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Motivation

� The public are  more and more concerned with security and safety in 

our life, e.g. natural calamities, financial risks, radioactivities, and 

viruses.

� In what ways and to what extent , we, i.e. experts in (at least ) one 

professional domain, can strive to ensure the security and safety of the  

subjects of study, and explain to the public that we are no less 

concerned with those notions?

� The tone of the (mass) media sounds that experts form a closed society 

of profession and hide what are detrimental to their interests from the 

eyes of the public.
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Motivation - continued

� In my view, this is not true. Scientists are careful about the statements 

that may convey to the public that something is 100% sure, or that  

something bad will happen definitely.

� We recall  “We must know, but (by now we are aware that ) we shall 

(not) know everything.”

� Then, I will argue what we can do in our profession is to increase the 

rigor of our knowledge as well as to ensure the process of acquiring 

high quality new knowledge.
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My  research interest

à Object of study:  geometric objects, in particular, origami

à Methodology: (until mid 80s) computer architecture, hardware 

construction; physical entity behind computation  

                            

à Methodology: (from then until now) software design, computation 

model,  verification
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Security and safety is the real issue in  classical, modern and 

computational geometry.

à image processing

à face recognition

à visualization 

è animation
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Loss of rigor in geometry

à Perception of images by human is inexact.

à We appeal  to intuition where intuition alone cannot fill the gap of  

reasoning steps.

à Non-degeneracy conditions are not stated.
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Origami (paper fold)

è Origami is a concrete example  of theories of fold, and more.

è Nature is abundant with folds; imagine the process of flowering.

è We have industrial applications; automobile and space industries.

è Origami is a more powerful geometrical construction tool than 

straightedge and compass.
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How to fold?

While folding a paper, we can perform the following.

� Determine the line (called fold line) along which we make a fold.

�  Then, fold along the fold line.
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How to determine fold line?

à The fold line can be determined by  superposing constructed points 

and lines.
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Superposition of two points P and Q

A B
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è the perpendicular bisector of the segment formed by the points,  if 

the two points are distinct
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Superposition of a point P  and a line  m
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è tangents to the parabola defined by focus P  and directrix m
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Superposition of  lines m and n

1. m � n   

è superposition of a line with itself

2. m ¹ n

Find two distinct points P  and Q  on the line  m.  

è  Perform two  point-line superpositions, i.e. P and n, and Q and n.
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Superposition of a line with itself
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è  perpendiculars to the line



Slide 14 of 38

Superposition pair

It is meaningful to talk about a pair of geometrical objects that are to

be superposed.

Let s = (Α, Β) be a superposition pair (s-pair  for short), where Α and Β

are geometrical objects (so far, either a point or a line).  
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Some notations

à P �Q : perpendicular bisector of the segment PQ

à B HmL = 9X �Y X, Y Î m , X ¹ Y= : the set of perpendiculars to m

generated by superposition pair Hm, mL.

à I HPL = 8Γ P Î Γ< : the set of lines that pass through P

generated by superposition pair HP, PL

à G HP, mL = 9X �P X Î m= :

the set of tangents of the parabolas defined by focus P

and directrix m

generated by superposition pair HP, mL
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Huzita's basic origami operations (1989)

1. Given two distinct points, you can fold making the crease pass 

through both points (ruler operation).

2. Given two distinct points, you can fold superposing one point onto 

the other point (perpendicular bisector).

3. Given two distinct (straight) lines, you can fold superposing one line 

onto another (bisector of the angle).

4. Given one line and one point, you can fold making the crease 

perpendicular to the line and passing through the point 

(perpendicular footing).

5. Given one line and two distinct points not on this line, you can fold 

superposing one point onto the line and making the crease pass 

through the other point (tangent from a point to a parabola).

6. Given two distinct points and two distinct lines, you can fold 

superposing the first point onto the first line and the second point 

onto the second line at the same time. 
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 Huzita's fold principle H 

à A method of defining fold lines using  s-pairs

It consists of the rules of the following form:

è Fold origami O along fold lines 

Γ1, .., Γ j defined by superposition pairs Σ1, .., Σk.

è In short, fold along 9Γ1, .., Γ j =.

è In Huzita’s principle, j =1 and k b2.
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Method H

1. Fold along I HPL Ý I HQL, where P ¹ Q.   (Fold along the line passing 

through P  and Q.)

