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Motivation

= The public are more and more concerned with security and safety in
our life, e.g. natural calamities, financial risks, radioactivities, and
viruses.

= In what ways and to what extent , we, i.e. experts in (at least ) one
professional domain, can strive to ensure the security and safety of the
subjects of study, and explain to the public that we are no less
concerned with those notions?

m The tone of the (mass) media sounds that experts form a closed society
of profession and hide what are detrimental to their interests from the
eyes of the public.



Motivation - continued

= In my view, this is not true. Scientists are careful about the statements
that may convey to the public that something is 100% sure, or that
something bad will happen definitely.

m We recall “We must know, but (by now we are aware that ) we shall
(not) know everything.”

m Then, | will argue what we can do in our profession is to increase the
rigor of our knowledge as well as to ensure the process of acquiring
high quality new knowledge.
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My research interest

m Object of study: geometric objects, in particular, origami

m Methodology: (until mid 80s) computer architecture, hardware
construction; physical entity behind computation

m Methodology: (from then until now) software design, computation
model, verification



Security and safety is the real issue in classical, modern and
computational geometry.

B image processing
m face recognition
m visualization

e animation
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Loss of rigor in geometry

m Perception of images by human is inexact.

m We appeal to intuition where intuition alone cannot fill the gap of
reasoning steps.

m Non-degeneracy conditions are not stated.



Origami (paper fold)

e Origami is a concrete example of theories of fold, and more.
e Nature is abundant with folds; imagine the process of flowering.
e We have industrial applications; automobile and space industries.

e Origami is a more powerful geometrical construction tool than
straightedge and compass.
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How to fold?

While folding a paper, we can perform the following.
m Determine the line (called fold line) along which we make a fold.
= Then, fold along the fold line.



How to determine fold line?

m The fold line can be determined by superposing constructed points
and lines.
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Superposition of two points P and Q

A A

e the perpendicular bisector of the segment formed by the points, if
the two points are distinct



Superposition of a point P and a line m

e tangents to the parabola defined by focus P and directrix m
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Superposition of lines mand n
1. m=n
e superposition of a line with itself
2. m£n
Find two distinct points P and Q on the line m.
e Perform two point-line superpositions, i.e. P and n, and Q and n.



Superposition of a line with itself

A

e perpendiculars to the line
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Superposition pair
It is meaningful to talk about a pair of geometrical objects that are to
be superposed.

Let s = (o, 8) be a superposition pair (s-pair for short), where a and 8
are geometrical objects (so far, either a point or a line).



Some notations

m PlQ: perpendicular bisector of the segment PQ
m 3 (mM = {X IY | X Yem, X# Y} : the set of perpendiculars tom
generated by superposition pair (m, m).
m 7 (P)={y|P ey} : thesetof lines that pass through P
generated by superposition pair (P, P)
mI(P,m={XIP|Xem|:
the set of tangents of the parabolas defined by focus P

and directrix m
generated by superposition pair (P, m)



16| Watt2012.nb

Huzita's basic origami operations (1989)

1.

2.

Given two distinct points, you can fold making the crease pass
through both points (r ul er operati on).

Given two distinct points, you can fold superposing one point onto
the other point (per pendi cul ar bi sect or).

. Given two distinct (straight) lines, you can fold superposing one line

onto another (bi sect or of the angle).

Given one line and one point, you can fold making the crease
perpendicular to the line and passing through the point
(per pendi cul ar footi ng).

Given one line and two distinct points not on this line, you can fold
superposing one point onto the line and making the crease pass
through the other point (t angent froma point to a parabol a).

. Given two distinct points and two distinct lines, you can fold

superposing the first point onto the first line and the second point
onto the second line at the same time.



Huzita's fold principle H

m A method of defining fold lines using s-pairs
It consists of the rules of the following form:

e Fold origami O along fold lines
Y1, .., vj defined by superposition pairs o4, .., 0.

e In short, fold along {4, .., ¥;}.

e |In Huzita’s principle, j =1 and k <2.
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Method H

1. Fold along 7 (P) (N 7 (Q), where P £ Q. (Fold along the line passing
through P and Q.)

Fold along {P I Q} where P £Q.

Fold along B(m) () I (Q).

Fold along T'(P, m) () 7 (Q), where P ¢ m.

FoldalongT' (P, m) YT'(Q, n), whereP¢m A Q¢nA(P,m)+(Q,n).
Fold along I'(P, m) () 8(n), whereP ¢ m.

N Ok



Operation 6

Fold along a line to superpose P and m, and Q and n simultaneously.
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Comparison with straightedge and compass (Euclidean geometry)

m Huzita's principle is more powerful than straightedge and compass

m By Huzita's fold principle, we can construct a trisector of an angle,
while by straightedge and compass we cannot (P. L. Wanzel 1837)



Origami constructible points

Theorem 10.3.4 (Galois Theory book by Cox 2004)
LetA=(0,0),B=(1,0),and D=(0,1), and Ildentity the points on R x
R with them on C.

