
Review for HPL 2007

Paul Gilmore, Logicism Renewed: Logical Foundations for Mathemat-
ics and Computer Science. Lecture Notes in Logic, Association of Symbolic
Logic. 2005. 250 pages. $69. ISBN 1-56881-275-2.

Reviewed by Fairouz Kamareddine, School of Mathematical and Computer Sci-
ences, Heriot-Watt University, Edinburgh, EH8 4SQ, UK.
E-mail: fairouz@macs.hw.ac.uk

The first chapter introduces the so-called elementary logic (EL), its syntax
and semantics and its consistency and completeness proofs. First, the author
incrementally defines the types where each stage develops a particular aspect
of what the author intends to incorporate. As in Church’s Simple Type Theory
(STT), types are built from two basic types (roughly, the type of individuals and
the type of propositions), yet at this stage, these types remain a reasonably re-
stricted form of Church’s types. In the next chapter, these types will be extended
further (but will remain a proper subset of Church’s types in STT). The syntax
of constants, variables, logical connectives, quantification, λ-abstraction, terms
and formulae is given as well as the domains, valuations and models. EL plays
the role of both a logic and a λ-calculus and hence the syntax and semantics
deal with both aspects. Substitution, β- and η-contractions are given as well as
the proof theory for EL (based on sequents). The author takes sequents to be of
the form F1, . . . Fm ` G1 . . . Gn where m,n ≥ 0 and the antecedent {F1, . . . Fm}
and the succedent {G1, . . . Gn} are sets rather than ordered sequences or mul-
tisets. Satisfaction and validity of sequents as well as the concept of derivation
are defined. For example, Γ ` Θ is satisfied by a valuation Φ if Φ(F) is − (i.e.
false) for some F ∈ Γ or Φ(F) is + (i.e. true) for some F ∈ Θ. Throughout, one
writes +F if Φ(F) is + and −F if Φ(F) is − where Φ is a conjectured valua-
tion. The semantic rules for EL include the cut rule

+F − F
. A number of

properties and examples of derivations are given. An alternative proof theory
is presented and the author presents a variant ELG of Gentzen’s formulation of
sequent calculus and shows that ELG and EL are equivalent and that a deriva-
tion in EL is an abbreviation of a derivation in ELG. The proof given for the
consistency of EL is semantic and prepares the reader for the semantic proof of
the consistency of the logic of ITT to be presented later (for ITT, no syntactic
proof of the eliminability of cuts is known). Next, the author establishes the
completeness of EL without cut and as an immediate corollary (using the con-
sistency of EL), one obtains the cut-eliminability result for EL: Any derivable

sequent in EL, can be derived without any use of the cut rule.
The second chapter introduces the type theory TT where the types given in

Chapter 1 are extended to the following:

• 1 is a type and [] is a predicate type and a type;

• If τ1, . . . , τn is a sequence of types where n ≥ 1 then [τ1, . . . , τn] is a
predicate type and a type.

Note that these types remain a proper subset of Church’s types in his STT.
Throughout, τ is used as an abbreviation for τ1, . . . τn where 0 ≤ n. For the
benefit of the reader, we include below the inductive definition of terms of TT:

• A constant or a variable cv is a term of type t[cv].

• If P : [τ, τ] and Q : τ then (PQ) : [τ].

• If P [τ] and v is a variable of type τ then (λv.P) : [τ, τ].

As in EL, formulae of TT are terms of type [] but the author gives an alternative
definition for formulae in TT which he proves later on in this chapter to be
equivalent to the earlier definition. The alternative definition is given in terms
of the constants ↓: [[], []], ∃τ : [[τ]] and =τ : [τ, τ] (note also that joint denial ↓ is
the primitive logical connective of EL and ∃τ is the primitive quantifier of EL).
Next, type variables α, β, . . . are introduced and type expressions are defined
using both types and type variables. A unification algorithm which finds the
most general unifier of a sequence of pairs of type expressions is given and its
correctness is shown. This unification between type expressions is used to give
a polytyping of TT which is shown to be correct. The βη-contraction relation
is shown to be weak Church-Rosser and it is shown that every term of TT has
a unique normal form (modulo the well-known α-renaming of variables). In
TT, the semantic rules for ↓, ∃ and cut are (almost) those of EL. The rules
for λ are given in terms of the contraction relation and there are new rules
for the new constant = which was not part of EL. Other connectives (e.g., ∀,
→, etc. are assumed to be built from ↓ and ∃ in the usual way). Next, the
author discusses alternatives to the logical constant = and gives two alternative
definitions, one as the intensional identity =

