
Objectives SymGrid-Par Design Infrastructure Use cases Summary

SymGrid-Par: a System for Parallel Symbolic
Computation on Large-scale Distributed Systems

The SCIEnce Team

http://www.symbolic-computing.org/

September 22, 2012

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on Large-scale Distributed Systems

Objectives SymGrid-Par Design Infrastructure Use cases Summary

Today’s Challenges for Symbolic Computation

In the SCIEnce1 project we addressed the following challenges:

transparent access to complex, mathematical software,
through Grid or Cloud Services;

uniform data exchange between independent systems through
OpenMath data format and SCSCP protocol;

exploitation of modern parallel hardware through
high-level orchestration of parallelism.

Therefore, two main focus areas are

system interoperability (SCSCP),

parallel computation (SymGrid-Par).

1http://www.symbolic-computing.org/

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on Large-scale Distributed Systems

http://www.symbolic-computing.org/

Objectives SymGrid-Par Design Infrastructure Use cases Summary

Today’s Challenges for Symbolic Computation

In the SCIEnce1 project we addressed the following challenges:

transparent access to complex, mathematical software,
through Grid or Cloud Services;

uniform data exchange between independent systems through
OpenMath data format and SCSCP protocol;

exploitation of modern parallel hardware through
high-level orchestration of parallelism.

Therefore, two main focus areas are

system interoperability (SCSCP),

parallel computation (SymGrid-Par).

1http://www.symbolic-computing.org/

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on Large-scale Distributed Systems

http://www.symbolic-computing.org/

Objectives SymGrid-Par Design Infrastructure Use cases Summary

Parallelism in Symbolic Applications

The characteristics of parallel symbolic applications are radically
different from numeric applications:

parallelism is highly irregular (computation sizes varying up to
104)

parallelism is highly dynamic (new threads generated
throughout with huge differences in thread residency)

computations over complex data structures (rather than flat
arrays)

base operations are typically integer, not floating point,
operations

=⇒ dynamic, adaptive control of parallelism is needed

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on Large-scale Distributed Systems

Objectives SymGrid-Par Design Infrastructure Use cases Summary

Parallelism in Symbolic Applications

The characteristics of parallel symbolic applications are radically
different from numeric applications:

parallelism is highly irregular (computation sizes varying up to
104)

parallelism is highly dynamic (new threads generated
throughout with huge differences in thread residency)

computations over complex data structures (rather than flat
arrays)

base operations are typically integer, not floating point,
operations

=⇒ dynamic, adaptive control of parallelism is needed

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on Large-scale Distributed Systems

Objectives SymGrid-Par Design Infrastructure Use cases Summary

Parallel Programming: Past and Future

Characteristics of parallel programming in the future:

on off-the-shelf hardware such as multi-core machines

architecture-independent

high-level control of the code

done by domain experts

all areas of computing, especially symbolic computation

=⇒ Desktop parallelism

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on Large-scale Distributed Systems

Objectives SymGrid-Par Design Infrastructure Use cases Summary

Parallel Programming: Past and Future

Characteristics of parallel programming in the future:

on off-the-shelf hardware such as multi-core machines

architecture-independent

high-level control of the code

done by domain experts

all areas of computing, especially symbolic computation

=⇒ Desktop parallelism

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on Large-scale Distributed Systems

Objectives SymGrid-Par Design Infrastructure Use cases Summary

Domain-specific Skeletons

We raise the level of abstraction for parallel computation by using
domain-specific skeletons:

Skeletons encode commonly occuring patterns of parallel
computation.

Such patterns are increasingly used in main-stream parallel
programming (Google MapReduce).

We implemented a range of patterns specific to symbolic
computation:

Orbit pattern
Multiple-homomorphic images pattern (using the modular
method of problem solving)
Critical-pair Completion pattern (tested with Gröbner Bases)

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on Large-scale Distributed Systems

Objectives SymGrid-Par Design Infrastructure Use cases Summary

SymGrid-Par Design

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on Large-scale Distributed Systems

Objectives SymGrid-Par Design Infrastructure Use cases Summary

SymGrid-Par Infrastructure

client

Coord. Server

server server server

OpenMath

SCSCP

SCSCP

OpenMath

socket

socket

socket

socket socket socket

CA

CA CA CA

CAG

GCA

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on Large-scale Distributed Systems

Objectives SymGrid-Par Design Infrastructure Use cases Summary

Components of the Architecture

Either command-line client or a client of a computer algebra
system.

