
© The Author 2011. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oup.com

doi:10.1093/comjnl/bxr044

Capsule Reviews

Fairouz Kamareddine

The Capsule Reviews are intended to provide a short succinct review of each paper in the issue in
order to bring it to a wider readership. The Capsule Reviews were compiled by Fairouz Kamareddine.
Professor Kamareddine is an Associate Editor of The Computer Journal and is based in the
Department of Mathematical and Computer Sciences at Heriot-Watt University, Edinburgh, UK.

On the Topological Properties of Grid-Based Interconnec-
tion Networks: Surface Area and Volume of Radial Spheres.
H. Sarbazi-Azad, A. Khonsari and M. Ould-Khoua

This paper aims at deriving topological properties of grid
networks and at providing expressions for computing the
number of nodes located within a certain distance from a
certain node with respect to surface area and volume in various
types of grids. After introducing basic definitions, notations and
preliminaries in combinatorial foundation, the authors explain
how to derive the surface area and volume of the radial sphere
in both the mesh and the torus grids. Then, special cases that
include the k-ary n-cube and the hypercube are considered for
which the surface area and volume expressions are also derived.
Thereafter, the application to performance modelling under
uniform traffic load is considered as well as the application
of modelling under hotspot traffic load.

Safety, Dependability and Performance Analysis of
Extended AADL Models. Marco Bozzano, Alessandro

Cimatti, Joost-Pieter Katoen, Viet Yen Nguyen, Thomas

Noll and Marco Roveri

The authors argue that although several approaches to
component-based design exist in the literature, error handling
and modelling have not received the attention they deserve.
Furthermore, the authors argue that there is a lack of good
notation in such approaches. For these reasons, the paper
proposes a practical component-based modelling approach with
appropriate means for modelling probabilistic fault behaviour.
The approach is based on the Architecture Analysis and Design
Language which allows a good description of a number of
operations and aspects as well as a dynamic reconfiguration
of components and port connections. First, the System Level
Integrated Modelling (SLIM) language is introduced with its
nominal and error behaviours, and with its fault injection which
describes the effect of the occurrence of an error on the nominal
behaviour of the system. The semantics of SLIM is given and
the fault injections are used to associate the error model to the
nominal model leading to an extended model that represents

the complete system behaviour. The new proposed framework
is formally analysed for validation, model checking, safety and
dependability, diagnosability and performance evaluation. A
prototype tool is then presented and followed by a discussion
of related work.

Fast Generation of t-ary Trees. James F. Korsh

The paper starts by stating that of the algorithms for generating
binary or t-ary trees represented by sequences of integers,
only three generate the next tree directly from its predecessor.
In an earlier work, these algorithms have been analysed for
their average number of memory references and it was shown
that the time complexity is proportional to these memory
references. This paper presents new tree generation algorithms
that generate the tree directly from its predecessor. After an
overview of the background and motivation, a new binary tree
generation algorithm is given and is then generalized to the
t-ary version. Both algorithms generate a tree from its
predecessor but neither is as efficient as existing algorithms.
For this reason, the author proceeds to make these algorithms
more efficient by keeping track of the parent of each node using
an array and by using further measures to make these algorithms
very fast. Three further algorithms are given with the purpose of
achieving efficient tree generation. The efficiency of the various
algorithms is analysed by determining the number of references
required.

Local Memory Design Space Exploration for
High-performance Computing. Ramon Bertran, Marc

Gonzalez, Xavier Martorell, Nacho Navarro and

Eduard Ayguade

This paper argues that the optimal memory model for
high-performance computing is not defined since it depends
on design goals that include performance, energy consumption,
scalability, area and programmability. Furthermore, all
these memory models have a low-latency/high-bandwidth
size-constrained stack of intermediate memories plus a

The Computer Journal, Vol. 54 No. 5, 2011

 by guest on June 4, 2012
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


640 Capsule Reviews

huge high-latency/low-bandwidth main memory. Intermediate
memories are managed either implicitly by hardware or
explicitly by software. This paper focuses on software-managed
local memories (LMs) and proposes a hybrid memory model
that combines an existing memory hierarchy with an LM plus
a simple programmable DMA controller that performs asyn-
chronous memory transfers. The new architecture is presented
and implemented. Twenty-seven computational loops from four
different benchmarks have been evaluated and performance
results are presented. Two case studies are given and the overall
evaluation is presented for performance, energy, energy delay
product and area and access time considerations.