The (hpoint) set O, the set of origami constructible numbers, is a sub-
field of C.

1. Let a = a+1b wherea, b e R. Thena e 0 e a, b e 0

2.&60:\/?, \3/?6 O

3. ae€ O & there are subfields
Q=FycFyc..cF,41cF,cC
suchthat a e F,and [F;:Fi_41]= 2or3 for1<i < n.
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Modeling point

dat at ype poi nt = Poi nt real real

abbreviation"pA = Point 0 O"
abbreviation"pB = Point 1 0"
abbreviation"pC = Point 1 1"
abbreviation"pD = Point 0 1"



Modeling line

datatype |line =Linereal real real

Aline is represented as an equationax+by+c=0
The following line constraint (on slope) makes the line representation
unique :

fun slope::"real = real = bool"
wher e
"slope a b = ((b=1) v ((b =0) A (a =1)))"
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Origami constructible points and lines

inductive_set

hpoi nt::"point set" and =
hline::"line set”

wher e

halintro!]:" pA e hpoint" |

hblintro!]:" pB € hpoint" |

hclintrot]:" pC e hpoint" |

hd[intro!]:" pD e hpoint" |
hx[intro!]:"[ me hline; n e hline; = miu n] = X mn ¢

hrefl [intro!]: "[p € hpoint; me hline ] = p 4+ me hpoin

and hpoint::point set
hline::line set
wher e



inductive_set (continued)

h7l [i

ntro!]:

"I p € hpoint; g € hpoint; p #+ q] = OL p*q «
"I p € hpoint; g € hpoint; p + q]l = @2 p q €
"l p € hpoint; me hline] = O4 mp € hline"|
"I p € hpoint; g € hpoint; me hline; - p er
| ¢ Cb_preset p mql
= | € hline" |
"I p € hpoint; g € hpoint; m < hline; n € F
(P =g A m=n);
(-pemA-qen); | € O6_preset p mq |
= | € hline" |
"I p € hpoint; m € hline; n € hline; m=+ n;
- pem | € Of_preset p mn ]
= | e hline"
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definition

Cb preset::"point > line = point = |line set" where
"Ob_preset p mq =

(I . lineccl Ap 41 emAaA qel}"

funOb::"point = line = point = line" where
"Gbpmg = (SOVMENn .n e b _preset p mq)"

definition
6 preset::"point = line =~ point = line = line set"
wher e

"O6_preset p mqg n
{I . linecc | A

e mAQq 41l e n}

© 1
L

funG6::"point = line = point = line = |1 ne" where

"6 pmgn= (SOMEIl. | € O6_preset p mqg n)"
definition
O7 preset::"point = line => line = line set" where
"O7_preset p mn = {I

linecc | Ap 4+l emaAl + n}"



Some theorems

t heorem C6_col | apses_to_O1:

"spgqmM.[ p e hpoint; g € hpoint; me hline; p £ q; p 1t
— OL p g e G_preset p mq"

t heorem O6_col | apses_to_0Ob:

"AX pgmn. [linecc x; linecc m linecc n; p e m]

— X € b _preset gnp = Xx e 0O _preset p mg n"
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Origami theorems

e We proved hundreds of lemmas, which we would be useful for
reasoning about elementary origami geometry.

e These are in some sense “obvious” from geometrical point of view.

e However, what intrigued me while stating (and developing the
proofs) are degeneracy conditions, that are tacitly unstated in
human proofs, but are absolutely necessary for computer provers to
complete the proof.

e |In geometrical theorem proving, mostly we need to translate
geometrical statements to algebraic expressions, and then those
algebraic expressions are manipulated. The transformations are not
always straightforward, and moreover algebraic treatment does not
clearly correspond to geometrical counterpart.

e Overall, the task so far is time-consuming and hard - a different kind
of hardship from the one that we would encounter when we are
developing a large software system over years.



Interlude - Logicomix

Photos from Logicomics, showing 1 + 1 = 2 took 362 page (deleted for
the consideration of copy right)
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Regular pentagon by origami




"Classical" construction
Begi nOri gam [];
Step 1

>,

HO[" A", "C' ]
Step 2

HO["B", "D'J;
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Step 3

Unfol d[];
Step 4

HO[" A", "E", MarkPoi ntOn - " AE" ];



Step 5

Unfol d[];
Step 6

HO[" A", "F", MarkPointOn - {"AB", "AD"'}];
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Step 7

Unfol d[];
Step 8

HO["B", Through - {"E", "G'}, MarkPoi nt On - Fal se];



Step 9

HO[" D', Through > {"E", "H'}, MarkPoi nt On - "BG' ];
Step 10

DupPoi nt ["J" ]

