SymGrid-Par: a System for Parallel Symbolic
Computation on Large-scale Distributed Systems

The SCIEnce Team

http://www.symbolic-computing.org/

September 22, 2012

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on

Objectives

Today's Challenges for Symbolic Computation

In the SCIEnce! project we addressed the following challenges:

@ transparent access to complex, mathematical software,
through Grid or Cloud Services;

@ uniform data exchange between independent systems through
OpenMath data format and SCSCP protocol;

o exploitation of modern parallel hardware through
high-level orchestration of parallelism.

'http://www.symbolic-computing.org/

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on

http://www.symbolic-computing.org/

Objectives

Today's Challenges for Symbolic Computation

In the SCIEnce! project we addressed the following challenges:

@ transparent access to complex, mathematical software,
through Grid or Cloud Services;

@ uniform data exchange between independent systems through
OpenMath data format and SCSCP protocol;

o exploitation of modern parallel hardware through
high-level orchestration of parallelism.

Therefore, two main focus areas are
@ system interoperability (SCSCP),
@ parallel computation (SymGrid-Par).

'http://www.symbolic-computing.org/

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on

http://www.symbolic-computing.org/

Objectives

Parallelism in Symbolic Applications

The characteristics of parallel symbolic applications are radically
different from numeric applications:
@ parallelism is highly irregular (computation sizes varying up to
10%)
@ parallelism is highly dynamic (new threads generated
throughout with huge differences in thread residency)
@ computations over complex data structures (rather than flat
arrays)
@ base operations are typically integer, not floating point,
operations

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on

Objectives

Parallelism in Symbolic Applications

The characteristics of parallel symbolic applications are radically
different from numeric applications:

@ parallelism is highly irregular (computation sizes varying up to
10%)

@ parallelism is highly dynamic (new threads generated
throughout with huge differences in thread residency)

@ computations over complex data structures (rather than flat
arrays)

@ base operations are typically integer, not floating point,
operations

—> dynamic, adaptive control of parallelism is needed

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on

Objectives

Parallel Programming: Past and Future

Characteristics of parallel programming in the future:
@ on off-the-shelf hardware such as multi-core machines
@ architecture-independent
@ high-level control of the code
@ done by domain experts
o

all areas of computing, especially symbolic computation

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on

Objectives

Parallel Programming: Past and Future

Characteristics of parallel programming in the future:
@ on off-the-shelf hardware such as multi-core machines
@ architecture-independent
@ high-level control of the code
@ done by domain experts

@ all areas of computing, especially symbolic computation

=—> Desktop parallelism

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on

Objectives

Domain-specific Skeletons

We raise the level of abstraction for parallel computation by using
domain-specific skeletons:

@ Skeletons encode commonly occuring patterns of parallel
computation.

@ Such patterns are increasingly used in main-stream parallel
programming (Google MapReduce).
@ We implemented a range of patterns specific to symbolic
computation:
o Orbit pattern
o Multiple-homomorphic images pattern (using the modular
method of problem solving)
o Critical-pair Completion pattern (tested with Grobner Bases)

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on

SymGrid-Par Design

mGrid-Par Design

WebiCA ; —
User Interface (U &

Direct SymGrid-Par
Imr"u

Services Middleware o CA interface

i + ¥

CA Systems Gap Maple MuPad Kant ..

(Engines) /

P]

Grid Middleware to CA interface

— I % 'y
CA Systems U I e Y
(multipla engines) L !

The SCIEnce Team SymGri : a System for Parallel Symbolic Computation

SymGrid-Par Design

SymGrid-Par Infrastructure

CA
client
socket
OpenMath
CAG | scscp
socket
Coord. Server
socket
OpenMath
GCA SCSCP
socket [SOcket |
CA CA CA
server server server

The SCIEnce Team

SymGrid-Par: a System for Parallel Symbolic Computation on

SymGrid-Par Design

Components of the Architecture

@ Either command-line client or a client of a computer algebra
system.
@ High-level Coordination Server handling parallelism

o uses parallel Haskell as high-level programming model
e parallelism is mainly specified and coordinated here
e automatic resource management on this level

