
Capsule Reviews

Hardware-Oriented Algorithms for Rendering Order-

Independent Transparency. M. AMOR, M. BÓO, E. J. PADRÓN

AND D. BARTZ

This paper starts from the goal of increasing visual realism in

scenes with high depth complexity. This goal requires sorting

algorithms that render transparent objects properly into a

scene (after having rendered opaque objects). In real time

applications, the available hardware resources in graphics

cards make the correct sorting a difficult architectural and

scheduling problem and hence existing algorithms seem to

suffer from some drawbacks. This paper proposes two new

algorithms that reduce the time requirements of pervious

proposals while at the same time, only requiring minor modi-

fications to the general structure of current graphics cards.

The first proposal is a hardware-oriented algorithm based on

weight factor computations and processes the transparencies

without requiring their previous sorting. This algorithm only

requires a comparator, two adders and a multiplicator and can

be performed in any order (unlike earlier algorithms which

used back-to-front sorted order). Moreover, this algorithm is

sequential and is directly associated to the reduced number of

hardware resources available. The second proposal is a hard-

ware-oriented algorithm based on a pre-sorting stage (based on

the transitivity of the distance relation), which aids the reduc-

tion of the time requirements of previous proposals. Both

algorithms are evaluated in terms of the time and hardware

requirements. It is shown that both algorithms reduce the time

requirements per pixel with respect to previous proposals at

the cost of including an organized storage scheme in contrast

with the traditional random storage. Moreover, both algo-

rithms reduce the memory bandwidth requirements of previ-

ous hardware proposals.

Instruction-Level Parallelism through Microthreading—

A Scalable Approach to Chip Multiprocessors. K. BOUSIAS,

N. HASASNEH AND C. JESSHOPE

Chip multiprocessors (CMPs) aid to achieve major increases

in the computational power of computers. Although CMPs

scale well, programming them without explicit use of con-

currency remains a major problem. Moreover, in the presence

of a number of processors used in a CMP, it remains difficult

to split the code into a number of independent threads, to

schedule these on many processors and to do this with a

low and scalable overhead. This paper addresses this problem

by aiming to define a feasible architecture for a scalable CMP

which minimizes the communication and synchronization

overheads between different threads. The presented solution

in the paper is based on the decomposition of a sequential

program into small fragments of code called microthreads

which are scheduled dynamically and which can communicate

and synchronize together quite efficiently. Furthermore, the

paper presents an analysis of microthreaded register file

ports in terms of the average number of accesses to each

port of the register file which illustrates some advantages of

the method. Moreover, preliminary simulation results are

given which again establish some advantages related to

scalability.

Using Control Dependencies for Space-Aware Bytecode
Verification. C. BERNARDESCHI, G. LETTIERI, L. MARTINI

AND P. MASCI

The Java Virtual Machine checks security using the bytecode

verifier which helps ensure that bytecode execution cannot

compromise the memory. A Java card is a smart card

which runs on a Java Card Virtual Machine (JCVM). Java

cards present the challenge of requiring high security features

while only having limited resources. Major challenges arise

because of the large memory space requirements of the veri-

fication process which make it difficult to embed the imple-

mentation of a bytecode verifier in the JCVM. As a matter

of fact, on-card bytecode verification requires special optim-

izations since cards have limited memory resources and fur-

thermore, bytecode verification is expensive in space. Even

the dictionary size of not very complex methods is too large to

fit in the RAM available on Java cards. This paper is concerned

with this on-card verification process. The paper proposes a

verification algorithm which has the potential of saving space

through the optimization of the use of memory by associating a

lifetime to the data structures. The algorithm is given in two

variants (an If-based algorithm which saves execution states of

conditional instructions and a Target-based algorithm which

saves execution states of jump targets). The two algorithms

are compared and are used in experimental settings related

to developing prototype verifiers in the so-called Bytecode

Engineering Library. These experimental results are most

encouraging.

The Computer Journal Vol. 49 No. 2, 2006

� The Author 2006. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org

doi:10.1093/comjnl/bxl005


