in Appendix A
for a full list). Embedded in this syntax are the types and formulae of HOL,
whose syntax is extensible, e.g. by new user-defined infix operators (see ??).
To distinguish the two levels, everything HOL-specific should be enclosed in
". . . ". The same holds for identifiers that happen to be keywords, as in

consts "end" :: ’a list => ’a

To lessen this burden, quotation marks around types can be dropped, pro-
vided their syntax does not go beyond what is described in §1.3. Types
containing further operators, e.g. * for Cartesian products, need quotation
marks.

When Isabelle prints a syntax error message, it refers to the HOL syntax
as the inner syntax.

2.2 An introductory proof

Having defined ToyList, we load it with the ML command

use_thy "ToyList";

and are ready to prove a few simple theorems. This will illustrate not just
the basic proof commands but also the typical proof process.

Main goal: rev(rev xs) = xs

Our goal is to show that reversing a list twice produces the original list.
Typing

Goal "rev(rev xs) = xs";

establishes a new goal to be proved in the context of the current theory,
which is the one we just loaded. Isabelle’s response is to print the current
proof state:

Level 0

rev (rev xs) = xs

1. rev (rev xs) = xs

Until we have finished a proof, the proof state always looks like this:

Level i
G
1. G1

...

n. Gn

where Level i indicates that we are i steps into the proof, G is the overall
goal that we are trying to prove, and the numbered lines contain the subgoals
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G1, . . . , Gn that we need to prove to establish G . At Level 0 there is only
one subgoal, which is identical with the overall goal. Normally G is constant
and only serves as a reminder. Hence we rarely show it in this tutorial.

Let us now get back to rev(rev xs) = xs. Properties of recursively
defined functions are best established by induction. In this case there is not
much choice except to induct on xs:

by(induct_tac "xs" 1);

This tells Isabelle to perform induction on variable xs in subgoal 1. The
new proof state contains two subgoals, namely the base case (Nil) and the
induction step (Cons):

1. rev (rev []) = []

2. !!a list. rev (rev list) = list ==> rev (rev (a # list)) = a # list

The induction step is an example of the general format of a subgoal:

i. !!x1 . . . xn. assumptions ==> conclusion

The prefix of bound variables !!x1 . . . xn can be ignored most of the time,
or simply treated as a list of variables local to this subgoal. Their deeper
significance is explained in §??. The assumptions are the local assumptions
for this subgoal and conclusion is the actual proposition to be proved. Typ-
ical proof steps that add new assumptions are induction or case distinction.
In our example the only assumption is the induction hypothesis rev (rev
list) = list, where list is a variable name chosen by Isabelle. If there
are multiple assumptions, they are enclosed in the bracket pair [| and |]
and separated by semicolons.

Let us try to solve both goals automatically:

by(Auto_tac);

This command tells Isabelle to apply a proof strategy called Auto_tac to all
subgoals. Essentially, Auto_tac tries to ‘simplify’ the subgoals. In our case,
subgoal 1 is solved completely (thanks to the equation rev [] = []) and
disappears; the simplified version of subgoal 2 becomes the new subgoal 1:

1. !!a list. rev(rev list) = list ==> rev(rev list @ a # []) = a # list

In order to simplify this subgoal further, a lemma suggests itself.

First lemma: rev(xs @ ys) = (rev ys) @ (rev xs)

We start the proof as usual:

Goal "rev(xs @ ys) = (rev ys) @ (rev xs)";

There are two variables that we could induct on: xs and ys. Because @ is
defined by recursion on the first argument, xs is the correct one:
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by(induct_tac "xs" 1);

This time not even the base case is solved automatically:

by(Auto_tac);

1. rev ys = rev ys @ []

2. ...

We need another lemma.

Second lemma: xs @ [] = xs

This time the canonical proof procedure

Goal "xs @ [] = xs";

by(induct_tac "xs" 1);

by(Auto_tac);

leads to the desired message No subgoals!:

Level 2

xs @ [] = xs

No subgoals!

Now we can give the lemma just proved a suitable name

qed "app_Nil2";

and tell Isabelle to use this lemma in all future proofs by simplification:

Addsimps [app_Nil2];

Note that in the theorem app_Nil2 the free variable xs has been replaced
by the unknown ?xs, just as explained in §1.4.

Going back to the proof of the first lemma

Goal "rev(xs @ ys) = (rev ys) @ (rev xs)";

by(induct_tac "xs" 1);

by(Auto_tac);

we find that this time Auto_tac solves the base case, but the induction step
merely simplifies to

1. !!a list.

rev (list @ ys) = rev ys @ rev list

==> (rev ys @ rev list) @ a # [] = rev ys @ rev list @ a # []

Now we need to remember that @ associates to the right, and that # and @
have the same priority (namely the 65 in the definition of ToyList). Thus
the conclusion really is

==> (rev ys @ rev list) @ (a # []) = rev ys @ (rev list @ (a # []))

and the missing lemma is associativity of @.
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Third lemma: (xs @ ys) @ zs = xs @ (ys @ zs)

This time the canonical proof procedure

Goal "(xs @ ys) @ zs = xs @ (ys @ zs)";

by(induct_tac "xs" 1);

by(Auto_tac);

succeeds without further ado. Again we name the lemma and add it to the
set of lemmas used during simplification:

qed "app_assoc";

Addsimps [app_assoc];

Now we can go back and prove the first lemma

Goal "rev(xs @ ys) = (rev ys) @ (rev xs)";

by(induct_tac "xs" 1);

by(Auto_tac);

add it to the simplification lemmas

qed "rev_app";

Addsimps [rev_app];

and then solve our main theorem:

Goal "rev(rev xs) = xs";

by(induct_tac "xs" 1);

by(Auto_tac);

Review

This is the end of our toy proof. It should have familiarized you with

• the standard theorem proving procedure: state a goal; proceed with
proof until a new lemma is required; prove that lemma; come back to
the original goal.

• a specific procedure that works well for functional programs: induction
followed by all-out simplification via Auto_tac.

• a basic repertoire of proof commands.

2.3 Some helpful commands

This section discusses a few basic commands for manipulating the proof
state and can be skipped by casual readers.

There are two kinds of commands used during a proof: the actual proof
commands and auxiliary commands for examining the proof state and con-
trolling the display. Proof commands are always of the form by(tactic );
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where tactic is a synonym for “theorem proving function”. Typical exam-
ples are induct_tac and Auto_tac — the suffix _tac is merely a mnemonic.
Further tactics are introduced throughout the tutorial.

The most useful auxiliary commands are:

Printing the current state Type pr(); to redisplay the current proof
state, for example when it has disappeared off the screen.

Limiting the number of subgoals Typing prlim k; tells Isabelle to print
only the first k subgoals from now on and redisplays the current proof
state. This is helpful when there are many subgoals.

Undoing Typing undo(); undoes the effect of the last tactic.

Context switch Every proof happens in the context of a current theory.
By default, this is the last theory loaded. If you want to prove a the-
orem in the context of a different theory T, you need to type context
T.thy; first. Of course you need to change the context again if you
want to go back to your original theory.

Displaying types We have already mentioned the flag show_types above.
It can also be useful for detecting typos in formulae early on. For ex-
ample, if show_types is set and the goal rev(rev xs) = xs is started,
Isabelle prints the additional output

Variables:

xs :: ’a list

which tells us that Isabelle has correctly inferred that xs is a variable
of list type. On the other hand, had we made a typo as in rev(re xs)
= xs, the response

Variables:

re :: ’a list => ’a list

xs :: ’a list

would have alerted us because of the unexpected variable re.

