
Are Types needed for Natural Language?In Applied Logic: How, What and Why, P�olos and Masucheds, 79-120, Kluwer 1995Fairouz Kamareddine�Department of Computing ScienceUniversity of GlasgowScotlandNovember 30, 1996AbstractLogic, due to the paradoxes, is absent from the type free �-calculus. This makes sucha calculus an unsuitable device for Natural Language Semantics. Moreover, the problemsthat arise from mixing the type free �-calculus with logic lead to type theory and henceformalisations of Natural Language were carried out in a strictly typed framework. Itwas shown however, that strict type theory cannot capture the self-referential nature oflanguage ([Parsons 79], [Chierchia, Turner 88] and [Kamareddine, Klein 93]) and henceother approaches were needed. For example, the approach carried out by Parsons is basedon creating a notion of oating types which can be instantiated to particular instancesof types whereas the approaches of Chierchia, Turner and Kamareddine, Klein are basedon a type free framework. In this paper, we will embed the typing system of [Parsons 79]into a version of the one proposed in [Kamareddine, Klein 93] giving an interpretation ofParsons' system in a type free theory where logic is present. In other words, we take thestandpoint that type freeness is needed yet types are also indispensable. On this ground,by constructing types in the type free theory, we obtain a framework which can be seenas a formalisation of Parsons' claim that Natural Language needs type freeness in orderto accommodate self referentiality yet many sentences should be understood as implicitlytyped.Keywords: Type Freeness, Logic, Types, NL Semantics, Self-reference.1 IntroductionMixing type freeness and logic leads to contradictions. This can be seen by taking the followingsimple example.Example 1.1 (Russell's paradox)Take the syntax of the type free terms of the �-calculus:�This article has been prepared while the author was on a study leave at the Department of Mathematicsand Computing Science, Eindhoven University of Technology, the Netherlands. The author is grateful forthe hospitality, �nancial and academic support of the university of Eindhoven, and for the productive andenjoyable year spent there. 1

E := x j E0E00 j �x:E0Increase this set of terms by adding negation so that whenever E is a term, :E is also aterm.1 Now of course, �x::xx is a term and applying it to itself one gets a contradiction(known as Russell's paradox).One might deny this to be a contradiction by assuming non classical logics such as a threevalued one. So that a = :a is acceptable when a gets unde�ned as a truth value. In fact, inthe type free �-calculus, every expressionE has a �xed point a such that Ea = a. In particular�x::x has a �xed point a and one gets a = :a. This means of course that (�x::xx)(�x::xx)is a �xed point of �x::x.This will still create a problem when one tries to discuss the axioms and rules of the logicthat is being used. The following example makes this point clear:Example 1.2 (Curry's paradox)Once propositional logic has been de�ned in the type-free �-calculus, one must be preciseabout which of the three concepts below hold in that logic:� Modus Ponens (MP): From E ! E0 and E, deduce E0.� Deduction Theorem (DT): If � is a context, and � [fEg ` E0 then � ` E ! E0.� �-conversion (�): (�x:E)E0 = E[x := E0].If all three were present then one gets Curry's paradox. That is, one can show ` E for anyterm E by taking the term a = �x:(xx! E).Up to here, only propositional logic has been discussed in the context of the type free�-calculus. This is not without a reason. Propositional logic, as mentioned above, can bebuilt inside the �-calculus. The di�culties of Examples 1.1 and 1.2 can be avoided by usingnon classical logics or by not using all the above three concepts to the full. [Feferman 84]and [Kamareddine 92C] provide a clear introduction to the possible ways of avoiding theseparadoxes.What about quanti�cational logic? Why has it not been discussed above? The reason forthis is very important. It was possible to de�ne propositional logic inside the type free �-calculus, because the semantic values of all the propositional connectives do actually exist in amodel of the type free �-calculus. That is, if continuity was our basic concept for constructingthe model, then all the functions corresponding to the logical connectives will be continuousand hence elements of the model.With the quanti�ers we have another story. The models of the type free �-calculus withoutlogic cannot model the addition of the quanti�ers. The reason for this is that even though 8is continuous, its presence will trivialise the model as is seen from the following example:Example 1.3 (Models of the type free �-calculus alone are not enough)If 8 existed in the model of the type free �-calculus, one would get that:(8d 2 D)([[�]]g[x:=d] = 1), [[�]]g[x:=u] = 1where u is the bottom element of the domain (see [Turner 84] and [Kamareddine 92D]).1Alternatively one can use any of the standard methods of the �-calculus to de�ne propositional logic,inside the �-calculus. 2