@ Any SCSCP-based computer algebra server:

o tested with GAP and a Haskell-side server
e servers can themselves use parallelism, but
e no direct communication between servers

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on

SymGrid-Par Design

Key Technologies of SymGrid-Par

o Clear interfaces:
e common data format: OpenMath
e communication protocol: SCSCP
e form of connection: sockets

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on

SymGrid-Par Design

Key Technologies of SymGrid-Par

@ Clear interfaces:

e common data format: OpenMath
e communication protocol: SCSCP
e form of connection: sockets

e A Haskell-side Coordination Server is
e a server that implements a collection of (parallel) CA functions
e a server that provides parameterisable skeletons of parallel

computation
e a client that calls CAs to perform the heavy computation.

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on

SymGrid-Par Design

Key Technologies of SymGrid-Par

@ Clear interfaces:
e common data format: OpenMath
e communication protocol: SCSCP
e form of connection: sockets
e A Haskell-side Coordination Server is
e a server that implements a collection of (parallel) CA functions
e a server that provides parameterisable skeletons of parallel
computation
e a client that calls CAs to perform the heavy computation.
@ A minimal interactive Haskell-side Client (cash)
o uses Haskell interpreter to provide direct access to SCSCP
interface
o useful for prototyping (sequential) code

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on

SymGrid-Par Design

High-level Parallelism

Modern parallel architectures are increasingly heterogeneous and
hierarchical.

Low-level control (eg. C+MPI) becomes infeasible on such
machines.

Modern parallel languages adopt an approach of high-level control
of parallelism.

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on

SymGrid-Par Design

Modern Parallel Languages

@ X10: Java-like with asynchronous, anonymous threads, no
explicit communication, partitioned global address space
(virtual shared memory), dependent types to express location
constraints support for generic programming;

o Fortress: “type-safe Fortran” an object-oriented language
with implicit parallelism (mostly through libraries),
platform-independent, shared global address space (virtual
shared memory); picks up concepts from Haskell, ML, Scala

o Chapel: “provides a higher level of expression” through
anonymous threads, program abstractions to control
parallelism, “separation between algorithmic expression and
implementation”, language constructs to control data locality
supports object-oriented concepts and generic programming

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on

Software Layers in SymGrid-Par

Access Layer:
Service Layer:
Application Layer:
Coordination Layer:

Communication Layer:

Data Layer:
Connection Layer:

The SCIEnce Team

Infrastructure

SCSCP interface
Grid

Grid Service

Skeletons

parallel Haskell (Eden)
SCSCP

OpenMath

Sockets

SymGrid-Par: a System for Parallel Symbolic Computation on

Infrastructure

Parallel Orchestration

SymGrid-Par Infrastructure:
@ Language: Eden 6.12.2
e Stable implementation of a parallel Haskell dialect
e Recent improvements in the management of parallelism
@ Abstractions for parallelism: Algorithmic Skeletons

o Capture common patterns of parallel computation
e Building on ample experience in parallelising code
e Extensibe for particular application domain of parallel symbolic
computation
@ Hardware:

e Runs on any parallel hardware supporting PVM or MPI
e Very good match for networks and clusters
e Also good results on multi-cores

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on

Use cases

Configuring SymGrid-Par

The configuration of SymGrid-Par follows the 3-level system
architecture:

@ several GAP servers performing the computation:
sgp_admin.sh launch ~/sgprc

@ a Coordination Server, using Eden for parallelism;
sgp_admin.sh start ~/sgprc

@ either a command-line or a GAP shell as client;
testClient ...

The entries in the ~/sgprc file are of the form

<hostname> <port> <CAsystem>

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on

Use cases

Example

SymGrid-Par provides a simple command-line client that can be
used to start (parallel) computations, without having to install a
full-fledged computer algebra system.

testClient 12321 SumEuler 8000 2000

starting up client, opening port 12321

Calling SumEuler with arguments [8000,2000]

Launching parallel sumEulerParSCSCP 8000 2000, coordinated by th
Result: 19455782

Note: the number of processors is only defined when starting the
Coordination Server.