High-level Coordination Server handling parallelism

uses parallel Haskell as high-level programming model
parallelism is mainly specified and coordinated here
automatic resource management on this level

Any SCSCP-based computer algebra server:

tested with GAP and a Haskell-side server
servers can themselves use parallelism, but
no direct communication between servers

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on Large-scale Distributed Systems

Objectives SymGrid-Par Design Infrastructure Use cases Summary

Key Technologies of SymGrid-Par

Clear interfaces:

common data format: OpenMath
communication protocol: SCSCP
form of connection: sockets

A Haskell-side Coordination Server is

a server that implements a collection of (parallel) CA functions
a server that provides parameterisable skeletons of parallel
computation
a client that calls CAs to perform the heavy computation.

A minimal interactive Haskell-side Client (cash)
uses Haskell interpreter to provide direct access to SCSCP
interface
useful for prototyping (sequential) code

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on Large-scale Distributed Systems

Objectives SymGrid-Par Design Infrastructure Use cases Summary

Key Technologies of SymGrid-Par

Clear interfaces:

common data format: OpenMath
communication protocol: SCSCP
form of connection: sockets

A Haskell-side Coordination Server is

a server that implements a collection of (parallel) CA functions
a server that provides parameterisable skeletons of parallel
computation
a client that calls CAs to perform the heavy computation.

A minimal interactive Haskell-side Client (cash)
uses Haskell interpreter to provide direct access to SCSCP
interface
useful for prototyping (sequential) code

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on Large-scale Distributed Systems

Objectives SymGrid-Par Design Infrastructure Use cases Summary

Key Technologies of SymGrid-Par

Clear interfaces:

common data format: OpenMath
communication protocol: SCSCP
form of connection: sockets

A Haskell-side Coordination Server is

a server that implements a collection of (parallel) CA functions
a server that provides parameterisable skeletons of parallel
computation
a client that calls CAs to perform the heavy computation.

A minimal interactive Haskell-side Client (cash)
uses Haskell interpreter to provide direct access to SCSCP
interface
useful for prototyping (sequential) code

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on Large-scale Distributed Systems

Objectives SymGrid-Par Design Infrastructure Use cases Summary

High-level Parallelism

Modern parallel architectures are increasingly heterogeneous and
hierarchical.
Low-level control (eg. C+MPI) becomes infeasible on such
machines.
Modern parallel languages adopt an approach of high-level control
of parallelism.

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on Large-scale Distributed Systems

Objectives SymGrid-Par Design Infrastructure Use cases Summary

Modern Parallel Languages

X10: Java-like with asynchronous, anonymous threads, no
explicit communication, partitioned global address space
(virtual shared memory), dependent types to express location
constraints support for generic programming;

Fortress: “type-safe Fortran” an object-oriented language
with implicit parallelism (mostly through libraries),
platform-independent, shared global address space (virtual
shared memory); picks up concepts from Haskell, ML, Scala

Chapel: “provides a higher level of expression” through
anonymous threads, program abstractions to control
parallelism, “separation between algorithmic expression and
implementation”, language constructs to control data locality
supports object-oriented concepts and generic programming

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on Large-scale Distributed Systems

Objectives SymGrid-Par Design Infrastructure Use cases Summary

Software Layers in SymGrid-Par

Access Layer:
Service Layer:
Application Layer:
Coordination Layer:
Communication Layer:
Data Layer:
Connection Layer:

SCSCP interface
Grid
Grid Service
Skeletons
parallel Haskell (Eden)
SCSCP
OpenMath
Sockets

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on Large-scale Distributed Systems

Objectives SymGrid-Par Design Infrastructure Use cases Summary

Parallel Orchestration

SymGrid-Par Infrastructure:

Language: Eden 6.12.2

Stable implementation of a parallel Haskell dialect
Recent improvements in the management of parallelism

Abstractions for parallelism: Algorithmic Skeletons

Capture common patterns of parallel computation
Building on ample experience in parallelising code
Extensibe for particular application domain of parallel symbolic
computation

Hardware:

Runs on any parallel hardware supporting PVM or MPI
Very good match for networks and clusters
Also good results on multi-cores

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on Large-scale Distributed Systems

Objectives SymGrid-Par Design Infrastructure Use cases Summary

Configuring SymGrid-Par

The configuration of SymGrid-Par follows the 3-level system
architecture:

several GAP servers performing the computation:

sgp_admin.sh launch ~/sgprc

a Coordination Server, using Eden for parallelism;

sgp_admin.sh start ~/sgprc

either a command-line or a GAP shell as client;

testClient ...

The entries in the ~/sgprc file are of the form

<hostname> <port> <CAsystem>

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on Large-scale Distributed Systems

Objectives SymGrid-Par Design Infrastructure Use cases Summary

Example

SymGrid-Par provides a simple command-line client that can be
used to start (parallel) computations, without having to install a
full-fledged computer algebra system.

testClient 12321 SumEuler 8000 2000

starting up client, opening port 12321
Calling SumEuler with arguments [8000,2000]
Launching parallel sumEulerParSCSCP 8000 2000, coordinated by the server ...
Result: 19455782

Note: the number of processors is only defined when starting the
Coordination Server.