(Re)loading theories Initially you load theory T by typing use_thy "T";,
which loads all parent theories of T automatically, if they are not
loaded already. If you modify T.thy or T.ML, you can reload it by
typing use_thy "T"; again. This time, however, only T is reloaded.
If some of T’s parents have changed as well, type update_thy "T";
to reload T and all of its parents that have changed (or have changed
parents).

Further commands are found in the Reference Manual.
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2.4 Datatypes

Inductive datatypes are part of almost every non-trivial application of HOL.
First we take another look at a very important example, the datatype of lists,
before we turn to datatypes in general. The section closes with a case study.

2.4.1 Lists

Lists are one of the essential datatypes in computing. Readers of this tutorial
and users of HOL need to be familiar with their basic operations. Theory
ToyList is only a small fragment of HOL’s predefined theory List1. The lat-
ter contains many further operations. For example, the functions hd (‘head’)
and tl (‘tail’) return the first element and the remainder of a list. (How-
ever, pattern-matching is usually preferable to hd and tl.) Theory List
also contains more syntactic sugar: [x1,. . . ,xn] abbreviates x1#. . . #xn#[].
In the rest of the tutorial we always use HOL’s predefined lists.

2.4.2 The general format

The general HOL datatype definition is of the form

datatype (α1, . . . , αn) t = C1 τ11 . . . τ1k1 | . . . | Cm τm1 . . . τmkm

where αi are type variables (the parameters), Ci are distinct constructor
names and τij are types; it is customary to capitalize the first letter in
constructor names. There are a number of restrictions (such as the type
should not be empty) detailed elsewhere [5]. Isabelle notifies you if you
violate them.

Laws about datatypes, such as [] ~= x#xs and (x#xs = y#ys) = (x=y
& xs=ys), are used automatically during proofs by simplification. The same
is true for the equations in primitive recursive function definitions.

2.4.3 Primitive recursion

Functions on datatypes are usually defined by recursion. In fact, most of the
time they are defined by what is called primitive recursion. The keyword
primrec is followed by a list of equations

f x1 . . . (C y1 . . . yk ) . . . xn = r

such that C is a constructor of the datatype t and all recursive calls of f in r
are of the form f . . . yi . . . for some i . Thus Isabelle immediately sees that
f terminates because one (fixed!) argument becomes smaller with every
recursive call. There must be exactly one equation for each constructor.
Their order is immaterial. A more general method for defining total recursive
functions is explained in §3.5.

1http://isabelle.in.tum.de/library/HOL/List.html

http://isabelle.in.tum.de/library/HOL/List.html
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Exercise 2.4.1 Given the datatype of binary trees
datatype ’a tree = Tip | Node (’a tree) ’a (’a tree)

define a function mirror that mirrors the structure of a binary tree by
swapping subtrees (recursively). Prove mirror(mirror(t)) = t.

2.4.4 case-expressions

HOL also features case-expressions for analyzing elements of a datatype.
For example,

case xs of [] => 0 | y#ys => y

evaluates to 0 if xs is [] and to y if xs is y#ys. (Since the result in
both branches must be of the same type, it follows that y::nat and hence
xs::(nat)list.)

In general, if e is a term of the datatype t defined in §2.4.2 above, the
corresponding case-expression analyzing e is

case e of C1 x11 . . . x1k1 ⇒ e1
...
| Cm xm1 . . . xmkm ⇒ em

! All constructors must be present, their order is fixed, and nested patterns are
not supported. Violating these restrictions results in strange error messages.

Nested patterns can be simulated by nested case-expressions: instead of
case xs of [] => 0 | [x] => x | x#(y#zs) => y

write
case xs of [] => 0 | x#ys => (case ys of [] => x | y#zs => y)

Note that case-expressions should be enclosed in parentheses to indicate
their scope.

2.4.5 Structural induction

Almost all the basic laws about a datatype are applied automatically during
simplification. Only induction is invoked by hand via induct_tac, which
works for any datatype. In some cases, induction is overkill and a case
distinction over all constructors of the datatype suffices. This is performed
by exhaust_tac. A trivial example:

Goal "(case xs of [] => [] | y#ys => xs) = xs";

by(exhaust_tac "xs" 1);

1. xs = [] ==> (case xs of [] => [] | y # ys => xs) = xs

2. !!a list. xs = a # list ==> (case xs of [] => [] | y # ys => xs) = xs

by(Auto_tac);

Note that this particular case distinction could have been automated com-
pletely. See §3.1.1.
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! Induction is only allowed on a free variable that should not occur among the
assumptions of the subgoal. Exhaustion works for arbitrary terms.

2.4.6 Case study: boolean expressions

The aim of this case study is twofold: it shows how to model boolean ex-
pressions and some algorithms for manipulating them, and it demonstrates
the constructs introduced above.

How can we model boolean expressions?

We want to represent boolean expressions built up from variables and con-
stants by negation and conjunction. The following datatype serves exactly
that purpose:

datatype boolex = Const bool | Var nat

| Neg boolex | And boolex boolex

The two constants are represented by the terms Const True and Const False.
Variables are represented by terms of the form Var n, where n is a natural
number (type nat). For example, the formula P0 ∧ ¬P1 is represented by
the term And (Var 0) (Neg(Var 1)).

What is the value of boolean expressions?

The value of a boolean expressions depends on the value of its variables.
Hence the function value takes an additional parameter, an environment of
type nat => bool, which maps variables to their values:

consts value :: boolex => (nat => bool) => bool

primrec

"value (Const b) env = b"

"value (Var x) env = env x"

"value (Neg b) env = (~ value b env)"

"value (And b c) env = (value b env & value c env)"

If-expressions

An alternative and often more efficient (because in a certain sense canonical)
representation are so-called If-expressions built up from constants (CIF),
variables (VIF) and conditionals (IF):

datatype ifex = CIF bool | VIF nat | IF ifex ifex ifex

The evaluation if If-expressions proceeds as for boolex:
consts valif :: ifex => (nat => bool) => bool

primrec

"valif (CIF b) env = b"

"valif (VIF x) env = env x"

"valif (IF b t e) env = (if valif b env then valif t env

else valif e env)"
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Transformation into and of If-expressions

The type boolex is close to the customary representation of logical formulae,
whereas ifex is designed for efficiency. Thus we need to translate from
boolex into ifex:

consts bool2if :: boolex => ifex

primrec

"bool2if (Const b) = CIF b"

"bool2if (Var x) = VIF x"

"bool2if (Neg b) = IF (bool2if b) (CIF False) (CIF True)"

"bool2if (And b c) = IF (bool2if b) (bool2if c) (CIF False)"

At last, we have something we can verify: that bool2if preserves the value
of its argument.

Goal "valif (bool2if b) env = value b env";

The proof is canonical:

by(induct_tac "b" 1);

by(Auto_tac);

In fact, all proofs in this case study look exactly like this. Hence we do not
show them below.