This clause has serious consequences. To illustrate this, take in the formal language anelement u0 which names u (i.e. [[u0]]g = u always). Now see what happens if � is x = u0:Applying the above clause one gets: [[x = u0]]g[x:=u] = 1, (8d 2 D)([[x = u0]]g[x:=d] = 1).This implies: u = u, (8d 2 D)(d = u).Hence (8d 2 D)(d = u). That is absurd.The presence of these foundational di�culties implied that logic and �-calculus, could notbe mated freely together. Some restrictions had to be made either on the logic or on typefreeness. These restrictions resulted in the following two routes of research:1.1 Route 1: Logic is more important than expressivenessThe �rst route placed a big emphasis on logic and deduction systems, but avoided the di�cultyby restricting the language used to �rst or higher order allowing only a limited form of self-reference or polymorphism. Let us here have another look at the paradox and then list thethree main examples of Route 1.The paradox in Example 1.1 arises because any open well-formed formula was allowed tostand for a concept. In fact, Example 1.1 has assumed the following axiom:ComprehensionFor each open well-formed formula �[x];9y8x[(yx), �[x]] where y is not free in �[x]:By taking �[x] to be :(xx) in the comprehension axiom above, one gets:9y8x[(yx), :(xx)] =) 8x[(yx), :(xx)] =) [(yy), :(yy)].The comprehension axiom assumes that each open well-formed expression determines aconcept whose extension exists and is the set of all those elements which satisfy the concept.One could restrict the comprehension principle so that �[x] stands for everything except:(xx), but this will not save us from paradox. To see this let �[x] stand for :(x2x) where(y2x) abbreviates (9z)((yz)^ (zx)). Again, ruling out this instance is not enough for one willstill get the paradox if �[x] was taken to be :(x3x) where y3x abbreviates (9z1; z2)((yz1) ^(z1z2) ^ (z2x)). This process continues ad in�nitum. Even if all such instances were ruledout, the problem will persist. The following example shows this:Example 1.4 Take �(x) to be :(9z1; z2; : : :)[: : : (z2z3)^ (z1z2)^ (xz1)] and let y be the classobtained from the comprehension axiom for �[x].� If (yy) then :(9z1; z2; : : :)[: : :) ^ (z1z2) ^ (yz1)]. But one can take z1 = z2 = : : : = y,and get a contradiction.� If :(yy) then (9z1; z2; : : :) [: : : z2) ^ (z1z2) ^ (yz1)]. But as (yz1) then �[y]; however wehave that :�[y]. Contradiction.For a further explanation of this process, see [Kamareddine 89] and [Kamareddine, Nederpelt 94B].
3

1.1.1 First Order LanguagesThe �rst route of avoiding the paradox by using a �rst order language, insisted that logicmust be strongly present but that self-reference should not. In fact, in �rst order languages,a separation between functions and objects exists and a quanti�er ranges only over objectsand not over functions. Of course in such a language no paradox arises because one cannothave self-reference, as a function cannot be an object and so cannot apply to itself.1.1.2 Second Order LanguagesThe problem is also faced with higher order languages. The following will show this to be thecase.Notation 1.5 The following metavariables are used:� F;G : : : refer to n-place predicate variables.� x; y; z; w; : : : refer to individual variables.� a; b; : : : refer to singular terms. (These are the nominalisation of functions.)The primitive symbols of the language are:);:;=;8; �. The others are de�ned in themetalanguage.De�nition 1.6 (The two problematic Axioms)In order to deal with self application and to allow self-reference, we need the following axioms:� (A3*) 9x(a = x), for a singular term in which x is not free.� (CP*) 9F8x[F (x), �[x]] where F does not occur free in �.The paradox comes from (CP*) together with (A3*) under various logical laws as can beseen from the following example:Example 1.7 From (A3*), one can derive that 8x�) �[x := a]. Substituting F for x inthe special instance of (CP*): 9F8x[F (x), 9G[x = G ^ :G(x)]] will lead to the paradox.The problem here again has been avoided in many ways, one of them is to restrict thelanguage, disallowing some forms of self-reference. Cocchiarella's two ways of avoiding theparadox for example, have been to restrict (CP*) or (A3*) (see [Cocchiarella 84]).1.1.3 Simple Type TheorySince Russell's letter to Frege, concerning the inconsistency of Frege's system, there havebeen many attempts at overcoming the paradox. The �rst two accounts of avoiding theparadox by restricting the language were due to Russell and Poincar�e (see [Russell 1908]and [Poincar�e 1900]). They both disallowed impredicative speci�cation: only predicativespeci�cation has been used, where A = fx : �(x)g is predicative i� � contains no variablewhich can take A as a value. This theory obviously overcomes the paradox, for one assumesall the elements of the set before constructing it and so :xx is no longer allowed.It became obvious however, that this theory had many unattractive features. Of these fea-tures we mention that at each level there exists a natural number system, such that 1; 2; 3; : : :4