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on

Use cases

Use cases of writing parallel code

With createProcess parallel processes are created explicitly.
Coordination between the processes is implicit.

sumEuler :: Int -> Int -> I0 Int

sumEuler n ¢ = do

let ranges = [[i*c+1l, (i+1)*c] | i <- [0..(num c n)-1]]

let xs’ = map (createProcess (process (\ns ->
unsafePerformI0 (sumEulerRange ns)))) ranges
‘using‘ whnfspine

let xs :: [Int]

xs = map delLift xs’
return (sum xs)

sumEulerRange :: [Int] -> I0 Int
sumEulerRange = return .
fromOM . (callSCSCP WS_SumEulerRange) . (map toOM)

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on

Use cases

Use cases of writing parallel code

The main worker function is a service, WS_SumEulerRange,
provided by a GAP SCSCP server:

SumEulerRange:=function(n,m)

local result, x;

result:=Sum([n..m], x —> euler(x));
return result; end;

On the GAP server side the service is installed like this:

InstallSCSCPprocedure ("WS_SumEulerRange", SumEulerRange,
"see sumEuler.g", 1, 2);

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on

Use cases

Using a parallel service from inside GAP

This parallel implementation of sumEuler is exported as an
SCSCP service by the Coordination Server.
It can be called from inside a GAP client like this:

EvaluateBySCSCP("CS_SumEuler",
[8000, 2000], "localhost", 12321);

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on

Use cases

Using a parallel skeleton

A very common skeleton is parMapFold f g z zs: it applies a
function £ to all elements of the list zs and then uses the binary
operator g to combine the individual results to an overall result (z
is the neutral element).

zs:=[87,88,89];
ParMapFold ("WS_Phi", "WS_Plus", 0, zs);

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on

Use cases

Generating New Knowledge: Summatory Liouville

@ Search for positive values of the Summatory Liouville function
e The Liouville function A(n) = (—1)"("), where r(n) is the
number of prime factors of n.

@ The summatory Liouville's function, L(x), is the sum of values
of Liouville(n) for all n from [1..x].

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on

Use cases

Summatory Liouville

L :: Integer -> Integer -> Int -> [(Integer,Integer)]
L lower upper ¢ = sumlL (myMakeList c lower upper)

sumlL :: [(Integer,Integer)] -> [(Integer,Integer)]
sumlL mylist = mySum ((masterSlaves liouville) mylist)

liouville :: (Integer,Integer) ->
[((Integer, Integer), (Integer,Integer))]

liouville (lower,upper) =

let

1 = map gapObject2Integer (gapEvalN "gapLiouville"

[integer2GapObject lower,integer2GapObject upper])
in
((head 1, last 1), (lower,upper))

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on

Use cases

Summatory Liouville [1 ..90615

Runtime

110000

7] Speedups

Liouville [1..906150257]

100000 1
90000 -
80000 |
70000
60000 - !
50000 4
40000 4
30000 - :
20000

10000

ot

Runtime ---a--
Relative Speedup -

30

“F 25

r 15

Speedup

r 10

The SCIEnce Team

SymGrid-Par: a System for Parallel Symbolic Computation on

Use cases

Performance Portability

@ SymGrid-Par designed for distributed memory architectures

@ Many CA problems have large thread granularity and hence
perform well on multicores [DAMPOQ9]

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on

Use cases

8-core Summatory Liouville [1...25x10°)]

No ||.. CPU
Rtime Spdup Utilis.
1 || 526s 1| 92.8%
2 || 264s| 19| 89.6%
3 || 178s| 29| 93.1%
4 || 132s| 39| 92.0%
5 || 106s| 4.9| 90.7%
6

7

8

89s| 59| 90.7%
76s| 6.9 89.4%
68s| 7.7\ 88.9%

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on

Use cases

8-core smallGroup [1...350]

No) CPU
pEs|[RHme SPdup | e
1 || 480s| 1] 96.0%
246s| 1.9 96.0%
165s| 2.0 98.6%
125s| 38| 98.0%
104s| 46| 99.2%
ols| 52| 98.7%
82s| 58| 98.3%
76s| 63| 97.0%