More interesting is the transformation of If-expressions into a normal
form where the first argument of IF cannot be another IF but must be a
constant or variable. Such a normal form can be computed by repeatedly
replacing a subterm of the form IF (IF b x y) z u by IF b (IF x z u)
(IF y z u), which has the same value. The following primitive recursive
functions perform this task:

consts normif :: ifex => ifex => ifex => ifex

primrec

"normif (CIF b) t e = IF (CIF b) t e"

"normif (VIF x) t e = IF (VIF x) t e"

"normif (IF b t e) u f = normif b (normif t u f) (normif e u f)"

consts norm :: ifex => ifex

primrec

"norm (CIF b) = CIF b"

"norm (VIF x) = VIF x"

"norm (IF b t e) = normif b (norm t) (norm e)"

Their interplay is a bit tricky, and we leave it to the reader to develop an
intuitive understanding. Fortunately, Isabelle can help us to verify that the
transformation preserves the value of the expression:

Goal "valif (norm b) env = valif b env";

The proof is canonical, provided we first show the following lemma (which
also helps to understand what normif does) and make it available for sim-
plification via Addsimps:
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Goal "!t e. valif (normif b t e) env = valif (IF b t e) env";

But how can we be sure that norm really produces a normal form in the
above sense? We have to prove

Goal "normal(norm b)";

where normal expresses that an If-expression is in normal form:

consts normal :: ifex => bool

primrec

"normal(CIF b) = True"

"normal(VIF x) = True"

"normal(IF b t e) = (normal t & normal e &

(case b of CIF b => True | VIF x => True | IF x y z => False))"

Of course, this requires a lemma about normality of normif

Goal "!t e. normal(normif b t e) = (normal t & normal e)";

that has to be made available for simplification via Addsimps.
How does one come up with the required lemmas? Try to prove the main

theorems without them and study carefully what Auto_tac leaves unproved.
This has to provide the clue. The necessity of universal quantification (!t
e) in the two lemmas is explained in §3.2

Exercise 2.4.2 We strengthen the definition of a normal If-expression as
follows: the first argument of all IFs must be a variable. Adapt the above
development to this changed requirement. (Hint: you may need to formulate
some of the goals as implications (-->) rather than equalities (=).)

2.5 Some basic types

2.5.1 Natural numbers

The type nat of natural numbers is predefined and behaves like

datatype nat = 0 | Suc nat

In particular, there are case-expressions, for example

case n of 0 => 0 | Suc m => m

primitive recursion, for example

consts sum :: nat => nat

primrec

"sum 0 = 0"

"sum (Suc n) = Suc n + sum n"

and induction, for example
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Goal "sum n + sum n = n*(Suc n)";

by(induct_tac "n" 1);

by(Auto_tac);

sum n + sum n = n * Suc n

No subgoals!

The usual arithmetic operations +, -, *, div, mod, min and max are
predefined, as are the relations <= and <. There is even a least number
operation LEAST. For example, (LEAST n. 1 < n) = 2 (HOL does not prove
this completely automatically).

! The operations +, -, *, min, max, <= and < are overloaded, i.e. they are available
not just for natural numbers but at other types as well (see §??). For example,

given the goal x+y = y+x, there is nothing to indicate that you are talking about
natural numbers. Hence Isabelle can only infer that x and y are of some arbitrary
type where + is declared. As a consequence, you will be unable to prove the goal
(although it may take you some time to realize what has happened if show_types is
not set). In this particular example, you need to include an explicit type constraint,
for example x+y = y+(x::nat). If there is enough contextual information this may
not be necessary: x+0 = x automatically implies x::nat.

Simple arithmetic goals are proved automatically by both Auto_tac and
the simplification tactics introduced in §3.1. For example, the goal

Goal "[| ~ m < n; m < n+1 |] ==> m = n";

is proved automatically. The main restriction is that only addition is taken
into account; other arithmetic operations and quantified formulae are ig-
nored.

For more complex goals, there is the special tactic arith_tac. It proves
arithmetic goals involving the usual logical connectives (~, &, |, -->), the
relations <= and <, and the operations +, -, min and max. For example, it
can prove

Goal "min i (max j (k*k)) = max (min (k*k) i) (min i (j::nat))";

because k*k can be treated as atomic. In contrast, n∗n = n =⇒ n = 0∨n =
1 is not even proved by arith_tac because the proof relies essentially on
properties of multiplication.

! The running time of arith_tac is exponential in the number of occurrences of
-, min and max because they are first eliminated by case distinctions.
arith_tac is incomplete even for the restricted class of formulae described

above (known as “linear arithmetic”). If divisibility plays a role, it may fail to
prove a valid formula, for example m + m 6= n + n + 1. Fortunately, such examples
are rare in practice.
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2.5.2 Products

HOL also has pairs: (a1,a2) is of type τ1 * τ2 provided each ai is of type
τi . The components of a pair are extracted by fst and snd: fst(x,y) =
x and snd(x,y) = y . Tuples are simulated by pairs nested to the right:
(a1,a2,a3) and τ1 * τ2 * τ3 stand for (a1,(a2,a3)) and τ1 * (τ2 * τ3).
Therefore fst(snd(a1,a2,a3)) = a2.

It is possible to use (nested) tuples as patterns in abstractions, for ex-
ample %(x,y,z).x+y+z and %((x,y),z).x+y+z.

In addition to explicit λ-abstractions, tuple patterns can be used in most
variable binding constructs. Typical examples are

let (x,y) = f z in (y,x)

case xs of [] => 0 | (x,y)#zs => x+y

Further important examples are quantifiers and sets.

! Abstraction over pairs and tuples is merely a convenient shorthand for a more
complex internal representation. Thus the internal and external form of a term

may differ, which can affect proofs. If you want to avoid this complication, use
fst and snd, i.e. write %p. fst p + snd p instead of %(x,y). x + y. See §?? for
theorem proving with tuple patterns.

2.6 Definitions

A definition is simply an abbreviation, i.e. a new name for an existing con-
struction. In particular, definitions cannot be recursive. Isabelle offers def-
initions on the level of types and terms. Those on the type level are called
type synonyms, those on the term level are called (constant) definitions.

2.6.1 Type synonyms

Type synonyms are similar to those found in ML. Their syntax is fairly self
explanatory:

types number = nat

gate = bool => bool => bool

(’a,’b)alist = "(’a * ’b)list"

The synonym alist shows that in general the type on the right-hand side
needs to be enclosed in double quotation marks (see the end of §2.1).

Internally all synonyms are fully expanded. As a consequence Isabelle’s
output never contains synonyms. Their main purpose is to improve the
readability of theory definitions. Synonyms can be used just like any other
type:

consts nand, exor :: gate
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2.6.2 Constant definitions

The above constants nand and exor are non-recursive and can therefore be
defined directly by

defs nand_def "nand A B == ~(A & B)"

exor_def "exor A B == A & ~B | ~A & B"

where defs is a keyword and nand_def and exor_def are arbitrary user-
supplied names. The symbol == is a special form of equality that should
only be used in constant definitions. Declarations and definitions can also
be merged

constdefs nand :: gate

"nand A B == ~(A & B)"

exor :: gate

"exor A B == A & ~B | ~A & B"

in which case the default name of each definition is f _def, where f is the
name of the defined constant.

Note that pattern-matching is not allowed, i.e. each definition must be
of the form f x1 . . . xn == t .

Section §3.1 explains how definitions are used in proofs.

! A common mistake when writing definitions is to introduce extra free variables
on the right-hand side as in the following fictitious definition:

defs prime_def "prime(p) == (m divides p) --> (m=1 | m=p)"

Isabelle rejects this ‘definition’ because of the extra m on the right-hand side,
which would introduce an inconsistency. What you should have written is

defs prime_def "prime(p) == !m. (m divides p) --> (m=1 | m=p)"



Chapter 3

More Functional
Programming

The purpose of this chapter is to deepen the reader’s understanding of the
concepts encountered so far and to introduce an advanced method for defin-
ing recursive functions. The first two sections give a structured presentation
of theorem proving by simplification (§3.1) and discuss important heuris-
tics for induction (§3.2). They can be skipped by readers less interested in
proofs. They are followed by a case study, a compiler for expressions (§3.3).
Finally we present a very general method for defining recursive functions
that goes well beyond what primrec allows (§3.5).

3.1 Simplification

So far we have proved our theorems by Auto_tac, which ‘simplifies’ all
subgoals. In fact, Auto_tac can do much more than that, except that it did
not need to so far. However, when you go beyond toy examples, you need
to understand the ingredients of Auto_tac. This section covers the tactic
that Auto_tac always applies first, namely simplification.