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on Large-scale Distributed Systems

Objectives SymGrid-Par Design Infrastructure Use cases Summary

Use cases of writing parallel code

With createProcess parallel processes are created explicitly.
Coordination between the processes is implicit.

sumEuler :: Int -> Int -> IO Int
sumEuler n c = do
let ranges = [[i*c+1, (i+1)*c] | i <- [0..(num c n)-1]]
let xs’ = map (createProcess (process (\ns ->

unsafePerformIO (sumEulerRange ns)))) ranges
‘using‘ whnfspine

let xs :: [Int]
xs = map deLift xs’

return (sum xs)

sumEulerRange :: [Int] -> IO Int
sumEulerRange = return .

fromOM . (callSCSCP WS_SumEulerRange) . (map toOM)

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on Large-scale Distributed Systems

Objectives SymGrid-Par Design Infrastructure Use cases Summary

Use cases of writing parallel code

The main worker function is a service, WS SumEulerRange,
provided by a GAP SCSCP server:

SumEulerRange:=function(n,m)
local result, x;
result:=Sum([n..m], x -> euler(x));
return result; end;

On the GAP server side the service is installed like this:

InstallSCSCPprocedure("WS_SumEulerRange", SumEulerRange,
"see sumEuler.g", 1, 2);

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on Large-scale Distributed Systems

Objectives SymGrid-Par Design Infrastructure Use cases Summary

Using a parallel service from inside GAP

This parallel implementation of sumEuler is exported as an
SCSCP service by the Coordination Server.
It can be called from inside a GAP client like this:

EvaluateBySCSCP("CS_SumEuler",
[8000, 2000], "localhost", 12321);

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on Large-scale Distributed Systems

Objectives SymGrid-Par Design Infrastructure Use cases Summary

Using a parallel skeleton

A very common skeleton is parMapFold f g z zs: it applies a
function f to all elements of the list zs and then uses the binary
operator g to combine the individual results to an overall result (z
is the neutral element).

zs:=[87,88,89];
ParMapFold("WS_Phi", "WS_Plus", 0, zs);

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on Large-scale Distributed Systems

Objectives SymGrid-Par Design Infrastructure Use cases Summary

Generating New Knowledge: Summatory Liouville

Search for positive values of the Summatory Liouville function

The Liouville function λ(n) = (−1)r(n), where r(n) is the
number of prime factors of n.

The summatory Liouville’s function, L(x), is the sum of values
of Liouville(n) for all n from [1..x].

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on Large-scale Distributed Systems

Objectives SymGrid-Par Design Infrastructure Use cases Summary

Summatory Liouville

L :: Integer -> Integer -> Int -> [(Integer,Integer)]
L lower upper c = sumL (myMakeList c lower upper)

sumL :: [(Integer,Integer)] -> [(Integer,Integer)]
sumL mylist = mySum ((masterSlaves liouville) mylist)

liouville :: (Integer,Integer) ->
[((Integer, Integer),(Integer,Integer))]

liouville (lower,upper) =
let
l = map gapObject2Integer (gapEvalN "gapLiouville"
[integer2GapObject lower,integer2GapObject upper])
in
((head l, last l), (lower,upper))

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on Large-scale Distributed Systems

Objectives SymGrid-Par Design Infrastructure Use cases Summary

Summatory Liouville [1 ..906150257] Speedups

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

5 10 15 20 25
0

5

10

15

20

25

30

Ru
nt

im
e

Sp
ee

du
p

PEs

Liouville [1..906150257]

Runtime
Relative Speedup

Result almost immediately superceded by [ISSAC09]The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on Large-scale Distributed Systems

Objectives SymGrid-Par Design Infrastructure Use cases Summary

Performance Portability

SymGrid-Par designed for distributed memory architectures

Many CA problems have large thread granularity and hence
perform well on multicores [DAMP09]

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on Large-scale Distributed Systems

Objectives SymGrid-Par Design Infrastructure Use cases Summary

8-core Summatory Liouville [1 . . . 25×106)]

No
Rtime Spdup

CPU
PEs Utilis.

1 526s 1 92.8%

2 264s 1.9 89.6%

3 178s 2.9 93.1%

4 132s 3.9 92.0%

5 106s 4.9 90.7%

6 89s 5.9 90.7%

7 76s 6.9 89.4%

8 68s 7.7 88.9%

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on Large-scale Distributed Systems

Objectives SymGrid-Par Design Infrastructure Use cases Summary

8-core smallGroup [1. . .350]

No
Rtime Spdup

CPU
PEs Utilis.

