
Types in Natural LanguageFairouz KamareddineLogi, due to the paradoxes, is absent from the type free �-alulus. This makes suh a alulus an unsuitable devie forNatural Language (NL) Semantis. Moreover, the problems that arise from mixing the type free �-alulus with logi leadto type theory and hene formalisations of NL were arried out in a stritly typed framework. It was shown however, thatstrit typing annot apture the self-referential nature of language [6, 1, 3℄ and hene other approahes were needed. Forexample, [6℄ reates a notion of oating types whih an be instantiated to partiular instanes of types whereas [1, 3℄ usea type free framework. In this paper, we will embed the typing system of [6℄ into a version of [3℄ giving an interpretation ofParsons' system in a type free theory where logi is present. We take the standpoint that type freeness is needed yet typesare indispensable. On this ground, by onstruting types in the type free theory, we obtain a framework whih an be seenas a formalisation of Parsons' laim that Natural Language needs type freeness in order to aommodate self referentialityyet many sentenes should be understood as impliitly typed. We improve a lot in the expressivity of Parsons' system byallowing him to talk about sentenes that he ould not talk about previously. Even more, with our exible typing sheme,we an allow any sentene and type hek it as long as its type is not irular (i.e. paradoxial). If the type is irular, wehange the �nal type of the sentene so that a paradox is impossible to derive. This approah is ertainly exible.We argue that NL annot be rigidly typed and that if we start from the type free �-alulus, we an exibly type NLterms. Types are polymorphi in the sense that we allow variable types whih an be instantiated to anything. For example,the identity funtion has type �0 ! �0, and the identity funtion applied to of type e will result in elements of type e.The polymorphi power of the system omes from the ability to typehek all polymorphi funtions even those whihare problemati in other systems. For example the �xed point operator, Y = �f:(�x:f(xx))(�x:f(xx)) is typeheked to(�2 ! �2)! �2 and even YY is typeheked to �2. ! = �x:xx is typeheked to (�1 ! �1)! �1 and ! applied to itself istypeheked to �1 . These types an be instantiated so that YI where I is �x : e:x, is typeheked to e naturally. We believethis system is one of the �rst whih an typehek all the above while remaining very expressive and simple. Another nieharateristi of the system is its ability to ombine logi and the type free �-alulus while remaining onsistent. So eventhough the Russell sentene �x::(xx) is a well formed sentene of the system, its type annot be found. In fat, the systemreturns an error message explaining that this sentene has a irular type. The same thing applies to Curry's sentene(�x:xx ! ?). Finally, the typing sheme that we present has a wide range of appliations (see [3, 2, 5, 4℄). The reasonbeing that even though types are very informative either in programming language (PL) or in NL, type freeness and thenon-restrited typing shemes are a neessity in interpreting many NL and PL onstruts. We believe it neessary not tobe too sared of the paradoxes to the point of using too restrited languages.Referenes[1℄ Chierhia, and Turner, R., Semantis and property theory, Linguistis and Philosophy 11, 261-302, '88.[2℄ Kamareddine, F., A system at the ross roads of logi and funtional programming, Siene of Computer Programming19, 239-279, '92.[3℄ Kamareddine, F., and Klein, E., Polymorphism, Type ontainment and Nominalisation, Logi, Language and Infor-mation 2, 171-215, '93.[4℄ Kamareddine, F., A type free theory and olletive/distributive prediation, Logi, Language and Information 4 (2),85-109, '95.[5℄ Kamareddine, F., Important Issues in Foundational Formalisms, Interest Group of Pure and applied Logi 3 (2,3),291-317, '95.[6℄ Parsons, T., Type Theory and Natural Language, Linguistis, Philosophy and Montague grammar, S Davis and MMithum (eds), University of Texas press, 127-151, '79.
1