Simplification is one of the central theorem proving tools in Isabelle and
many other systems. The tool itself is called the simplifier. The purpose
of this section is twofold: to introduce the many features of the simplifier
(§3.1.1) and to explain a little bit how the simplifier works (§3.1.2). Anybody
intending to use HOL should read §3.1.1, and the serious student should read
§3.1.2 as well in order to understand what happened in case things do not
simplify as expected.

3.1.1 Using the simplifier

In its most basic form, simplification means repeated application of equa-
tions from left to right. For example, taking the rules for @ and applying
them to the term [0,1] @ [] results in a sequence of simplification steps:

(0#1#[]) @ [] ; 0#((1#[]) @ []) ; 0#(1#([] @ [])) ; 0#1#[]

This is also known as term rewriting and the equations are referred to as
rewrite rules. This is more honest than ‘simplification’ because the terms

21
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do not necessarily become simpler in the process.

Simpsets

To facilitate simplification, each theory has an associated set of simplifica-
tion rules, known as a simpset. Within a theory, proofs by simplification
refer to the associated simpset by default. The simpset of a theory is built
up as follows: starting with the union of the simpsets of the parent the-
ories, each occurrence of a datatype or primrec construct augments the
simpset. Explicit definitions are not added automatically. Users can add
new theorems via Addsimps and delete them again later by Delsimps.

You may augment a simpset not just by equations but by pretty much
any theorem. The simplifier will try to make sense of it. For example,
a theorem ~P is automatically turned into P = False. The details are
explained in §3.1.2.

As a rule of thumb, rewrite rules that really simplify a term (like xs @
[] = xs and rev(rev xs) = xs) should be added to the current simpset
right after they have been proved. Those of a more specific nature (e.g.
distributivity laws, which alter the structure of terms considerably) should
only be added for specific proofs and deleted again afterwards. Conversely,
it may also happen that a generally useful rule needs to be removed for a
certain proof and is added again afterwards. The need of frequent temporary
additions or deletions may indicate a badly designed simpset.

! Simplification may not terminate, for example if both f (x ) = g(x ) and g(x ) =
f (x ) are in the simpset. It is the user’s responsibility not to include rules that

can lead to nontermination, either on their own or in combination with other rules.

Simplification tactics

There are four main simplification tactics:

Simp_tac i simplifies the conclusion of subgoal i using the theory’s simpset.
It may solve the subgoal completely if it has become trivial. For ex-
ample:

1. [] @ [] = []

by(Simp_tac 1);

No subgoals!

Asm_simp_tac is like Simp_tac, but extracts additional rewrite rules from
the assumptions of the subgoal. For example, it solves

1. xs = [] ==> xs @ ys = ys @ xs

which Simp_tac does not do.
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Full_simp_tac is like Simp_tac, but also simplifies the assumptions (with-
out using the assumptions to simplify each other or the actual goal).

Asm_full_simp_tac is like Asm_simp_tac, but also simplifies the assump-
tions. In particular, assumptions can simplify each other. For example:

1. [| xs @ zs = ys @ xs; [] @ xs = [] @ [] |] ==> ys = zs

by(Asm_full_simp_tac 1);

No subgoals!

The second assumption simplifies to xs = [], which in turn simplifies
the first assumption to zs = ys, thus reducing the conclusion to ys =
ys and hence to True. (See also the paragraph on tracing below.)

Asm_full_simp_tac is the most powerful of this quartet of tactics. In fact,
Auto_tac starts by applying Asm_full_simp_tac to all subgoals. The only
reason for the existence of the other three tactics is that sometimes one wants
to limit the amount of simplification, for example to avoid nontermination:

1. ! x. f x = g (f (g x)) ==> f [] = f [] @ []

is solved by Simp_tac, but Asm_simp_tac and Asm_full_simp_tac loop
because the rewrite rule f x = g(f(g x)) extracted from the assumption
does not terminate. Isabelle notices certain simple forms of nontermination,
but not this one.

Modifying simpsets locally

If a certain theorem is merely needed in one proof by simplification, the
pattern

Addsimps [rare theorem];

by(Simp_tac 1);

Delsimps [rare theorem];

is awkward. Therefore there are lower-case versions of the simplification tac-
tics (simp_tac, asm_simp_tac, full_simp_tac, asm_full_simp_tac) and
of the simpset modifiers (addsimps, delsimps) that do not access or mod-
ify the implicit simpset but explicitly take a simpset as an argument. For
example, the above three lines become

by(simp_tac (simpset() addsimps [rare theorem]) 1);

where the result of the function call simpset() is the simpset of the current
theory and addsimps is an infix function. The implicit simpset is read once
but not modified. This is far preferable to pairs of Addsimps and Delsimps.
Local modifications can be stacked as in

by(simp_tac (simpset() addsimps [rare theorem] delsimps [some thm]) 1);
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Rewriting with definitions

Constant definitions (§2.6.2) are not automatically included in the simpset of
a theory. Hence such definitions are not expanded automatically either, just
as it should be: definitions are introduced for the purpose of abbreviating
complex concepts. Of course we need to expand the definitions initially to
derive enough lemmas that characterize the concept sufficiently for us to
forget the original definition completely. For example, given the theory

Exor = Main +

constdefs

exor :: bool => bool => bool

"exor A B == (A & ~B) | (~A & B)"

end

we may want to prove exor A (~A). Instead of Goal we use

Goalw [exor_def] "exor A (~A)";

which tells Isabelle to expand the definition of exor—the first argument of
Goalw can be a list of definitions—in the initial goal:

exor A (~ A)

1. A & ~ ~ A | ~ A & ~ A

In this simple example, the goal is proved by Simp_tac. Of course the
resulting theorem is insufficient to characterize exor completely.

In case we want to expand a definition in the middle of a proof, we can
simply add the definition locally to the simpset:

by(simp_tac (simpset() addsimps [exor_def]) 1);

You should normally not add the definition permanently to the simpset using
Addsimps because this defeats the whole purpose of an abbreviation.

! If you have defined f x y == t then you can only expand occurrences of f with
at least two arguments. Thus it is safer to define f == %x y. t .

Simplifying let-expressions

Proving a goal containing let-expressions invariably requires the let-constructs
to be expanded at some point. Since let-in is just syntactic sugar for a de-
fined constant (called Let), expanding let-constructs means rewriting with
Let_def:

1. (let xs = [] in xs @ xs) = ys

by(simp_tac (simpset() addsimps [Let_def]) 1);

1. [] = ys

If, in a particular context, there is no danger of a combinatorial explosion
of nested lets one could even add Let_def permanently via Addsimps.
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Conditional equations

So far all examples of rewrite rules were equations. The simplifier also
accepts conditional equations, for example

xs ~= [] ==> hd xs # tl xs = xs (∗)

(which is proved by exhaust_tac on xs followed by Asm_full_simp_tac
twice). Assuming that this theorem together with (rev xs = []) = (xs =
[]) are part of the simpset, the subgoal

1. xs ~= [] ==> hd(rev xs) # tl(rev xs) = rev xs

is proved by simplification: the conditional equation (∗) above can sim-
plify hd(rev xs) # tl(rev xs) to rev xs because the corresponding pre-
condition rev xs ~= [] simplifies to xs ~= [], which is exactly the local
assumption of the subgoal.

Automatic case splits

Goals containing if-expressions are usually proved by case distinction on
the condition of the if. For example the goal

1. ! xs. if xs = [] then rev xs = [] else rev xs ~= []

can be split into

1. ! xs. (xs = [] --> rev xs = []) & (xs ~= [] --> rev xs ~= [])

by typing

by(split_tac [split_if] 1);

Because this is almost always the right proof strategy, the simplifier performs
case-splitting on ifs automatically. Try Simp_tac on the initial goal above.