2. Fold along  {P � Q}  where P ¹Q.

3.

4. Fold along B HmL Ý I HQL.

5. Fold along  G HP, mL Ý I HQL, where P Ï m.

6. Fold along G HP, mL  Ý G HQ, nL, where P Ï m  ß  Q Ï n ß (P, m ) ¹ (Q, n ).

7. Fold along  G HP, mL  Ý B HnL, where P Ï m .
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Operation 6

Fold  along a line to superpose P  and m, and Q and n simultaneously.
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Comparison with  straightedge and compass (Euclidean geometry)

à Huzita's  principle is more powerful than straightedge and compass

à By Huzita's  fold principle, we can construct a trisector of an angle, 

while by  straightedge and compass we cannot (P. L. Wanzel 1837)
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Origami constructible points

Theorem 10.3.4 (Galois Theory book by Cox 2004)

Let A = (0, 0), B = (1, 0), and  D = (0, 1),  and  Identity  the points on  R �

R  with them on C.

The (hpoint) set O,  the set of origami constructible numbers, is a sub-
field of C.

1. Let Α = a + ä b where a, b Î R . Then Α Î O � a, b Î O

2. Α Î O Þ Α , Α
3

Î O

3.   Α Î  O   � there are subfields

Q = F0 Ì F1 Ì ... Ì Fn-1 Ì Fn Ì C

such that Α Î Fn and @Fi : Fi-1D = 2 or 3 for 1 £ i £ n.
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Modeling  point 

datatype point = Point real real

abbreviation "pA º Point 0 0"
abbreviation "pB º Point 1 0"
abbreviation "pC º Point 1 1"
abbreviation "pD º Point 0 1"
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Modeling   line

datatype line = Line real real real

A line is represented as an equation a x + b y + c = 0

The following line constraint (on slope) makes the line representation

unique : 

fun slope::"real Þ real Þ bool"
where
"slope a b = HHb = 1L Þ HHb = 0L ß Ha = 1LLL"
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Origami constructible points and lines

inductive_set

hpoint::"point set" and
hline::"line set"
where
ha@intro!D:" pA Î hpoint"
hb@intro!D:" pB Î hpoint"
hc@intro!D:" pC Î hpoint"
hd@intro!D:" pD Î hpoint"
hx@intro!D:" m Î hline; n Î hline; Ø m þ n � Ox m n Î

hrefl@intro!D: " p Î hpoint; m Î hline � p ¤ m Î hpoint

and hpoint::point set

hline::line set

where
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inductive_set (continued)

h1l@intro!D: " p Î hpoint; q Î hpoint; p ¹ q � O1 p q Î

h2l@intro!D: " p Î hpoint; q Î hpoint; p ¹ q � O2 p q Î

h4l@intro!D: " p Î hpoint; m Î hline � O4 m p Î hline"
h5l@intro!D: " p Î hpoint; q Î hpoint; m Î hline; Ø p ¶ m

l Î O5_preset p m q
� l Î hline"

h6l@intro!D: " p Î hpoint; q Î hpoint; m Î hline; n Î hline
ØHp = q ß m = n L;
HØ p ¶ m ß Ø q ¶ nL; l Î O6_preset p m q n

� l Î hline"
h7l@intro!D: " p Î hpoint; m Î hline; n Î hline; m ¹ n;

Ø p ¶ m; l Î O7_preset p m n
� l Î hline"
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definition
O5 _preset::"point Þ line Þ point Þ line set" where
"O5_preset p m q º

8l . linecc l ß p ¤ l ¶ m ß q ¶ l<"

fun O5::"point Þ line Þ point Þ line" where
"O5 p m q = HSOME n .n Î O5_preset p m qL"

definition
O6 _preset::"point Þ line => point Þ line Þ line set"

where
"O6_preset p m q n º

8 l . linecc l ß p ¤ l ¶ m ß q ¤ l ¶ n<"

fun O6::"point Þ line Þ point Þ line Þ line" where
"O6 p m q n = HSOME l. l Î O6_preset p m q nL"

definition
O7 _preset::"point Þ line => line Þ line set" where
"O7_preset p m n º 8l

. linecc l ß p ¤ l ¶ m ß l ¦ n<"
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Some theorems

theorem O5_collapses_to_O1:
"ïp q m . p Î hpoint; q Î hpoint; m Î hline; p ¹ q; p ¶ m
� O1 p q Î O5_preset p m q"

theorem O6_collapses_to_O5:
"ïx p q m n . linecc x; linecc m; linecc n; p ¶ m

� x Î O5_preset q n p � x Î O6_preset p m q n"
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Origami theorems

è We proved  hundreds of lemmas, which we would be useful for 

reasoning about elementary origami geometry.