A Web-Based Personalized Mobility Service for
Smartphone Applications. Murat Ali Bayir, Murat

Demirbas and Ahmet Cosar

This paper aims to develop a personalized and lightweight
mobility service for smartphone applications with two example
applications (location prediction and air pollution exposure
risk estimation). A review of related work is followed by the
general system architecture TRACK ME of the web-based
framework. Each component of the TRACK ME framework
is given in detail. These components include the TRACK ME
client software, which continuously logs cell tower connectivity
data and periodically forwards location data via opportunistic
http requests. Another component is the mobility profiler which
is an off-line component that converts low-level location data
units to high-level mobility profiles by periodically running
the mobility path construction, eliminating noise over mobility
paths, discovering mobility patterns and integrating data for
mobility profiles. The most important component of the TRACK
ME framework is the query engine, which provides application
services with a rule-based query definition and an execution
interface for the purpose of accessing mobility profiles. The
TRACK ME framework and its components are illustrated
for the two example applications (location prediction and
air pollution exposure risk estimation). Experimental results
emphasize the mobility profile discovery and the scalability of
the system in terms of the complexity of queries forwarded to the
query engine and the size of the location data processed by the
whole framework. Detailed experimental results are discussed
for the two example applications.

Data Cache Prefetching with Dynamic Adaptation. Minhaj

Ahmad Khan

Cache prefetching allows data to be fetched from memory into
the cache before processing, and enables better performance

since cache miss penalties are not incurred if the processor finds
the required data in the cache. However, the prefetch distance
depends on the latency of the cache miss and the iteration
of the process. Since latency cannot be statically determined,
this paper proposes that latencies be calculated dynamically in
order to obtain accurate prefetching of data. Dynamic cache
prefetching fetches data into the cache at runtime and allows
the adaptation of the prefetch distance in accordance with
the runtime behaviour. This results in better performance. The
author presents his approach to runtime data cache prefetching,
which consists in generating templates at compile time, avoiding
costly activities like code generation allocation of registers and
scheduling of instructions. Static compile-time activities (like
selection of variables, cost/benefit analysis and the generation
of the template for run-time adaptation) are explained and then it
is shown how the prefetch distance can be adapted at run-time.
A prototype implementation has been carried out to perform
dynamic cache prefetching with two different offsets resulting
in two different versions which are compared. Finally, the paper
discusses the experimental results and the related work.

An Optimal Rotation Distance Set. Yen-Ju Chen, Jia-Jie Liu

and Yue-Li Wang

A rotation transforms a binary tree T into another binary tree
T ′ such that the symmetric order of T is preserved. The rotation
distance d(T , T ′) where T and T ′ are binary trees with the same
number of leaves, is the minimum number of rotations needed to
transform T into T ′. It is not known whether rotation distances
can be computated in polynomial time. A number of studies
have been carried out on estimating rotations. One such study
uses the left-weight sequences (LW-sequences) to characterize
binary trees. This paper makes use of such characterization of
binary trees into LW-sequences and defines a set S of binary
trees such that the rotation distance between any two trees in S is
the same and moreover, the computation of the rotation distance
is linear in time. After an introduction to the preliminaries, left
weight/right weight sequences, restricted LW-sequences (RLW-
sequences) and RLW-trees are introduced along with the set
containing all the RLW-trees of n internal nodes. This latter
set has 2n−1 binary trees and is the restricted set for which
the rotation distance is studied. An algorithm is given, which
takes two RLW-sequences wl(T ) and wl(T

′), finds the rotation
distance between them and builds a sequence of transforming
rotations between T and T ′. The algorithm is then analysed in
detail and it is shown that, given the RLW-sequences of two
RLW-trees T and T ′ of nodes n, the algorithm produces exactly
d(T , T ′) rotations to transform T into T ′ in linear time.

The Computer Journal, Vol. 54 No. 5, 2011

 by guest on June 4, 2012
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/