This splitting idea generalizes from if to case:

1. (case xs of [] => zs | y#ys => y#(ys@zs)) = xs@zs

becomes

1. (xs = [] --> zs = xs @ zs) &

(! a list. xs = a # list --> a # list @ zs = xs @ zs)

by typing

by(split_tac [list.split] 1);

In contrast to if-expressions, the simplifier does not split case-expressions
by default because this can lead to nontermination in case of recursive data-
types. Nevertheless the simplifier can be instructed to perform case-splits
by adding the appropriate rule to the simpset:
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by(simp_tac (simpset() addsplits [split_list_case]) 1);

solves the initial goal outright, which Simp_tac alone will not do.
In general, every datatype t comes with a rule t.split that can be added

to the simpset either locally via addsplits (see above), or permanently via

Addsplits [t.split];

Split-rules can be removed globally via Delsplits and locally via delsplits
as, for example, in

by(simp_tac (simpset() addsimps [. . .] delsplits [split_if]) 1);

Arithmetic

The simplifier routinely solves a small class of linear arithmetic formulae
(over types nat and int): it only takes into account assumptions and con-
clusions that are (possibly negated) (in)equalities (=, <=, <) and it only
knows about addition. Thus

Goal "[| ~ m < n; m < n+1 |] ==> m = n";

is proved by simplification, whereas the only slightly more complex

Goal "~ m < n & m < n+1 ==> m = n";

is not proved by simplification and requires arith_tac.

Permutative rewrite rules

A rewrite rule is permutative if the left-hand side and right-hand side are
the same up to renaming of variables. The most common permutative rule is
commutativity: x +y = y +x . Another example is (x −y)− z = (x − z )−y .
Such rules are problematic because once they apply, they can be used forever.
The simplifier is aware of this danger and treats permutative rules separately.
For details see [6].

Tracing

Using the simplifier effectively may take a bit of experimentation. Set the
trace_simp flag to get a better idea of what is going on:

1. rev [x] = []

set trace_simp;

by(Simp_tac 1);

Applying instance of rewrite rule:

rev (?x # ?xs) == rev ?xs @ [?x]

Rewriting:

rev [x] == rev [] @ [x]
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Applying instance of rewrite rule:

rev [] == []

Rewriting:

rev [] == []

Applying instance of rewrite rule:

[] @ ?y == ?y

Rewriting:

[] @ [x] == [x]

Applying instance of rewrite rule:

?x # ?t = ?t == False

Rewriting:

[x] = [] == False

Level 1

rev [x] = []

1. False

In more complicated cases, the trace can be enormous, especially since in-
vocations of the simplifier are often nested (e.g. when solving conditions of
rewrite rules).

3.1.2 How it works

Higher-order patterns

Local assumptions

The preprocessor

3.2 Induction heuristics

The purpose of this section is to illustrate some simple heuristics for induc-
tive proofs. The first one we have already mentioned in our initial example:

1. Theorems about recursive functions are proved by induction.

In case the function has more than one argument

2. Do induction on argument number i if the function is defined
by recursion in argument number i.

When we look at the proof of

(xs @ ys) @ zs = xs @ (ys @ zs)

in §2.2 we find (a) @ is recursive in the first argument, (b) xs occurs only as
the first argument of @, and (c) both ys and zs occur at least once as the
second argument of @. Hence it is natural to perform induction on xs.

The key heuristic, and the main point of this section, is to generalize the
goal before induction. The reason is simple: if the goal is too specific, the
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induction hypothesis is too weak to allow the induction step to go through.
Let us now illustrate the idea with an example.

We define a tail-recursive version of list-reversal, i.e. one that can be
compiled into a loop:

Itrev = Main +

consts itrev :: ’a list => ’a list => ’a list

primrec

"itrev [] ys = ys"

"itrev (x#xs) ys = itrev xs (x#ys)"

end

The behaviour of itrev is simple: it reverses its first argument by stacking
its elements onto the second argument, and returning that second argument
when the first one becomes empty. We need to show that itrev does indeed
reverse its first argument provided the second one is empty:

Goal "itrev xs [] = rev xs";

There is no choice as to the induction variable, and we immediately simplify:
by(induct_tac "xs" 1);

by(Auto_tac);

1. !!a list. itrev list [] = rev list ==> itrev list [a] = rev list @ [a]

Just as predicted above, the overall goal, and hence the induction hypoth-
esis, is too weak to solve the induction step because of the fixed []. The
corresponding heuristic:

3. Generalize goals for induction by replacing constants by vari-
ables.

Of course one cannot do this näıvely: itrev xs ys = rev xs is just not
true — the correct generalization is

Goal "itrev xs ys = rev xs @ ys";

If ys is replaced by [], the right-hand side simplifies to rev xs, just as
required.

In this particular instance it is easy to guess the right generalization, but
in more complex situations a good deal of creativity is needed. This is the
main source of complications in inductive proofs.

Although we now have two variables, only xs is suitable for induction,
and we repeat our above proof attempt. Unfortunately, we are still not
there:

1. !!a list.

itrev list ys = rev list @ ys

==> itrev list (a # ys) = rev list @ a # ys

The induction hypothesis is still too weak, but this time it takes no intuition
to generalize: the problem is that ys is fixed throughout the subgoal, but
the induction hypothesis needs to be applied with a # ys instead of ys.
Hence we prove the theorem for all ys instead of a fixed one:
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Goal "!ys. itrev xs ys = rev xs @ ys";

This time induction on xs followed by simplification succeeds. This leads to
another heuristic for generalization:

4. Generalize goals for induction by universally quantifying all
free variables (except the induction variable itself!).

This prevents trivial failures like the above and does not change the provabil-
ity of the goal. Because it is not always required, and may even complicate
matters in some cases, this heuristic is often not applied blindly.

A final point worth mentioning is the orientation of the equation we
just proved: the more complex notion (itrev) is on the left-hand side, the
simpler rev on the right-hand side. This constitutes another, albeit weak
heuristic that is not restricted to induction:

5. The right-hand side of an equation should (in some sense) be
simpler than the left-hand side.

The heuristic is tricky to apply because it is not obvious that rev xs @ ys
is simpler than itrev xs ys. But see what happens if you try to prove the
symmetric equation!

3.3 Case study: compiling expressions

The task is to develop a compiler from a generic type of expressions (built up
from variables, constants and binary operations) to a stack machine. This
generic type of expressions is a generalization of the boolean expressions
in §2.4.6. This time we do not commit ourselves to a particular type of
variables or values but make them type parameters. Neither is there a fixed
set of binary operations: instead the expression contains the appropriate
function itself.

types ’v binop = ’v => ’v => ’v

datatype (’a,’v) expr = Cex ’v

| Vex ’a

| Bex (’v binop) ((’a,’v) expr) ((’a,’v) expr)

The three constructors represent constants, variables and the combination
of two subexpressions with a binary operation.