at each level n are di�erent from 1; 2; 3; : : : at level n+ 1. Moreover, polymorphic functions(that is functions which take arguments from many levels such as the polymorphic identityfunction) do not exist in Russell's type theory. In addition to that, this approach (of Russelland Poincar�e) is rather unsatisfactory from the point of view of self-reference because oneneeds impredicative formulas such as the sentence it is nice to be nice. These formulas arefundamental to natural language semantics.1.2 Route 2: Expressiveness is more important than logicThe second route placed the emphasis on the expressiveness of the language and the richness offunctional application and self-reference, but at the expense of including logic in the languageexcept if restrictions are made (such as using non-classical logics). Church's and Curry'swork for example, was on the language side. They decided to enrich the syntax and thelanguage but to avoid or restrict logic. They introduced sophisticated systems of �-calculusand combinators, but the importance was shifted from logic to the expressiveness propertiesof the language. So �xed points were shown to exist, self application functions and solutionsto all sorts of equations were shown to exist. Of course they could move freely in the jungleof the type free terms as logic was not the main theme. Moreover, they explained things likea = :a by saying that every �-term has a �xed point, in particular the �-term �x::x. Theiruse of logic however was very elementary.After a while, attention moved to various forms of the typed �-calculus. This may havebeen due to the usefulness of the typing schemes, or to the presence already of some typesystems which aimed at combining expressiveness and logic. The basic aim in this routebecame to provide systems which can type check as much as possible of self-referential terms.The line remained however, to ignore logic (as a deduction system) and to make sense of asmany self-referential terms as possible.This led to various formulations of typing systems; some of which can type check self-referential sentences such as the self-application function �x:xx and the �xed point operatorY = �f:(�x:f(xx))�x:f(xx) and some cannot. All these type systems, use the following astheir underlying syntax of types s ::= xjcjs! s which says that a type is either a variable ora constant or an arrow. Type systems such as �2; �� and �\ (see [Barendregt, Hemerik 90]and [Kamareddine 92A]), add other types to this set of types in order to typecheck moreterms such as Y and �x:xx.2 Systems which use only the above syntax of types, even thoughthey can be polymorphic, cannot typecheck Y or �x:xx (Milners's ML system in [Milner 78]is such an example).Of course this rich variety of typing systems has not reached Natural Language Semantics.We �nd it a pity that in NL, some of these type systems have never been heard of. We believethat only a perfect combination of expressivity (and here type theory plays a role) and logiccan be a sound system for NL. It might be asked moreover why did we move from expressivityand type freeness to type theory? This is indeed a very good question, to which we devote awhole section (see section 4).2[Kamareddine, Nederpelt 94A] provides a way of unifying a signi�cant number of type systems but again[Kamareddine, Nederpelt 94A] takes the line of route 2 and logic is missing.
5

1.3 The major themes of the paper1.3.1 Theme 1Routes 1 and 2 resulted in a gap between strong logics and fully expressive languages. Theneed to remove the gap created various theories such as Martin-L�of's type theory and Fe-ferman's T0 which were polymorphic, allowed self reference and contained a big fragment oflogic (see [Martin-L�of 73] and [Feferman 79]).While the polymorphically typed languages which contained logic (such as Martin-L�of'sand Feferman's) were being developed, research on natural language was already based onMontague semantics and Russell's type theory and there were enough problems to tackle fromthe linguistic point of view that the limited formalism used was not regarded as a de�ciency.However the need for the combination of expressive languages and strong logics is unques-tionable (see [Feferman 84]), and the necessity of such a combination for Natural Languageis undoutable (see [Kamareddine, Klein 93]). This combination was the main concern of manylinguists in the last decade ([Parsons 79], [Chierchia, Turner 88] and [Kamareddine, Klein 93]).This paper will hence attempt, as a �rst theme, to review these three fundamental aproaches.This will be done in Section 2. The approaches of [Parsons 79] and [Kamareddine, Klein 93]will be the centre of attention of the paper. The former will be interpreted in a version of thelatter. The [Chierchia, Turner 88] approach will be used for comparisons.1.3.2 Theme 2The approach of [Kamareddine, Klein 93] is very attractive from the type theory point ofview. The typing strategy provided there, is based on the structure of the models of the typefree �-calculus which demands that (�a ! �b) � �a for �a and �b being any variable types.This ordering is the basis of applying functions to themselves as the following example shows:Example 1.8 In �x:xx, the operator occurrence of x requires that x be of type �a! �b. Forthis operator occurrence of x to apply to the argument occurrence of x, the second x mustalso be of type �a.Based on this observation, [Kamareddine, Klein 93] builds a relation between types whichguarantees that every arrow type is included in its domain space. The system allows onlytyped abstraction, of the form �x : �:�, but permits any two terms to apply to themselves.Logic, (including quanti�ers) is present too. This might surely be thought to lead to theparadox by applying the term (�x : (e! p)::xx) to itself. This will not be the case however,due to the notion of circular types (see Section 2.3).This paper will start from the system of [Kamareddine, Klein 93], but will add variabletypes. This will enable the retrieval of the type free �-calculus in a systematic way. Moreo-ever, the construction of types will become more general and one can make sense of all nonparadoxical terms. In fact, with the addition of variable types, the new system turns out tohave more polymorphic power than �2; �� and �\ (see [Kamareddine 92A]) and allows typingthe �xed point operator Y = �f:(�x:f(xx))(�x:f(xx)), the self application function �x:xxand all the possible mixtures of Y and �x:xx. This possiblity of type checking Y and �x:xxshows that the system allows all self-reference, as long as it is non paradoxical. This extensionwill be found in Section 2.3. 6