df
= λx, y.∀Z.[Z(x) → Z(y)] and the

other as the extensional identity =e
df
= λx, y.∀u[x(u) ↔ y(u)] and shows that

the sequent ` ∀x, y.[x = y → x =e y] is derivable but that the converse sequent
` ∀x, y.[x =e y → x = y] is not. Next, the author defines the extensionality

predicate Ext
df
= λz.∀x, y.[x =e y → [z(x) → z(y)]] and shows that the sequents

` Ext(∃) and ` Ext(Ext) are derivable. Finally an extensional semantics of
TT is given where all predicates are assumed to be extensional and the author
gives a particular extensional model Φ such that Φ(∀x, y.[x =e y → x = y]) is +
concluding that extensional semantics is not the appropriate semantics for TT.
Hence, the author gives an intensional semantics of TT and asserts (without
a proof) that TT is complete for this semantics. The author also asserts that

the proof of completeness for ITT (to be presented in the next chapter) adapts
directly to a proof for TT.

In the third chapter, the author introduces an intensional type theory ITT
whose types are those of TT but whose terms extend those of TT to include the
so-called secondary typing which enables one to distinguish between “use” and
“mention” occurrences of a predicate name. The secondary typing of predicate
names is obtained by adding a new clause to the definition of terms which
assigns the secondary type 1 to terms P of type [τ] on the condition that no
variable of type other than 1 has a free occurrence in P . The author shows that
without this restriction, ITT would be inconsistent since one can derive both
` R(R) and R(R) ` where R

df
= λx.∃X.[¬X(u) ∧ u = X]. Like TT, ITT enjoys

weak Church-Rosser and every ITT-term has a unique βη-normal form. The
presence of secondary typing complicates the polytyping for ITT. To deal with
this, the author adds the notation str : τ ∩1 as a shorthand for both statements
str : τ and str : 1 and the unification of type expressions takes this notation
into account. Like TT, a polytyping algorithm is given for ITT and is shown
to be correct. Similarly, an intensional semantics is defined for ITT as well as
its proof theory. The semantic rules of ITT are those of TT plus two new rules
+Int and −Int which deal with equality between terms P and Q which have the
same primary type τ and the same secondary type 1. The semantic proof of the
consistency of ITT is left as an exercise and is said to be similar to the semantic
proof of the consistency of EL. The completeness proof of ITT, similar to that
of the completeness of EL is then given. In the final section of this chapter, the
author presents the so-called strongly impredicative type theory SITT which is
an extension of ITT which allows impredicative predicates like the Russell set
R which is the extension of the predicate λu.¬u(u). This extension is achieved
by extending the ITT types to include the clause:

• If τ is a predicate type then τ ∩ 1 is an intersection type and a type but
not a predicate type.

Variables are then divided into quantification variables and abstraction vari-
ables. The terms of SITT extend those of ITT and are given as follows:

• A constant or a variable cv is a term of type t[cv].

• If P : [τ, τ] and Q : τ then (PQ) : [τ].

• If P : [τ] and x : τ then (λv.P) : [τ, τ] for a quantification variable x.
If P : [τ] and v : τ then (λv.P) : [τ ∩ 1, τ] for an abstraction variable v.

• If P : [τ] then P : 1 provided that no quantification variable of type other
than 1 has a free occurrence of P .

• If P : [τ] and P : 1 then P : [τ] ∩ 1.

The author explains how following the steps of ITT, the semantics and the proof
theory of SITT can be defined and how its consistency can be established. The
author shows how R is indeed a term of SITT whereas R(R) is not.

In the fourth chapter, the author is concerned with recursion. Since ITT is
a logic of predicates and not functions, the author takes the so-called recursion
generators as the fundamental concept for recursion theory. The chapter starts
by defining recursion generators. A recursion generator with parameters of type
ρ is any term of ITT of type [ρ, [τ], τ] without any free occurrences of variables,
where ρ can be empty but τ cannot. The chapter defines recursive predicates
from recursion generators using the so-called least and greatest predicate oper-
ators of type [[[τ], τ], τ]. The chapter first defines least and greatest predicate
operators Lt and Gt for predicates of type [τ] as follows:

Lt
df
= λwg, u.∀Z.[∀x.[wg(Z, x) → Z(x)] → Z(u)]

Gt
df
= λwg, u.∃Z.[∀x.[Z(x) → wg(Z, x)] ∧ Z(u)]

Note that these Lt and Gt have the type [[[τ], τ], τ] (where u, x : τ, Z : [τ] and
wg has the type [[τ], τ] of a recursion generator without parameters). The author
discusses how the above definitions can be generalised to a recursion generator
of any type, and derives sequents which express a general form of induction for
Lt(wg) and Gt(wg) (where wg : [[τ], τ]). The author also discusses the following
rules that are said to be related to co-induction and fixed-point induction (note
that RG : [ρ, [τ], τ] and r : ρ):