1 480s 1 96.0%

2 246s 1.9 96.0%

3 165s 2.9 98.6%

4 125s 3.8 98.0%

5 104s 4.6 99.2%

6 91s 5.2 98,7%

7 82s 5.8 98.3%

8 76s 6.3 97.0%

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on Large-scale Distributed Systems

Objectives SymGrid-Par Design Infrastructure Use cases Summary

SymGrid-Par Prototype Performance Summary

For compute-bound problems:

Performance of generic SymGrid-Par is comparable with
bespoke parallel CAs

The SymGrid-Par skeletons deliver speedups even for problems
exhibiting a high degree, and multiple levels, of irregularity

We have generated new CA results using the SymGrid-Par
skeletons

The SymGrid-Par skeletons provide performance portability
across clusters and multicores

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on Large-scale Distributed Systems

Objectives SymGrid-Par Design Infrastructure Use cases Summary

Complete SymGrid-Par Infrastructure

OM
scscp

OM
scscpCA

library

CA

library
pipe

pipe

pipe

client

Coord. Server

pipe

server

pipe

server

pipe

server

PE1 PE2 PE3

CA CA CA

Eden

SMPGpH

CA

Multicore Multicore

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on Large-scale Distributed Systems

Objectives SymGrid-Par Design Infrastructure Use cases Summary

Summary

SymGrid-Par provides clear interfaces (OpenMath, SCSCP), a
high-level parallel programming model (parallel Haskell), and a
(flat) client-server architecture for parallel symbolic computation.

The current release of SymGrid-Par (0.3.2) comes with an
automated install script and some example programs

A set of algorithmic skeletons is provided

We provide a range of domain-specific skeletons (eg. Orbit
computation)

Other example applications exist for the older bespoke
interface

Download:
http://www.cs.st-andrews.ac.uk/~hwloidl/SCIEnce/SymGrid-Par/v0.3/

with INSTALL notes and USE examples.

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on Large-scale Distributed Systems

Objectives SymGrid-Par Design Infrastructure Use cases Summary

Summary

Novel features of SymGrid-Par:

parallel orchestration of SCSCP-based servers;

high-level parallel coordination with domain-specific
skeletons to allow easy parallelisation for non-specialists in the
area of parallel programming;

direct embedding of the interface into a familiar computer
algebra shell;

potentially co-ordinate several SCSCP-based systems in
parallel;

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on Large-scale Distributed Systems

Objectives SymGrid-Par Design Infrastructure Use cases Summary

Reflecting on SCIEnce results

Freedom of choice w.r.t. CA system is crucial: don’t force
users into using a particular system, rather provide interfaces
(SCSCP, domain-specific skeletons) for additional functionality

Interoperability of CA systems opens new opportunities: use
the best algorithmics across all systems

Profit from mathematical expertise encoded in CA software
(cash interface from Haskell side)

Focus on high-level abstractions for parallelism and
domain-specific skeletons to ease parallel computing

High-performance symbolic computation is mostly
unexplored territory!

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on Large-scale Distributed Systems

Objectives SymGrid-Par Design Infrastructure Use cases Summary

Symbolic Computation on Clouds

The CALCIUM project explored symbolic computation on
High-Performance Cloud architectures:

Goal: Assess the suitability of Clouds for symbolic
computation

Application: Determinisation of a non-det. finite state
automaton

Instance of the Orbit skeleton

Based on the existing cluster implementation by Cooperman
et al.

Ported to an OpenNebula based Cloud

1http://www.macs.hw.ac.uk/~hwloidl/Projects/CALCIUM.html

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on Large-scale Distributed Systems

http://www.macs.hw.ac.uk/~hwloidl/Projects/CALCIUM.html

Objectives SymGrid-Par Design Infrastructure Use cases Summary

CALCIUM Results

Good speedups on a private Cloud and small configurations

Gaining access to larger Clouds is administratively difficult

Current Cloud middleware is geared for high-throughput
rather than high-performance computing

High-performance is challenging due to the dynamic and
irregular nature of the parallelism

For symbolic computation, ease-of-access should be the
main selling point:
“Mathematical Software as a Service (SaaS)”

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on Large-scale Distributed Systems

Objectives SymGrid-Par Design Infrastructure Use cases Summary

The Future of Parallel Symbolic Computation

Hierarchical clusters of multi-cores will become the
dominant high-performance computing platform

Fault-tolerance will be crucial to use these for long running
computations

High-level abstractions will be needed to cope with these
architectures

Modern functional languages can be used as either
computation or coordination languages

Can we identify a parallel symbolic challenge application?

1www.macs.hw.ac.uk/sicsawiki/index.php/MultiCoreChallenge

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on Large-scale Distributed Systems

www.macs.hw.ac.uk/sicsawiki/index.php/MultiCoreChallenge

	Objectives
	SymGrid-Par Design
	Infrastructure
	Use cases
	Summary