1.3.3 Theme 3The need for self reference, which requires a type free framework, confuses the fact as towhether types are or are not needed. In fact, one often sees types being constructed inside atype free framework and vice versa. Hence it is very di�cult to answer whether or not typesare needed for natural language. If one looks back at the latest formalisations of naturallanguage ([Parsons 79], [Chierchia, Turner 88] and [Kamareddine, Klein 93]), one �nds themall jumping between type freeness and typing. Section 4 below discusses the questions oftypeness and type freeness and supports Parsons' claim that NL is implicitly typed yet typefreeness is needed to represent it.1.3.4 Theme 4Based on the claim of Theme 3 that NL is implicitly typed yet self reference is necessary, oneis faced with the question of how to combine type freeness and typing in such a way thatself reference of NL can be accommodated, yet grammatical or ungrammatical sentences canbe explained. That is, one would like to have a rich typing scheme which can be used as aclassi�cation for good/bad sentences, while the freedom of applying functions to themselvesis preserved. This paper claims that the approach of [Kamareddine, Klein 93] extended withvariable types, embodies in it such type freedom and classi�cation scheme. This will beshown by interpreting Parsons' theory in the theory provided in Theme 2 and by drawing acomparison with the theory of Chierchia, Turner.In short, as a fourth theme of this paper, an embedding of the typing system of [Parsons 79]into a version of the one proposed in [Kamareddine, Klein 93] will be given. This embeddingcan be viewed as constructing a model which accommodates Parsons' claim of typing andnon-typing of Natural Language. This model is a type free system where all types exceptthe circular ones can be constructed. The comparison drawn between the three approacheswill show that the typing scheme of [Kamareddine, Klein 93] is the most exible for NLinterpretation. The embedding will be done in Section 5, the usefulness of the extendedsystem will be discussed in Section 6 and the comparisons of the three approaches will becarried out in Section 7.2 Three polymorphic systems of Natural Language2.1 Parsons' systemParsons starts by explaining that if one is to accommodate various natural language con-structs in Montague's approach, then there needs to be an in�nity of categories which containthe same elements yet the types of those elements di�er from one category to another. Thatis, he argues that Montague's approach is not polymorphic and that there is a need for alanguage which allows functions to take arguments from variable types and to return argu-ments in variable types. Moreover he claims that those variable types should be instantiatedas necessary.Example 2.1 John talks about could take either Mary or a proposition as arguments as canbe seen from the following sentences:1. John talks about Mary 7

2. John talks about a propositionTo deal with these polymorphic functions such as talks about, Parsons introduces two sortsof types: the �xed types and the oating types. The �xed types are always �xed; he; ti, thetype of propositional functions is an example of a �xed type. Floating types on the otherhand, change in value. They should be understood as variable types and can be instantiatedto various types instances.Example 2.2 The semantic types of both individuals and propositions are �xed types. The�rst is he; ti and the second is hhs; ti; ti. Both individuals and propositions moreover, aresyntactically common nouns.To represent the association of types to categories, Parsons records information relevant totyping as a superscript to the category.Example 2.3 womene is of category CNe and its type is he; ti whereas propositionhs;ti is ofcategory CNhs;ti and its type is hhs; ti; ti.Syntactic rules should obey semantic typing as the following example shows:Example 2.4 VPe which is of type he; ti can be combined with Johne which is of typehhe; ti; ti but not with propositionhs;ti which is of type hhs; ti; ti.Up to here one can guarantee that the following are well formed:� That John runs or that he walks amazes Mary� That John runs or he walks amazes Mary� That John runs or walks amazes Marywhereas the following are not:� Bill or that John runs� walks or obtains� That John walks runs� Bill obtainsHow does the idea of oating types accommodate the sentences of Example 2.1? That is, howcan one make talk about take two di�erent arguments, individuals as in 1 and propositions asin 2? The solution is simple, make about be a oating type. Before we explain further whattype should about have, let us give the types and categories of the other constituents of thetwo sentences in example 2.1. This is done as follows:� John, of category NPe has the �xed type hhe; ti; ti.� talks, of category VPe has the �xed type he; ti.� Mary, of category NPe has the �xed type hhe; ti; ti.� a proposition, of category NPhs;ti has the �xed type hhhs; ti; ti; ti.8

