
c© British Computer Society 2002

Capsule Reviews

In this issue we introduce a new section of the Journal called Capsule Reviews. It is intended to
provide a short succinct review of each paper in the issue, in order to bring the content to a wider

readership. All reviews here are by Associate Editor, Fairouz Kamareddine.

Using a distributed approach to retrieve and integrate
information from heterogenous distributed databases.
H. T. EL-KHATIB, M. H. WILLIAMS, D. H. MARWICK

AND L. M. MACKINNON

This paper, as the title explains, deals with information
integration and retrieval from a collection of heterogeneous
distributed databases. It is based on the results of the
authors of the MIPS system, which links together distributed
heterogeneous databases. This paper has re-engineered the
MIPS part of breaking down a query to sub-queries and
finding answers to these sub-queries in order to produce a
distributed agent-based approach that can handle a larger
number of databases. In doing so, the paper describes an
agent-based architecture as an alternative to the centralized
approach of MIPS. In the authors’ view, moving the
knowledge from the centralized knowledge base system
module and distributing it over the network using software
agents, significantly raises the limit on the number of
databases that can be handled by the system.

The design is overviewed thoroughly in the paper and the
agent structure is given in detail. The authors then illustrate
the roles of agents in an example of a simple query (‘find the
medication price for patient number 529’). The paper is an
enjoyable read and has a thorough list of references.

An extended temporal logic for CSCW. C. PAPADOPOU-
LOS

This paper is concerned with CSCW (computer supported
cooperative work). Formal specification and verification
methods have played a vital role in guaranteeing the
correctness of CSCW. This is vital because CSCW systems
are often informally described because they are large
and involve a large amount of information in various
forms. This paper follows the trend of using formal
methods to represent and reason about CSCW. It chooses
a temporal logic to formally describe properties of CSCW
where it develops a groupware temporal logic (GTL) for
specifying timing properties of CSCW. It shows that GTL is
expressive and develops finite-state models for synchronous
and asynchronous collaboration.

The paper concentrates on the importance of facilitating
the design of real-life systems and hence the GTL logic it
provides builds on many other logics that have proved useful
for various important applications (e.g. CTL*, linear-time
logic, real-time temporal logic TPTL, real-time event logic
SREL). The paper gives the model of GTL and explains in
detail unary and binary temporal operators. After giving the
logic and its model, the paper develops finite state models for
synchronous and asynchronous collaboration. Thereafter, it

explains how verification of CSCW with model checking
can be carried out to verify the correct behaviour of a CSCW
system especially for fairness and flexible sharing. Model
checking is used as a method for verification due to its
efficiency. The paper is enjoyable to read.

Explaining polymorphic types. Y. JUN, G. MICHAELSON

AND P. TRINDER

Type theory has been invented to avoid serious flaws in
logic. However, type theory has also played a vital role in
the design and implementation of programming languages.
Types in programming languages avoid undesired/erroneous
computations such as adding a number to a Boolean. There
is a variety of typing notions. The authors concentrate
on the polymorphic notion. Polymorphic types are a
powerful mechanism to avoid unnecessary repetitions and
to enable expressive programs. Implementing polymorphic
types involves operations of unification and substitution with
intermediate results that are not intuitive to the average
programmer. For this reason, there has been a large
amount of interest in the community in providing help
to the programmer to explain the cause of errors during
type checking a polymorphic term. This paper focuses on
the difference between machine and human explanation of
types. It concentrates on a small functional programming
language (the λ calculus with let expressions). It starts
by explaining the Hindley–Milner algorithm W. From W,
the paper moves to a new type inference, algorithm H,
which annotates types with information about how they were
inferred. H is used to construct an annotated type graph
based on the abstract syntax tree recording a history of
inference of each node. The annotated abstract syntax tree is
used to generate an explanation for the errors. The authors
check their method and algorithm via a number of tests and
users. Results of these tests are reported on in the paper.