The value of an expression w.r.t. an environment that maps variables to
values is easily defined:

consts value :: (’a => ’v) => (’a,’v)expr => ’v

primrec

"value env (Cex v) = v"

"value env (Vex a) = env a"

"value env (Bex f e1 e2) = f (value env e1) (value env e2)"

The stack machine has three instructions: load a constant value onto
the stack, load the contents of a certain address onto the stack, and apply a
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binary operation to the two topmost elements of the stack, replacing them
by the result. As for expr, addresses and values are type parameters:

datatype (’a,’v) instr = Const ’v

| Load ’a

| Apply (’v binop)

The execution of the stack machine is modelled by a function exec that
takes a store (modelled as a function from addresses to values, just like the
environment for evaluating expressions), a stack (modelled as a list) of values
and a list of instructions and returns the stack at the end of the execution
— the store remains unchanged:

consts exec :: (’a => ’v) => ’v list => ((’a,’v) instr) list => ’v list

primrec

"exec s vs [] = vs"

"exec s vs (i#is) = (case i of

Const v => exec s (v#vs) is

| Load a => exec s ((s a)#vs) is

| Apply f => exec s ( (f (hd vs) (hd(tl vs)))#(tl(tl vs)) ) is)"

Recall that hd and tl return the first element and the remainder of a list.
Because all functions are total, hd is defined even for the empty list,

although we do not know what the result is. Thus our model of the machine
always terminates properly, although the above definition does not tell us
much about the result in situations where Apply was executed with fewer
than two elements on the stack.

The compiler is a function from expressions to a list of instructions. Its
definition is pretty much obvious:

consts comp :: (’a,’v) expr => ((’a,’v) instr) list

primrec

"comp (Cex v) = [Const v]"

"comp (Vex a) = [Load a]"

"comp (Bex f e1 e2) = (comp e2) @ (comp e1) @ [Apply f]"

Now we have to prove the correctness of the compiler, i.e. that the exe-
cution of a compiled expression results in the value of the expression:

exec s [] (comp e) = [value s e]

This is generalized to
Goal "!vs. exec s vs (comp e) = (value s e) # vs";

and proved by induction on e followed by simplification, once we have the
following lemma about executing the concatenation of two instruction se-
quences:

Goal "!vs. exec s vs (xs@ys) = exec s (exec s vs xs) ys";

This requires induction on xs and ordinary simplification for the base cases.
In the induction step, simplification leaves us with a formula that contains
two case-expressions over instructions. Thus we add automatic case split-
ting as well, which finishes the proof:
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by(asm_simp_tac (simpset() addsplits [instr.split]) 1);

We could now go back and prove exec s [] (comp e) = [value s e]
merely by simplification with the generalized version we just proved. How-
ever, this is unnecessary because the generalized version fully subsumes its
instance.

3.4 Advanced datatypes

This section presents advanced forms of datatypes and (in the near future!)
records.

3.4.1 Mutual recursion

Sometimes it is necessary to define two datatypes that depend on each other.
This is called mutual recursion. As an example consider a language of
arithmetic and boolean expressions where

• arithmetic expressions contain boolean expressions because there are
conditional arithmetic expressions like “if m < n then n − m else
m − n”, and

• boolean expressions contain arithmetic expressions because of compar-
isons like “m < n”.

In Isabelle this becomes

datatype

’a aexp = IF (’a bexp) (’a aexp) (’a aexp)

| Sum (’a aexp) (’a aexp)

| Diff (’a aexp) (’a aexp)

| Var ’a

| Num nat

and ’a bexp = Less (’a aexp) (’a aexp)

| And (’a bexp) (’a bexp)

| Neg (’a bexp)

Type aexp is similar to expr in §3.3, except that we have fixed the values
to be of type nat and that we have fixed the two binary operations Sum and
Diff. Boolean expressions can be arithmetic comparisons, conjunctions and
negations. The semantics is fixed via two evaluation functions

consts evala :: (’a => nat) => ’a aexp => nat

evalb :: (’a => nat) => ’a bexp => bool

that take an environment (a mapping from variables ’a to values nat) and
an expression and return its arithmetic/boolean value. Since the datatypes
are mutually recursive, so are functions that operate on them. Hence they
need to be defined in a single primrec section:
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primrec

"evala env (IF b a1 a2) =

(if evalb env b then evala env a1 else evala env a2)"

"evala env (Sum a1 a2) = evala env a1 + evala env a2"

"evala env (Diff a1 a2) = evala env a1 - evala env a2"

"evala env (Var v) = env v"

"evala env (Num n) = n"

"evalb env (Less a1 a2) = (evala env a1 < evala env a2)"

"evalb env (And b1 b2) = (evalb env b1 & evalb env b2)"

"evalb env (Neg b) = (~ evalb env b)"

In the same fashion we also define two functions that perform substitu-
tion:

consts substa :: (’a => ’b aexp) => ’a aexp => ’b aexp

substb :: (’a => ’b aexp) => ’a bexp => ’b bexp

The first argument is a function mapping variables to expressions, the sub-
stitution. It is applied to all variables in the second argument. As a result,
the type of variables in the expression may change from ’a to ’b. Note that
there are only arithmetic and no boolean variables.

primrec

"substa s (IF b a1 a2) =

IF (substb s b) (substa s a1) (substa s a2)"

"substa s (Sum a1 a2) = Sum (substa s a1) (substa s a2)"

"substa s (Diff a1 a2) = Diff (substa s a1) (substa s a2)"

"substa s (Var v) = s v"

"substa s (Num n) = Num n"

"substb s (Less a1 a2) = Less (substa s a1) (substa s a2)"

"substb s (And b1 b2) = And (substb s b1) (substb s b2)"

"substb s (Neg b) = Neg (substb s b)"

Now we can prove a fundamental theorem about the interaction between
evaluation and substitution: applying a substitution s to an expression a
and evaluating the result in an environment env yields the same result as
evaluation a in the environment that maps every variable x to the value of
s(x ) under env . If you try to prove this separately for arithmetic or boolean
expressions (by induction), you find that you always need the other theorem
in the induction step. Therefore you need to state and prove both theorems
simultaneously:

Goal
"evala env (substa s a) = evala (%x. evala env (s x)) a & \

\ evalb env (substb s b) = evalb (%x. evala env (s x)) b";
by(induct_tac "a b" 1);

The resulting 8 goals (one for each constructor) are proved in one fell swoop
by Auto_tac;.
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In general, given n mutually recursive datatypes τ1, . . . , τn , Isabelle
expects an inductive proof to start with a goal of the form

P1(x1) & . . . & Pn(xn)

where each variable xi is of type τi . Induction is started by

by(induct_tac "x1 . . . xn" k);

Exercise 3.4.1 Define a function norma of type ’a aexp => ’a aexp that
replaces IFs with complex boolean conditions by nested IFs where each
condition is a Less — And and Neg should be eliminated completely. Prove
that norma preserves the value of an expression and that the result of norma
is really normal, i.e. no more Ands and Negs occur in it. (Hint: proceed as
in §2.4.6).

3.4.2 Nested recursion

So far, all datatypes had the property that on the right-hand side of their
definition they occurred only at the top-level, i.e. directly below a construc-
tor. This is not the case any longer for the following model of terms where
function symbols can be applied to a list of arguments:

datatype (’a,’b)term = Var ’a | App ’b (((’a,’b)term)list)

Parameter ’a is the type of variables and ’b the type of function symbols.
A mathematical term like f (x , g(y)) becomes App f [Var x, App g [Var
y]], where f, g, x, y are suitable values, e.g. numbers or strings.

What complicates the definition of term is the nested occurrence of term
inside list on the right-hand side. In principle, nested recursion can be elim-
inated in favour of mutual recursion by unfolding the offending datatypes,
here list. The result for term would be something like

datatype (’a,’b)term = Var ’a | App ’b ((’a,’b)term_list)

and (’a,’b)term_list = Nil | Cons ((’a,’b)term) ((’a,’b)term_list)

Although we do not recommend this unfolding to the user, it shows how to
simulate nested recursion by mutual recursion. Now we return to the initial
definition of term using nested recursion.