The next step is to be able to combine talks with about Mary or with about a proposition toresult in a construct of category V P e. This construct will then be combined with John ofcategory NP e and the result will be a sentence. For this we will need the following syntacticrules:� S2. If � 2 CN � then F0(�), F1(�) and F2(�) 2 NP � where F0(�) = every �, F1(�) =the � and F2(�) = a(n) �.� S6. If � 2 �1 PREP �2 and � 2 NP �2 then �� 2 ADV �1� S10. If � 2 ADV � and � 2 V P � then �� 2 V P �Now, talks of category V P e will combine with about Mary or about a proposition of categoryADV e according to rule S6. about Mary and about a proposition will belong to the same cate-gory ADV e and will have the same �xed type hhs; he; tii; he; tii. With Mary and a propositionbeing of �xed types, it is about which should change its type as in the following two cases:1. about is of category ePREPe and has for type hhs; f(NP e)i; f(ADV e)i.2. about is of category ePREPhs;ti and has for type hhs; f(NP hs;ti)i; f(ADV e)i.To accommodate this multi-typing, Parsons considers about to be of category ePREP �and to have, for a particular type � , the type hhs; f(NP �)i; f(ADV e)i.3 The following twotables show how this works:Table 2.5Parsons' account of Category Rule TypeJohn talks about Mary - -about ePREDe hhs; hhe; ti; tii; hhs; he; tii; he; tiiiMary NPe hhe; ti; tiabout Mary ADVe S6 hhs; he; tii; he; tiitalk VPe he; titalk about Mary VPe S10 he; tiJohn NPe hhe; ti; tiJohn talks about Mary tTable 2.6Parsons' account of category Rule TypeJohn talks about a propositionproposition CNhs;ti hhs; ti; tia proposition NPhs;ti S2 hhhs; t; iti; tiabout ePREDhs;ti hhs; hhhs; titi; ti; hhs; he; tii; ie; tiiiabout a proposition ADVe S6 hhs; he; tii; he; titalk VPe he; titalk about a proposition VPe S10 he; iJohn NPe hhe; ti; tiJohn talks about a propostion t3Note that each instance of a oating type is a �xed type.9

The following tables summarize the vocabulary of types and words of these types as usedby Parsons.Table 2.7Categories PC Corresponding semantic types f(PC)s tCN � h�; tiVP� h�; tiNP� hf(V P �); ti�1V �2 hhs; f(NP �2)i; f(V P �1)i�1V �2;�3 hhs; f(NP �2)i; hhs; f(NP �3)i; f(V P �1)iiADV� hhs; f(V P �)i; f(V P �)iADF hhs; ti; ti�1PREP�2 hhs; f(NP �2)i; f(ADV �1)iTable 2.8Words of �xed type Syn Type Sem Typemane, womane, parke, �she,pene, unicorne, -bodye CNe he; tifacths;ti, propositionhs;ti , answerhs;ti CNhs;ti hhs; ti; tirune, walke, talke, risee, changee VPe he; tiobtainhs;ti VPhs;ti hhs; ti; tiJohne, Marye, ite0; ite1 : : : NPe hhe; ti; tiThe Pythagorean theoremhs;ti; iths;ti0 ; iths;ti1 : : : NPhs;ti hhhs; ti; ti; tieeate, edatee eVe hhs; hhe; ti; tii; he; tiiebelievehs;ti, easserths;ti eVhs;ti hhs; hhhs; ti; ti; tii; he; tii;hs;tiamazee hs;tiVe hhs; hhe; ti; tii; hhs; ti; tiiebuye;e eVe;e hhs; hhe; ti; tii; hhs; hhe; ti; tii; hhe; ti; tiiietelle;hs;ti eVe;hs;tirapidlye, slowlye, voluntarilye ADVe hhs; he; tii; he; tiinecessarily ADF hhs; ti; tieine ePREPeTable 2.9Words of oating types Type Semantic Typething� CN� h�; tiseth�;ti CNh�;ti hh�; ti; tipropertyhs;h�;tii CNhs;h�;tii hhs; h�; tii; tiexist� VP� h�; tiit�0 ; it�1 ; : : : NP� hh�; ti; tie�nd� , elose� , elove� ;ehate� , eseek� , econceive� eV� hhs; hh�; ti; tii; he; tiiegivee;� eVe;�eabout� ePREP��1be�2 �1V�2 hhs; hh�2; ti; tii; �1; tii10