{({{M Origam 40}, {N, Origam 40}, {O Origani 40}}}
Unfol dAI | [7;

Step 11



36| Watt2012.nb

Step 12

Step 13



HO["J", Through -> {"M', "E"}, MarkPointOn -> Fal se];
Step 14

DupPoi nt ["J" ]
{{{P, Origam 48}}}
Unfol d[];
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Step 15

Showol ded [Showivar kPoi nt s —
{Il AII , n Bll , n CI , n Dl , n Ell , n MI , n PII , n NI , n Ol , n JII }’
More — {Thi ckness[0.01], Hue|O0. 27,
G aphicsLine[{M P, N, O J}]}];

Step 15




Automated theorem proving by Groebner bases computation

Let P bepi=0A ...Apn=0. Pis aprenise.

Consider v (P = C), (1)
where Ci st he concl usi ont hat we want t o obt ai n.

Cisany |l ogi cal conbi nationof equalities.

Chol ds after the construction.

Negate (1)

- (P=>C«3 (PN -0 <3 Q

wher e Qi s aconj unctivenormal formof PA - C

QisFalse &< 1 € ldeal (Q < 1 ¢ B (Ideal (Q)),
where ldeal (Q is{q4, ..., 9n}andQisg; =0 A... Adm=0
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To reason about the construction

m Proof of " correctness”

To reason about the construction

= Proof of " correctness"

0 /\
-0 A

Vect or ToConpl ex [o* "EM" - "EJ" |
2 1))

" Prove ["Looks_li ke _pentagon Th."];

G oebner basis conputation
started at 2012/09/24 18:23: 39 BST.

Proof by G oebner basis nethod fail ed.

See the proofDoc for details.

CPU tinme used for G oebner basis conputation is
4.13299 seconds.



Analysis

1.0 g
0.8
0.6/

7 o
0.4

|
(12\\\\\\\\\\\\\\\~

02 04 06 08 1.0
Solve[Tan [6/4] ==1/3, ©] // System N
((651.287})

(27/5) // System N
1. 25664

1. 25664 /1. 287 // System N
0. 97641
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A correct construction of a pentagon
m Construction
Begi nOri gam [];
Step 1

HO[" A", "B", MarkPointOn - " CD'];
Step 2

Unfold[];



Step 3

HO[" D', Through - {"E", "A"}7;
Step 4

HO["B", "D', MarkPoi nt On - "BC' ];
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Step 5

Unfol dAI | [7;



Step 6

Step 7

HO[" D', "B", MarkPoi ntOn — Fal se];



46| Watt2012.nb
Step 8

Unfol d[];
Step 9

HO["F", "AC', Through - "A", MarkPoi nt On - "BC' ];

Casel Case?

|



HO["F", "AC', Through - "A", MarkPoi nt On - "BC', Case - 17;
Step 10

Unfol d[];
Step 11

HO[" BC', Through - "G', MarkPoi nt On - "AC' ];
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Step 12

Unfol d[];
Step 13

HO[" A", "C', MarkPoi nt On - Fal se];



Step 14

Unfol d[];
Step 15

HO["C', "BD', Through - "H', MarkPointOn - {"AB", "CD"'}];

Casel Case?
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HO["C', "BD', Through - "H",
Mar kPoi nt On - {"AB", "CD'}, Case - 2];

Step 16

Unfol d[];
Step 17

HO["B", Through - {"A", "C"}];



Step 18

DupPoint [ {"I", "J"}]

{{{K, Origam 479}}, {{L, Origam 479}}}
Unfol d[];

Step 19

HO["L", "I", MarkPoi nt On - "AC' ];
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Step 20

DupPoi nt ["J" ]
{{{N, Origam 485}}}
Unfol d[];

Step 21

ShowFol ded [ Showvar kPoi nt s —
{Il AII , n BII , n CI , n DI , n Ml , n Jll , n KII , n NI , n I n , n LII }’
More — {Thi ckness[0.01], Hue|O0. 27,
G aphicsLine[{J, K, N, I, L}]}7;



Step 21

= Proof

Vect or ToConpl ex [o® "MI™ - "M ™ | O/\
Vect or ToConpl ex [o* "MJ™ - "ML" | ::()/\

1))

Prove ["Max Pentagon", G oebnerBasis -
{Monom al Or der — DegreeRever selLexi cographic}];

Groebner basis computation
started at 2012/09/22 16: 31: 46 BST.

Proof by Groebner basis nmethod is successful.

CPU tine used for Groebner basis conputation is
1. 852 seconds.
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Conclusion

e By examples, | showed the interplay of modelling, construction and
formal reasoning.

e This would hopefully illustrate the importance of computer-assisted
formal reasoning, in particular theorem proving (interactive and
automated).



Initialize
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