è These are in some sense “obvious” from geometrical point of view.

è However, what intrigued me while stating (and developing the 

proofs) are  degeneracy conditions, that are tacitly unstated in 

human proofs, but are absolutely necessary for computer provers to 

complete the proof.

è In geometrical theorem proving, mostly we need to translate 

geometrical statements to algebraic expressions, and then those 

algebraic expressions  are manipulated. The transformations are not 

always straightforward, and moreover algebraic treatment does not 

clearly  correspond to geometrical counterpart.

è Overall, the task so far is time-consuming and hard - a different kind 

of hardship from the one that we would encounter when we are 

developing a large software system over years. 
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Interlude  - Logicomix

Photos from Logicomics, showing 1 + 1 = 2 took 362 page (deleted for

the consideration of copy right )
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Regular pentagon by origami
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"Classical" construction

BeginOrigami@D;

Step 1

A B

CD

HO@"A", "C"D;

Step 2

D

B

A

HO@"B", "D"D;



Step 3

E

AB

Unfold@D;

Step 4

E

D

B

A

HO@"A", "E", MarkPointOn ® "AE"D;
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Step 5

CD

B

F

A

Unfold@D;

Step 6

E

D

B

F

A

HO@"A", "F", MarkPointOn ® 8"AB", "AD"<D;



Step 7

E

CD

B

H

G
A

Unfold@D;

Step 8

E

D

B

F

H A

G

HO@"B", Through ® 8"E", "G"<, MarkPointOn ® FalseD;
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Step 9

E

D

F

H A

G

B

HO@"D", Through ® 8"E", "H"<, MarkPointOn ® "BG"D;

Step 10

E

F

H A

G

J

B

D

DupPoint@"J"D

888M, Origami40<, 8N, Origami40<, 8O, Origami40<<<

UnfoldAll@D;

Step 11



E

D

F

H A

G

B

J

Step 12

E

D

B

F

H A

G

N

O

Step 13
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E

C

M

D

J

B

F
H

A G

N

O

HO@"J", Through -> 8"M", "E"<, MarkPointOn -> FalseD;

Step 14

E

D

M

F
H

A G

C

J

B

O

DupPoint@"J"D

888P, Origami48<<<

Unfold@D;



Step 15

E

C

M

D

J

B

F

P

H

A G

N

O

ShowFolded@ShowMarkPoints ®

8"A", "B", "C", "D", "E", "M", "P", "N", "O", "J"<,
More ® 8Thickness@0.01D, Hue@0.2D,

GraphicsLine@8M, P, N, O, J<D<D;

Step 15

E

C

M

D

J

B

P

A

N

O
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Automated theorem proving by Groebner bases computation

Let P be p1 = 0 ì ... ì pn = 0. P is a premise.

(1)Consider " HP Þ CL,

where C is the conclusion that we want to obtain.

C is any logical combination of equalities.

C holds after the construction.

Negate H1L
$ Ø HP Þ CL � $ HP ß Ø CL � $ Q,

where Q is a conjunctive normal form of P ì Ø C

Q is False � 1 Î Ideal HQL � 1 Î GB HIdeal HQLL,
where Ideal HQL is 8q1, ..., qm< and Q is q1 = 0 ì ... ì qm = 0
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To reason about the construction

� Proof of " correctness"

To reason about the construction

� Proof of " correctness"

In[109]:= GoalB"Α,ΑÎNum JVectorToComplexAΑ "EM" - "EP"E � 0 Þ

JVectorToComplexAΑ
2 "EM" - "EN"E == 0 í

VectorToComplexAΑ
3 "EM" - "EO"E == 0 í

VectorToComplexAΑ
4 "EM" - "EJ"E == 0 í

Α
5

== 1NNF;

In[110]:= Prove@"Looks_like_pentagon Th."D;

Groebner basis computation
started at 2012�09�24 18:23:39 BST.