2.2 The Chierchia, Turner systemThe Chierchia, Turner system is based on Turner's theory of properties which appeared in[Turner 87]. In [Turner 87], Scott domains are completely abandoned and Frege's comprehen-sion principle is restricted in such a way that the paradox is no longer derivable. Turner startswith a �rst order theory which has a pairing system and adds to this theory an operator p (toserve as the predication operator) together with the lambda operator. Then in this case, ifone assumes full classical logic and Frege's comprehension principle, one will certainly derivethe paradox.Example 2.10 Take a = �x::p(x; x), then p(a; a) , :p(x; x)[x := a] , :p(a; a). Contra-diction.Let us look again at Example 1.2 and in particular at the third concept discussed there:namely, �. � could be divided into two parts:1. Contraction p(�x:E;E0)! E[E0 := x]2. Expansion E[E0 := x]! p(�x:E;E0)Contraction causes no problems but expansion does in the presence of negation.Example 2.11 If A is atomic then we can accept A(t; x)! p(�x:A; t). But we cannot acceptit when A is like Russell's property �x::p(x; x), an atomic term proceeded by a negation sign.This is exactly what guides Turner in setting his theory. For the theory now will have thefollowing axioms replacing Frege's comprehension principle:(E1) A(t; x)! p(�x:A; t) when A is atomic.(R) p(�x:A; t)! A(t; x).(I) p(�x:p(�y:A; t); u)! p(�y:p(�x:A; u); t)To build models for T above, one uses the �xed point operator to turn an ordinary modelof the �rst order theory into a model which will validate in it as many instances of thecomprehension axiom as possible. It will of course validate only the safe instances whereasthe paradoxical ones will oscillate in truth-values. The inductive step to build the modelshould be obvious. The following example illustrates how they work:Example 2.12 One way is to start with the �rst order model, and an operator PI whichis empty at the beginning. Then at the next step, extend PI to also contain the pairsh[[�x:A]]; [[t]]gi such that [[A]]g[x:=[[t]]g] = 1 and so on until one gets a limit ordinal � where PIthen is to have in it all the pairs he; di such that for some ordinal smaller than this �, < e; d >belongs to all the intermediate PI's.The above discussion goes as far as the theory is concerned. The system used however byChierchia and Turner, despite the fact that it is based on a type free theory, still constructstypes (these are called sorts in that paper). In fact in their paper, the authors provide alengthy discussion on the usefulness of types for NL.The construction of types | recall they call them sorts | is very straightforward in[Chierchia, Turner 88], it goes as follows (Only PT1 will be considered):11

De�nition 2.13 (Sorts)Basic sorts: The basic sorts are e; u; nf; i; pw;Q. These stand for individuals, urelements,nominalised functions, information units, possible worlds and generalised quanti�ers respec-tively.Complex sorts: The complex sorts are ha1; h: : : ; han; bi : : :i where for 1 � i � n; ai and bare any of the basic sorts.In section 7, we will see a comparison between this system and that of [Kamareddine, Klein 93].2.3 The extended version of the Kamareddine, Klein systemHere, an extended version of [Kamareddine, Klein 93] will be presented, rather than theirinitial system. The extension will be to allow type variables. This is done in order to allow theextraction of the type free terms from this calculus as will be seen in Section 3. Moreover, thisextension will enable the representation of all non paradoxical sentences regardless of whethertheir forming parts were originally typed or not. That is for example, not only the �xed pointoperator for a particular type will be shown to exist, but the �xed point operator of anytype (as long as it's not circular). Section 3 elaborates more on the properties of this system.Moreover, a type checker for this extended system has been written in [Kamareddine 92A].Let us call this extended system �L standing of course for � and Logic.It is assumed that term variables are x; x0; y; y0; z; z0 : : :, that V; V 0; V 00; : : : range over thesevariables and that �; �0; �1; : : : ; �; �0; �1 : : :, range over type variables. It is assumed furtherthat E;E0; E00; : : : E1; E2; : : : ;�;	; : : : ; range over expressions and T , T 0; T1; T2; : : : range overtype expressions.De�nition 2.14 (Types)Types are constructed as follows:T ::= � j Basic j (T1 ! T2)Basic ::= p j t j eThis syntax of types is similar to that of [Kamareddine, Klein 93] except that type variablesare allowed. Here p is the type of propositions, t is the type of truths (that is, of all thetrue propositions) and e is the type of objects. In fact e contains everything, variable types,basic types and arrow types. This is the case due to the subsumption relation � on the typesde�ned as follows:De�nition 2.15 (Subsumption Relation)The ordering/subsumption relation on types is given by the following rules:i) T � eii) t � piii) (T ! T 0) � Tiv) T � Tv) if T � T 0 and T 0 � T then T = T 0vi) if T � T 0 and T 0 � T 00 then T � T 00vii) if T � T 0 then (T1 ! T) � (T1 ! T 0)We say that by (T � T 0), T subsumes T 0; intuitively it means that any expression which is oftype T is also of type T 0. 12