LtInd.
−∀x.[Lt(RG(r))(x) → P (x)]
−∀x.[RG(r)(P, x) → P (x)]

GtInd.
−∀x.[P (x) → Gt(RG(r))(x)]
−∀x.[P (x) → RG(r)(P, x)]

Next, the author defines monotonic recursion generators and derives some of
their properties. Recursion generators are then used to define some known
recursive predicates. From 0, the successor S and the recursion generator
RN

def
= λZ, x.[x = 0 ∨ ∃u.[Z(u) ∧ x = S(u)]] of type [[1], 1], the predicate

for natural numbers is defined by N
def
= Lt(RN). The five Peano axioms are de-

rived, and the author shows how projection and pairing can be defined in ITT,
and reflects on Gt(RN) and Lt(RN) showing that the former is not well-founded
whereas the latter is. Continuous recursion generators are defined next using
two predicates Con∃ and Con∀. Conditions for useful properties of Lt(RG) and
Gt(RG) are given for monotonic and ∃- or ∀-continuous recursion generators RG
and a number of results are established. For example, positive and e-positive oc-
currences of variable Z in a formula H are defined, as are positive and e-positive
recursion generators. The author proves that certain properties must hold if Z
is a positive (respectively e-positive) variable of H and gives a similar result for
¬H. Moreover, the author shows that a positive recursion generator is mono-
tonic and an e-positive recursion generator is ∃- and ∀-continuous. Next, a Horn
sequent defined by a recursion generator RG : [ρ, [σ], σ] is given to be a sequent
of the form: RG(w)(C(w), x) ` C(w)(x) where C : [ρ, σ] is a constant which
does not occur in RG, w : ρ and x : σ. The author shows that if RG(r) is a mono-
tonic recursion generator then the Horn sequent RG(r)(C(r), x) ` C(r)(x) and

its converse (where C is defined by either λw.Lt(RG(w)) or λw.Gt(RG(w))) are
derivable. The author also defines simultaneous Horn sequents and establishes
a similar result to the one established for Horn sequents and gives an example
and a number of exercises on (simultaneous) Horn sequents. Furthermore, the
author discusses again the predicates Lt(RG) and Gt(RG) and shows that they
could be defined by iteration provided that RG is monotonic and respectively
∃-continuous and ∀-continuous. The final section of the chapter starts with
a discussion of the need for potentially infinite domains (e.g., the potentially
infinite tape of a Turing machine), and the need of treating these domains dif-
ferently than truly infinite domains (e.g., the domain of the natural numbers),
and gives a number of definitions necessary for the study of potentially infinite
domains.

It was already said that the types of ITT can be seen as a proper subset
of the types of Church’s STT. In ITT, the type of function values can only
be [] whereas in STT, this is not the case. In the fifth chapter, the author
addresses this issue and defines in ITT, a notation for partial functions with
intentionally defined values. In order to deal with non-denoting terms (i.e.,
terms that cannot be given a value by a valuation), the author introduces the
choice (indefinite description) operator ε. For a choice term εM to be denoting,
it suffices that ∃v.M(v) be satisfied. But, since different occurrences of εM may
denote different members of the extension of M , the sequent ` ∃v.M(v) → εM =
εM may not be derivable whereas the sequent ` ∃v.M(v) → (λv.v = v)εM
is. This means that contractions of the form (λv.P)εM > [εM/v]P must be
excluded. The chapter introduces the new type theory ITTε which is the same
as ITT except for the following:

• terms are extended with choice terms: “If M is a predicate term of type
[τ] then εM is a choice term and term of type τ but not a predicate term”;

• the scope of occurrences of choice terms plays an important role;

• formulae of ITTε are predicate terms of type [] (choice terms excluded);

• substitution [Q/v]P is only defined when Q is not a choice term;

• the contraction relation >ε includes the known η-rule and:

(β) (λv.P)Q contracts to [Q/v]P when Q is not a choice term.

(ε) PεM contracts to λu.[∃v : M].P (v, u) where u : σ and v : τ are fresh
distinct variables, P : [τ, σ] and M : [τ].

Example derivations in ITTε are given and the semantics of ITTε is studied
in terms of ITT through a partial mapping from ITTε to ITT which takes a
non choice term P of ITTε to a term P ‡ of ITT with the same type and free
variables, and takes PεM (where P is a predicate term) to a term of the form
λu.[∃v : M‡].P ‡(v, u). The author shows that ITTε is a conservative extension
of ITT and is hence consistent. The given semantics implies that if Γ‡ ` Θ‡ is
valid/derivable in ITT, then Γ ` Θ is valid /derivable in ITTε, ITTε is complete

and enjoys cut elimination. Using the ε operator, the author very briefly defines
function terms ιM , gives a number of exercises and discusses partial functions
and dependent types.