Let us define a substitution function on terms. Because terms involve
term lists, we need to define two substitution functions simultaneously:
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consts

subst :: (’a => (’a,’b)term) => (’a,’b)term => (’a,’b)term

substs :: (’a => (’a,’b)term) => (’a,’b)term list => (’a,’b)term list

primrec

"subst s (Var x) = s x"

"subst s (App f ts) = App f (substs s ts)"

"substs s [] = []"

"substs s (t # ts) = subst s t # substs s ts"

Similarly, when proving a statement about terms inductively, we need to
prove a related statement about term lists simultaneously. For example,
the fact that the identity substitution does not change a term needs to be
strengthened and proved as follows:

Goal "subst Var t = (t ::(’a,’b)term) & \
\ substs Var ts = (ts::(’a,’b)term list)";
by(induct_tac "t ts" 1);
by(Auto_tac);

Note that Var is the identity substitution because by definition it leaves
variables unchanged: subst Var (Var x) = Var x . Note also that the
type annotations are necessary because otherwise there is nothing in the goal
to enforce that both halves of the goal talk about the same type parameters
(’a,’b). As a result, induction would fail because the two halves of the
goal would be unrelated.

Exercise 3.4.2 The fact that substitution distributes over composition can
be expressed roughly as follows:

subst (f o g) t = subst f (subst g t)

Correct this statement (you will find that it does not type-check), strengthen
it and prove it. (Note: o is function composition; its definition is found in
the theorem o_def).

Returning to the definition of subst, we have to admit that it does not
really need the auxiliary substs function. The App-case can directly be
expressed as

"subst s (App f ts) = App f (map (subst s) ts)"

Although Isabelle insists on the more verbose version, we can easily prove
that the map-equation holds: simply by induction on ts followed by Auto_tac.

Exercise 3.4.3 Define a function rev_term of type term -> term that re-
cursively reverses the order of arguments of all function symbols in a term.
Prove that rev_term(rev_term t) = t.
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Of course, you may also combine mutual and nested recursion as in the
following example

datatype expr = Var string | Lam string expr | App expr expr

| Data data

and data = Bool bool | Num nat

| Closure string expr "(string * data)list"

taken from an operational semantics of applied lambda terms. Note that
double quotes are required around the type involving *, as explained on
page 8.

3.4.3 The limits of nested recursion

How far can we push nested recursion? By the unfolding argument above, we
can reduce nested to mutual recursion provided the nested recursion only
involves previously defined datatypes. The data example above involves
products, which is fine because products are also datatypes. However, func-
tions are most emphatically not allowed:

datatype t = C (t => bool)

is a real can of worms: in HOL it must be ruled out because it requires a type
t such that t and its power set t => bool have the same cardinality—an
impossibility. In theory, we could allow limited forms of recursion involving
function spaces. For example

datatype t = C (nat => t) | D

is unproblematic. However, Isabelle does not support recursion involving =>
at all at the moment.

For a theoretical analysis of what kinds of datatypes are feasible in HOL
see, for example, [2]. There are alternatives to pure HOL: LCF [7] is a logic
where types like

datatype t = C (t -> t)

do indeed make sense (note the intentionally different arrow ->!). There is
even a version of LCF on top of HOL, called HOLCF [4].

3.4.4 Case study: Tries

Tries are a classic search tree data structure [3] for fast indexing with strings.
Figure 3.1 gives a graphical example of a trie containing the words “all”,
“an”, “ape”, “can”, “car” and “cat”. When searching a string in a trie, the
letters of the string are examined sequentially. Each letter determines which
subtrie to search next. In this case study we model tries as a datatype, define
a lookup and an update function, and prove that they behave as expected.
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Figure 3.1: A sample trie

Proper tries associate some value with each string. Since the information
is stored only in the final node associated with the string, many nodes do
not carry any value. This distinction is captured by the following predefined
datatype:

datatype ’a option = None | Some ’a

To minimize running time, each node of a trie should contain an array
that maps letters to subtries. We have chosen a more space efficient rep-
resentation where the subtries are held in an association list, i.e. a list of
(letter,trie) pairs. Abstracting over the alphabet ’a and the values ’v we
define a trie as follows:

datatype (’a,’v)trie = Trie (’v option) "(’a * (’a,’v)trie)list"

The first component is the optional value, the second component the asso-
ciation list of subtries. We define two corresponding selector functions:

consts value :: (’a,’v)trie => ’v option

alist :: "(’a,’v)trie => (’a * (’a,’v)trie)list"

primrec "value(Trie ov al) = ov"

primrec "alist(Trie ov al) = al"

Association lists come with a generic lookup function:

consts assoc :: "(’key * ’val)list => ’key => ’val option"

primrec "assoc [] x = None"

"assoc (p#ps) x =

(let (a,b) = p in if a=x then Some b else assoc ps x)"

Now we can define the lookup function for tries. It descends into the
trie examining the letters of the search string one by one. As recursion on
lists is simpler than on tries, let us express this as primitive recursion on the
search string argument:

consts lookup :: (’a,’v)trie => ’a list => ’v option

primrec "lookup t [] = value t"

"lookup t (a#as) = (case assoc (alist t) a of

None => None

| Some at => lookup at as)"

As a first simple property we prove that looking up a string in the empty
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trie Trie None [] always returns None. The proof merely distinguishes the
two cases whether the search string is empty or not:

Goal "lookup (Trie None []) as = None";

by(exhaust_tac "as" 1);

by(Auto_tac);

This lemma is added to the simpset as usual.
Things begin to get interesting with the definition of an update func-

tion that adds a new (string,value) pair to a trie, overwriting the old value
associated with that string:

consts update :: (’a,’v)trie => ’a list => ’v => (’a,’v)trie

primrec

"update t [] v = Trie (Some v) (alist t)"

"update t (a#as) v = (let tt = (case assoc (alist t) a of

None => Trie None [] | Some at => at)

in Trie (value t) ((a,update tt as v)#alist t))"

The base case is obvious. In the recursive case the subtrie tt associated
with the first letter a is extracted, recursively updated, and then placed in
front of the association list. The old subtrie associated with a is still in the
association list but no longer accessible via assoc. Clearly, there is room
here for optimizations!

Our main goal is to prove the correct interaction of update and lookup:

Goal "!t v bs. lookup (update t as v) bs = \
\ (if as=bs then Some v else lookup t bs)";

Our plan will be to induct on as; hence the remaining variables are quan-
tified. From the definitions it is clear that induction on either as or bs is
required. The choice of as is merely guided by the intuition that simplifica-
tion of lookup might be easier if update has already been simplified, which
can only happen if as is instantiated. The start of the proof is completely
conventional:

by(induct_tac "as" 1);

by(Auto_tac);

Unfortunately, this time we are left with three intimidating looking subgoals:

1. ... ==> ... lookup (...) bs = lookup t bs

2. ... ==> ... lookup (...) bs = lookup t bs

3. ... ==> ... lookup (...) bs = lookup t bs

Clearly, if we want to make headway we have to instantiate bs as well now.
It turns out that instead of induction, case distinction suffices:
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by(ALLGOALS (exhaust_tac "bs"));

The tactical ALLGOALS merely applies the tactic following it to all subgoals,
which results in a total of six subgoals; Auto_tac solves them all.

This proof may look surprisingly straightforward. The reason is that we
have told the simplifier (without telling the reader) to expand all lets and
to split all case-constructs over options before we started on the main goal:

Addsimps [Let_def];

Addsplits [option.split];

Exercise 3.4.4 Write an improved version of update that does not suffer
from the space leak in the version above. Prove the main theorem for your
improved update.

Exercise 3.4.5 Modify update so that it can also delete entries from a
trie. It is up to you if you want to shrink tries if possible. Prove (a modified
version of) the main theorem above.