It is mainly clause iii) of De�nition 2.15 which enables one to have self application in thesystem and it is the notion of circular types de�ned below, which allows the avoidance of theparadoxes.De�nition 2.16 (Monotypes)We say that a type T is a monotype if it contains no type variables.This is how this system deviates from that of [Kamareddine, Klein 93] which allows onlymonotypes.De�nition 2.17 (Circular Type)We say that a type T ! T 0 is circular i�:� Either T 0 � p and T � T1 ! T2 where T2 � p� Or T is circular� Or T 0 is circularLemma 2.18 If T ! T 0 is not circular, then neither T nor T 0 are circular.Proof: Obvious. 2Example 2.19 (� ! p)! t; ((e! p)! p)! e and (e! p)! (p! p) are circular types.Remark 2.20 Here it will be asked what will happen to Noun Phrases and GeneralisedQuanti�ers like John, which are usually taken to be of type (e ! p) ! p; i.e. their type iscircular. The answer is to make John of type (e ! e) ! p instead. This will be done via afunction H to be de�ned in Section 5. Syntactically John and runs can combine because the�rst is CNe and the second is VPe, this is exactly like the treatment of Parsons where a VPetakes an NPe and returns a p. Semantically this mixing is allowed because the type of Johncan mix with the type of run which is e! p as e! p � e! e according to our relation �.De�nition 2.21 (Expressions)The following syntax of expressions is assumed:E = V j(E1E2)j(�V : T:E1)j(E1 ^E2)j(E1 ! E2)j(:E1)j(8V : T:E1)j(E1 = E2)Constants, disjunctive and existential expressions are omitted for the sake of clarity. It mightbe remarked here that our terms are typed, so how are we talking about type free terms?It will be shown however that the type free �-calculus can be embedded in our system (seeSection 3), and hence we have all the type free terms at our disposal. In fact, it is preciselythe addition of variable types which enables such embedding.Notation 2.22 Sometimes, when T contains only variable types and when none of thesevariable types occur in E, we write �V:E instead of �V : T:E. For example, instead of�x : �:x we write simply �x:x.De�nition 2.23 (?)A particular expression ? will be de�ned in the usual way (such as: ? =df �xy:xy = �xy:y)and will have the property that it should never be derivable.13

Finally, we assume the usual conventions for the dropping of parentheses when no confusionoccurs, and the usual de�nition of implicit substitution of the �-calculus in contrast to theexplicit one presented in [Kamareddine, Nederpelt 93] and [Kamareddine, Nederpelt 94B].When an expression E has type T we write E : T . In particular we write � : p for � aproposition and � : t for � true.De�nition 2.24 (Environments)An environment is a set of type assignments (V : T) which assigns the type T to thevariable V , such that a variable is not assigned two di�erent types. We let � range overenvironments.Notation 2.25 When (V : T) 2 �, we say that the type of V in the environment � is T .Moreover, the notation � ` E : T means that from the environment �, we can deduce that theexpression E has type T .De�nition 2.26 (Typing �-expressions)The following rules are used to type the expressions:(V : T) 2 �� ` V : T (1)� ` E : T T � T 0� ` E : T 0 (2)� ` E1 : T ! T 0 � ` E2 : T� ` E1E2 : T 0 (3)(V : T) [� ` E : T 0� ` �V:E : T ! T 0 where T ! T 0 is not circular (4)� ` E1 : T � ` E2 : T� ` (E1 = E2) : p (5)� ` (E1 = E2) : t � ` E1 : T� ` E2 : T (6)� ` � : p� ` :� : p (7)� ` � : p �;� : t ` ? : t� ` :� : t (8)�;:� : t ` ? : t �;� : p� ` � : t (9)� ` � : p � ` 	 : p� ` (� ^) : p (10)� ` � : t � ` 	 : t� ` (� ^) : t (11)14