O N[OOI B|WIN

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on

Use cases

SymGrid-Par Prototype Performance Summary

For compute-bound problems:

@ Performance of generic SymGrid-Par is comparable with
bespoke parallel CAs

@ The SymGrid-Par skeletons deliver speedups even for problems
exhibiting a high degree, and multiple levels, of irregularity

@ We have generated new CA results using the SymGrid-Par
skeletons

@ The SymGrid-Par skeletons provide performance portability
across clusters and multicores

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on

Summary

Complete SymGrid-Par Infrastructure

CA

client
pipe

Multicore

Multicore

CA
library

CA

librar
! v pipe
Coord. Server
Eder pipe
OM
scsc
pipe pipe pipe
CA CA CA
server server server
PE2 PE3

PE1

SymGrid-Par: a System for Parallel Symbolic Computation on

The SCIEnce Team

Summary

Summary

SymGrid-Par provides clear interfaces (OpenMath, SCSCP), a
high-level parallel programming model (parallel Haskell), and a
(flat) client-server architecture for parallel symbolic computation.

@ The current release of SymGrid-Par (0.3.2) comes with an
automated install script and some example programs
@ A set of algorithmic skeletons is provided

e We provide a range of domain-specific skeletons (eg. Orbit
computation)

@ Other example applications exist for the older bespoke
interface

Download:

http://www.cs.st-andrews.ac.uk/ "hwloidl/SCIEnce/SymGrid-Par/v0.3
with INSTALL notes and USE examples.

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on

Summary

Summary

Novel features of SymGrid-Par:
@ parallel orchestration of SCSCP-based servers;

@ high-level parallel coordination with domain-specific
skeletons to allow easy parallelisation for non-specialists in the
area of parallel programming;

@ direct embedding of the interface into a familiar computer
algebra shell;

@ potentially co-ordinate several SCSCP-based systems in
parallel;

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on

Summary

Reflecting on SCIEnce results

@ Freedom of choice w.r.t. CA system is crucial: don't force
users into using a particular system, rather provide interfaces
(SCSCP, domain-specific skeletons) for additional functionality

@ Interoperability of CA systems opens new opportunities: use
the best algorithmics across all systems

@ Profit from mathematical expertise encoded in CA software
(cash interface from Haskell side)

@ Focus on high-level abstractions for parallelism and
domain-specific skeletons to ease parallel computing

o High-performance symbolic computation is mostly
unexplored territory!

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on

Summary

Symbolic Computation on Clouds

The CALCIUM project explored symbolic computation on
High-Performance Cloud architectures:

@ Goal: Assess the suitability of Clouds for symbolic
computation

o Application: Determinisation of a non-det. finite state
automaton

@ Instance of the Orbit skeleton

@ Based on the existing cluster implementation by Cooperman
et al.

@ Ported to an OpenNebula based Cloud

"http://www.macs.hw.ac.uk/ hwloidl/Projects/CALCIUM.html

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on

http://www.macs.hw.ac.uk/~hwloidl/Projects/CALCIUM.html

Summary

CALCIUM Results

@ Good speedups on a private Cloud and small configurations
@ Gaining access to larger Clouds is administratively difficult

@ Current Cloud middleware is geared for high-throughput
rather than high-performance computing

@ High-performance is challenging due to the dynamic and
irregular nature of the parallelism

@ For symbolic computation, ease-of-access should be the
main selling point:
“Mathematical Software as a Service (SaaS)”

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on

Summary

The Future of Parallel Symbolic Computation

@ Hierarchical clusters of multi-cores will become the
dominant high-performance computing platform

o Fault-tolerance will be crucial to use these for long running
computations

@ High-level abstractions will be needed to cope with these
architectures

@ Modern functional languages can be used as either
computation or coordination languages

@ Can we identify a parallel symbolic challenge application?

lyww.macs.hw.ac.uk/sicsawiki/index.php/MultiCoreChallenge

The SCIEnce Team SymGrid-Par: a System for Parallel Symbolic Computation on

www.macs.hw.ac.uk/sicsawiki/index.php/MultiCoreChallenge

	Objectives
	SymGrid-Par Design
	Infrastructure
	Use cases
	Summary