3.5 Total recursive functions

Although many total functions have a natural primitive recursive definition,
this is not always the case. Arbitrary total recursive functions can be defined
by means of recdef: you can use full pattern-matching, recursion need not
involve datatypes, and termination is proved by showing that the arguments
of all recursive calls are smaller in a suitable (user supplied) sense.

3.5.1 Defining recursive functions

Here is a simple example, the Fibonacci function:

consts fib :: nat => nat

recdef fib "measure(%n. n)"

"fib 0 = 0"

"fib 1 = 1"

"fib (Suc(Suc x)) = fib x + fib (Suc x)"

The definition of fib is accompanied by a measure function %n. n that
maps the argument of fib to a natural number. The requirement is that in
each equation the measure of the argument on the left-hand side is strictly
greater than the measure of the argument of each recursive call. In the case
of fib this is obviously true because the measure function is the identity
and Suc(Suc x) is strictly greater than both x and Suc x.

Slightly more interesting is the insertion of a fixed element between any
two elements of a list:
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consts sep :: "’a * ’a list => ’a list"

recdef sep "measure (%(a,xs). length xs)"

"sep(a, []) = []"

"sep(a, [x]) = [x]"

"sep(a, x#y#zs) = x # a # sep(a,y#zs)"

This time the measure is the length of the list, which decreases with the
recursive call; the first component of the argument tuple is irrelevant.

Pattern matching need not be exhaustive:

consts last :: ’a list => ’a

recdef last "measure (%xs. length xs)"

"last [x] = x"

"last (x#y#zs) = last (y#zs)"

Overlapping patterns are disambiguated by taking the order of equations
into account, just as in functional programming:

recdef sep "measure (%(a,xs). length xs)"

"sep(a, x#y#zs) = x # a # sep(a,y#zs)"

"sep(a, xs) = xs"

This defines exactly the same function sep as further above.

! Currently recdef only takes the first argument of a (curried) recursive function
into account. This means both the termination measure and pattern matching

can only use that first argument. In general, you will therefore have to combine sev-
eral arguments into a tuple. In case only one argument is relevant for termination,
you can also rearrange the order of arguments as in

consts sep :: ’a list => ’a => ’a list

recdef sep "measure length"

"sep (x#y#zs) = (%a. x # a # sep zs a)"

"sep xs = (%a. xs)"

When loading a theory containing a recdef of a function f , Isabelle
proves the recursion equations and stores the result as a list of theorems
f .rules. It can be viewed by typing

prths f .rules;

All of the above examples are simple enough that Isabelle can determine
automatically that the measure of the argument goes down in each recursive
call. In that case f .rules contains precisely the defining equations.

In general, Isabelle may not be able to prove all termination conditions
automatically. For example, termination of

consts gcd :: "nat*nat => nat"

recdef gcd "measure ((%(m,n).n))"

"gcd (m, n) = (if n=0 then m else gcd(n, m mod n))"

relies on the lemma mod_less_divisor
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0 < n ==> m mod n < n

that is not part of the default simpset. As a result, Isabelle prints a warning
and gcd.rules contains a precondition:

(! m n. 0 < n --> m mod n < n) ==> gcd (m, n) = (if n=0 ...)

We need to instruct recdef to use an extended simpset to prove the termi-
nation condition:

recdef gcd "measure ((%(m,n).n))"

simpset "simpset() addsimps [mod_less_divisor]"

"gcd (m, n) = (if n=0 then m else gcd(n, m mod n))"

This time everything works fine and gcd.rules contains precisely the stated
recursion equation for gcd.

When defining some nontrivial total recursive function, the first attempt
will usually generate a number of termination conditions, some of which
may require new lemmas to be proved in some of the parent theories. Those
lemmas can then be added to the simpset used by recdef for its proofs, as
shown for gcd.

Although all the above examples employ measure functions, recdef al-
lows arbitrary wellfounded relations. For example, termination of Acker-
mann’s function requires the lexicographic product **:

consts ack :: "nat*nat => nat"

recdef ack "measure(%m. m) ** measure(%n. n)"

"ack(0,n) = Suc n"

"ack(Suc m,0) = ack(m, 1)"

"ack(Suc m,Suc n) = ack(m,ack(Suc m,n))"

For details see the manual [5] and the examples in the library.

3.5.2 Deriving simplification rules

Once we have succeeded in proving all termination conditions, we can start
to derive some theorems. In contrast to primrec definitions, which are au-
tomatically added to the simpset, recdef rules must be included explicitly,
for example as in

Addsimps fib.rules;

However, some care is necessary now, in contrast to primrec. Although
gcd is a total function, its defining equation leads to nontermination of
the simplifier, because the subterm gcd(n, m mod n) on the right-hand
side can again be simplified by the same equation, and so on. The reason:
the simplifier rewrites the then and else branches of a conditional if the
condition simplifies to neither True nor False. Therefore it is recommended
to derive an alternative formulation that replaces case distinctions on the
right-hand side by conditional equations. For gcd it means we have to prove
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gcd (m, 0) = m

n ~= 0 ==> gcd (m, n) = gcd(n, m mod n)

To avoid nontermination during those proofs, we have to resort to some low
level tactics:

Goal "gcd(m,0) = m";

by(resolve_tac [trans] 1);

by(resolve_tac gcd.rules 1);

by(Simp_tac 1);

At this point it is not necessary to understand what exactly resolve_tac
is doing. The main point is that the above proof works not just for this
one example but in general (except that we have to use Asm_simp_tac and
f .rules in general). Try the second gcd-equation above!

3.5.3 Induction

Assuming we have added the recursion equations (or some suitable derived
equations) to the simpset, we might like to prove something about our func-
tion. Since the function is recursive, the natural proof principle is again
induction. But this time the structural form of induction that comes with
datatypes is unlikely to work well—otherwise we could have defined the
function by primrec. Therefore recdef automatically proves a suitable
induction rule f .induct that follows the recursion pattern of the particu-
lar function f . Roughly speaking, it requires you to prove for each recdef
equation that the property you are trying to establish holds for the left-hand
side provided it holds for all recursive calls on the right-hand side. Applying
f .induct requires its explicit instantiation. See §?? for details.
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Appendix

and arities assumes axclass binder
classes constdefs consts default defines
defs end fixes global inductive
infixl infixr instance local locale
mixfix ML MLtext nonterminals oracle
output path primrec rules setup
syntax translations typedef types

Figure A.1: Keywords in theory files

ALL case div dvd else
EX if in INT Int
LEAST let mod O o
of op PROP SIGMA then
Times UN Un

Figure A.2: Reserved words in HOL
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consts, 7
context, 12
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delsimps, 23
Delsplits, 26
delsplits, 26
div, 18

exhaust_tac, 14

False, 3
formula, 3
Full_simp_tac, 23
full_simp_tac, 23

hd, 13

if, 3, 4, 25
infixr, 6
inner syntax, 8

LEAST, 18
let, 3, 4, 24
list, 3
loading theories, 12

Main, 2
max, 18
measure function, 38
min, 18
mod, 18

nat, 2, 17
None, 36

option, 36

parent theory, 2
primitive recursion, 13
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primrec, 7, 13, 31–35
proof scripts, 2

qed, 5, 10

recdef, 38–41
reloading theories, 12

schematic variable, 5
set, 3
show_brackets, 4
show_types, 3, 12
Simp_tac, 22
simp_tac, 23
simplifier, 21
simpset, 22
Some, 36

tactic, 11
term, 3
theory, 1
tl, 13
total, 7
tracing the simplifier, 26
True, 3
type constraints, 4
type inference, 3
type synonyms, 19
types, 19

unknown, 5
update_thy, 12
use_thy, 2, 12
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