Proof by Groebner basis method failed.

See the proofDoc for details.

CPU time used for Groebner basis computation is
4.13299 seconds.
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Analysis

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Solve@Tan @Θ � 4D � 1 � 3, ΘD �� System`N

88Θ ® 1.287<<

H2 Π � 5L �� System`N

1.25664

1.25664 � 1.287 �� System`N

0.97641
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A correct construction of a pentagon

� Construction

BeginOrigami@D;

Step 1

A B

CD

HO@"A", "B", MarkPointOn ® "CD"D;

Step 2

E D

A

Unfold@D;
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Step 3

E

B

CD

A

HO@"D", Through ® 8"E", "A"<D;

Step 4

E

B

C

A

D

HO@"B", "D", MarkPointOn ® "BC"D;



Step 5

F

CE

A

D

UnfoldAll@D;
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Step 6

F

CE

BA

D

Step 7

F

CE

BA

D

HO@"D", "B", MarkPointOn ® FalseD;



Step 8

F

C

A

E

D

Unfold@D;

Step 9

F

BA

ED C

HO@"F", "AC", Through ® "A", MarkPointOn ® "BC"D;

Case 1

F

BA

ED C

m

Case 2

F

BA

ED C

m
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HO@"F", "AC", Through ® "A", MarkPointOn ® "BC", Case ® 1D;

Step 10

A

ED C

G

F

B

Unfold@D;

Step 11

F

BA

ED C

G

HO@"BC", Through ® "G", MarkPointOn ® "AC"D;



Step 12

ED

H

C

G

F

BA

Unfold@D;

Step 13

F

BA

ED

GH

C

HO@"A", "C", MarkPointOn ® FalseD;
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Step 14

B

F

H

ED

G

A

Unfold@D;

Step 15

B

F

A

H

CED

G

HO@"C", "BD", Through ® "H", MarkPointOn ® 8"AB", "CD"<D;

Case 1

B

F

A

H

CED

Gm

Case 2

B

F

A

H

CED

G

m



HO@"C", "BD", Through ® "H",
MarkPointOn ® 8"AB", "CD"<, Case ® 2D;

Step 16

A

H

I

D E J

B

F

G

C

Unfold@D;

Step 17

B

F

A

H

I

D E

G

CJ

HO@"B", Through ® 8"A", "C"<D;
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Step 18

A

H

E J CB F

I

G

DupPoint@8"I", "J"<D

888K, Origami479<<, 88L, Origami479<<<

Unfold@D;

Step 19

B

F

A

H

I

D E

K

G

CJ

L

HO@"L", "I", MarkPointOn ® "AC"D;



Step 20

A B

K

M

H

F

D

E

G

C

J
L

DupPoint@"J"D

888N, Origami485<<<

Unfold@D;

Step 21

A

H

B

F

I

D E

G

CJ

K

M

N

L

ShowFolded@ShowMarkPoints ®

8"A", "B", "C", "D", "M", "J", "K", "N", "I", "L"<,
More ® 8Thickness@0.01D, Hue@0.2D,

GraphicsLine@8J, K, N, I, L<D<D;
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Step 21

A BI

D CJ

K

M

N

L

� Proof

In[91]:= GoalB"Α,ΑÎNum JVectorToComplexAΑ "MJ" - "MK"E � 0 Þ

IVectorToComplexAΑ
2 "MJ" - "MN"E == 0 í

VectorToComplexAΑ
3 "MJ" - "MI"E == 0 í

VectorToComplexAΑ
4 "MJ" - "ML"E == 0 í

Α
5

== 1NNF;

Prove@"Max Pentagon", GroebnerBasis ®

8MonomialOrder ® DegreeReverseLexicographic<D;

Groebner basis computation
started at 2012�09�22 16:31:46 BST.

Proof by Groebner basis method is successful.

CPU time used for Groebner basis computation is
1.852 seconds.
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Conclusion

è By examples, I showed the  interplay of modelling, construction and 

formal reasoning.

è This would hopefully illustrate the importance of computer-assisted  

formal reasoning, in particular theorem proving (interactive and 

automated).
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Initialize
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