The sixth chapter deals with intuitionistic formulations of ITT. First, the
author takes Gentzen’s sequent calculus ELG which was shown in chapter 1 to
be equivalent to the author’s elementary logic EL, and adapts it to give ITTG, a
sequent calculus formulation of ITT. As in EL, the author takes sequents Γ ` Θ
where Γ,Θ are finite sets rather than ordered sequences. Moreover, instead of
taking ↓ and ∃ to be primitives (as in ITT), the author takes ∃,∧ and ¬ as
primitives in order to smooth transition to HITTG, the intuitionistic version of
ITTG. Similarly to proving in chapter 1 that EL and ELG are equivalent, one
can prove here that ITT and ITTG are equivalent. The extension of ITT to
ITTε can be followed here too to extend ITTG into ITTGε. Classical ∨,→ and
∀ are defined and named ∨c,→c and ∀c. For HITTG, ¬,∧,∨,→,∀ and ∃ are all
taken to be primitive (¬,∧ and ∃ are shared with ITTG, and the intuitionistic
∨,→,∀ are distinct from ∨c,→c,∀c) and the succedent Θ in a sequent Γ ` Θ
of HITTG, is always assumed to be either empty or a single formula. The
derivability relationship between ITTG and HITTG is established and it is also
shown that HITTG fits in the intuitionistic/constructive philosophy in the sense
that if Γ ` F ∨G then either Γ ` F or Γ ` G; and if Γ ` ∃R then there is a term
t such that Γ ` R(t). So far, we have the equivalence between the semantic
tree formulation EL (resp. ITT) and the sequent calculus formulation ELG
(resp. ITTG). Moreover, a derivation in EL (resp. ITT) is an abbreviation of a
derivation in ELG (resp. ITTG). In order to study whether some results obtained
in ITT also hold in HITTG, the author gives the semantic tree formulation HITT
of HITTG, studies derivations in HITT and establishes the equivalence between
HITT and HITTG. With the help of the so-called forests of semantic trees,
examples are given which illustrate how the logic of HITT differs from that of
ITT. The author reflects on the fact that since recursion theory as developed
in ITT in chapter 4 can also be developed in HITT, then the fundamental logic
for recursion theory is intuitionistic.

In chapter 7, the author proposes that it is worthwhile restating some old
positions on the relationship between logic and mathematics and starts with
the position that mathematics is applied logic. The author discusses Feferman’s
simplification of MacLane’s example of an argument used in category theory
but which cannot be formalised in traditional set theories/logics (because of
self-membership). The simplified argument centres around the statement that
“the set of Abelian semi-groups is itself an Abelian semi-group under Carte-
sian product and isomorphism”. The author shows how this example can be
formalised in ITTε. Next, the author discusses formalising Zermelo-Fraenkel
set theory with the axiom of choice (ZFC) in ITT. The nine non logical ax-
ioms of ZFC are all expressed in ITT and the conjunction of these axioms in
ITT is called Axioms. For each closed formula of ZF, a closed formula of ITT
is obtained and is called a ZF-formula. A predicate ZFC is defined in ITT
by ZFC

df
= λZ.[Axioms → Z]. The author points out that it is easy to show

that ` ZFC(F) for each ZF-formula F which translates a theorem in ZFC but
that it is a challenge to show that {F | F is a ZF-formula and ` ZFC(F)} is
consistent. Finally, the author develops Cantor’s diagonal argument in ITT.

In the eigth chapter, the author aims to demonstrate that the domains
needed for the semantics of programming languages can be defined in ITT using
recursion generators. After reflecting on the difference between definitions and
computations, the author uses a flowchart language example to show that a
semantics for recursive commands of a programming language can be given in
ITT. The syntax of the simple flowchart language as well as the semantics of ex-
pressions and commands are given in ITT. Simultaneous Horn sequents are used
in the definition of command semantics. A number of derivations that illustrate
this semantics are given. Finally, the author shows how recursive domains can
be defined in ITT. First, a number of primitive domains is given. This is fol-
lowed by a number of domain constructors. Recursive domains are recursively
defined by domain equations using primitive domains and domain constructors.
The author explains why only finite functions are allowed as domain construc-
tors and solves (using simulatenous Horn sequents and simultaneous recursion
generators) an example of domain equations taken from Milner and Tofte.