Periodic and aperiodic task scheduling in strongly
partitioned integrated real-time systems. D. KIM AND

Y.-H. LEE

In integrated real-time systems such as the Integrated
Modular Avionics, sharing resources is a key issue.
This makes it vital to have a well thought out spatial
partitioning which guarantees controlled access to all
components of the system. Similarly to space partitioning,
temporal partitioning is vital as it guarantees control during
hazardous or unexpected events. This paper deals with
task scheduling in strongly partitioned integrated real-
time systems. It provides a strongly partitioned real-time
system (SPIRIT) with a two-level hierarchical scheduling

THE COMPUTER JOURNAL, Vol. 45, No. 4, 2002



380 CAPSULE REVIEWS

mechanism used to schedule processors. As a result of this
partitioning, performance can be enhanced, and complex
systems can be upgraded and easily maintained.

This paper is thorough in presenting the SPIRIT model
and its fundamental scheduling theory using the two-
layer scheduling approach. Scheduling of both soft
and hard aperiodic tasks is well situated within the
SPIRIT environment. For example, to dynamically
schedule aperiodic tasks in a distance-constrained cyclic
schedule, three basic operations to manipulate table entries
are proposed: Left-sliding (which slides to the left the
current phase of the cyclic schedule), Right-putting (which
exchanges the allocation of the current partition) and
compacting operations (which reduces the problem of
segmentation). The system is well evaluated by simulation
studies which judge the response time and acceptance rate.

Concurrency control using timestamp ordering in
broadcast environments. V. C. S. LEE, K.-W. LAM AND

S. H. SON

The physical constraints of wireless communications pose
a number of challenging issues in transaction processing.
For example, in wireless mobile networks, the servers have
a high bandwidth broadcast capability while the mobile
client has a limited bandwidth broadcast capability. More-
over, the large number of mobile clients may overload
the server. This paper departs from these observations
and uses the so-called broadcast-based data dissemination
methods where the server repeatedly and continuously
broadcasts all data objects in the database. This paper
proposes concurrency control protocols to be applied in
such a broadcast-based architecture. The main observation
of the paper is that the workloads of many applications in
mobile computing environments are comprised of read-only
transactions which do not modify data (e.g. stock prices,
weather information, etc.). Hence, the proposed protocols
of this paper exploit the semantics of read-only transactions.
In order to guarantee the correctness and consistency of
the processing of transactions, this paper uses optimistic
concurrency control with a forward validation protocol.
In optimistic concurrency control, transactions are al-
lowed to execute unhindered until they reach their commit
point at which they are validated. The paper is well written.

The proposed model is well motivated and followed by
a series of simulation experiments and discussions of its
performance. The experiments highlight the usefulness of
the approach of this paper where the read-only nature of
some information is exploited and where serialization and
other concurrency control methods are brought together to
provide nice features that meet the challenges posed by
dealing with mobile wireless communications.

Lower bounds for one-to-one packet routing on trees
using hot-potato algorithms. A. ROBERTS, A. SYMVONIS

AND D. R. WOOD

Before explaining what a one-to-one packet routing problem
is, let us first explain what a packet routing problem is.
We start with a synchronous network that is represented by a
connected undirected graph and a set of packets distributed
over the nodes of the graph. Each packet has an origin
and a destination node. The packet routing problem is
to route each packet to its destination in as few steps as
possible, assuming that each edge carries at most one packet
in each direction at each time step. The routing pattern is the
distribution of the origins and destinations of the packets.
Such a pattern is many-to-many if each node could be the
origin and destination of more than one packet. The pattern
is one-to-one if each node is the origin and destination of
at most one packet. Routing algorithms can be on-line
or off-line. This paper is concerned with the on-line one-
to-one packet routing on trees. It considers a particular
algorithm known as the ‘hot-potato algorithm’ where each
packet must traverse a link at every step until it reaches
its destination. The paper considers the greedy form of
the hot-potato algorithm, which attempts to advance each
packet towards its destination. It attempts to bridge the
gap concerning the performance analysis of the greedy hot-
potato algorithm. The main results of the paper are that: (i)
any greedy hot-potato algorithm routes a one-to-one routing
pattern on an n-node tree within 2(n–1) steps; (ii) that
there are one-to-one routing problems requiring at least
3n/2 steps by an oblivious greedy hot-potato algorithm;
and (iii) that the upper bound is optimal. This a very
enjoyable, well-written paper where the notions are well
presented and explained, and the results are very useful.
Very recommended reading.

THE COMPUTER JOURNAL, Vol. 45, No. 4, 2002