� ` (� ^) : t� ` � : t � ` (� ^) : t� ` 	 : t (12)�;� : t ` 	 : p � ` � : p� ` (�!) : p (13)�;� : t ` 	 : t � ` � : p� ` (�!) : t (14)� ` � : t � ` (�!) : t� ` 	 : t (15)�; E : T ` � : p� ` 8V : T:� : p (16)�; V : T ` � : t� ` 8V : T:� : t where V is not free in � or any assumptions in � (17)� ` 8V : T:� : t � ` E : T� ` �[x := E] : t (18)� ` [(�V : T:E) = (�V 0 : T:E[V := V 0])] : t; where V 0 is not free in E (19)� ` [(�V : T:E)E0 = E[V := E0]] : t; (20)� ` [E1 = E2] : t � ` [E01 = E02] : t� ` [E1E01 = E2E02)] : t (21)� ` E : T� ` [E = E] : t (22)� ` [E1 = E2] : t � ` [E1 = E3] : t� ` [E2 = E3] : t (23)� ` [E1V = E2V] : t� ` [E1 = E2] : t where V is not free in E1; E2 or any assumptions in � (24)3 Type freeness, logic and the paradoxes in the proposed sys-temThe type free �-calculus, has the following syntax of terms: E ::= V j(E1E2)j�V:E1). WithNotation 2.22, the type free �-calculus is retrieved. In fact here is how we can embed thetype free �-calculus (� for short), in our system �L via the embedding function J :De�nition 3.1We de�ne an embedding function J : � �! �L, which embeds � in �L as follows:� J (V) = V� J (E1E2) = J (E1)J (E2) 15

� J (�V:E1) = �V : �:J (E1) where � is a fresh variable type. This is to avoid any typevariable clashes inside terms.� moreover, assumes the following three axioms (as we will not discuss reduction in the�-calculus, we shall consider the axioms in terms of equality rather than reduction. Oncereduction is introduced, the results below will still hold):(�) �V:E = �V 0:E[V := V 0] if V 0 is not free in E(�) (�V:E)E0 = E[V := E0](�) �V:EV = E if V is not free in E:Lemma 3.2 If � ` E = E0 then �L ` (E = E0) : t.Proof: By an easy induction on the derivation of E = E0 in �. 2Hence we have the full type free �-calculus. Moreover, we have all the logical connectives(both propositional and quanti�cational). The question arises however, as to where exactlyis the paradox avoided. One might wonder if the paradox is actually avoided. The reader isto be assured that this is the case. Let us start by looking at the type of the following term:�V::V . What type should this term have? Recall from our notational convention that thisterm is an abbreviation for something like �V : �::V . The � will be uni�ed with p and weget from equation (7) that :V is of type p and the whole term gets type p! p from equation(4).Can we then now �nd the �xed point of this term? I.e. can we �nd the a such that a = :a?The answer is no. We can apply �V::V to any proposition and obtain a proposition. Butonce we want to apply it to the Russell's sentence, we have to make sense of the type of thatsentence. But the Russell's sentence is not typeable in our system. This can be seen from thefollowing lemma:Lemma 3.3 �V : T ! T 0::V V where T 0 � p is not well-formed.Proof:(i) V : T ! T 0 hypothesis(ii) T ! T 0 � T from �(iii) V V : T 0 from (3)(iv) :V V : p from (8); as T 0 � pBut as (T ! T 0) ! p is circular, we cannot apply (4) to get that �V::V V has type(T ! T 0)! p. In fact we cannot type �V::V V . I.e. the type is circular. 2It should be noted here that one can have type freeness and logic while avoiding the paradoxwithout the use of the notion of circular types. [Kamareddine 92B] for example providesanother way of avoiding the paradox.We have built types such that all types (except the circular ones which cause the paradox)are possible. This should enable us to type all the terms that should not be problematic, thathave types, but that other existsing theories cannot deal with. Moreover, it is obvious thatsome expressions have many types. For example, �x:x is of type �! � for any type variable�. Now let us illustrate with typing �x:xx and Y .16

Example 3.4 �x:xx has type (�0 ! �1)! �1:(i) x : �0 ! �1 Assumption(ii) �0 ! �1 � �0 clause iii) of �(iii) x : �0 (i); (ii); (2)(iv) xx : �1 (i); (iii); (3)(v)�x:xx : (�0 ! �1)! �1 (i) : : : (iv); (4)Example 3.5 �f:(�x:f(xx))(�x:f(xx)) has type (�2 ! �2)! �2:(i) f : �2 ! �2 assumption(ii) x : (�1 ! �2)! �2 assumption(iii) (�1 ! �2)! �2 � �1 ! �2 clause iii) of �(iv) x : �1 ! �2 (ii); (iii); (2)(v) xx : �2 (ii); (iv); (3)(vi) f(xx) : �2 (i); (v); (3)(vii) �x:f(xx) : ((�1 ! �2)! �2)! �2 (ii) : : : (vi); (4)(viii) ((�1 ! �2)! �2)! �2 � (�1 ! �2)! �2 clause iii) of �(ix) �x:f(xx) : (�1 ! �2)! �2 (vii); (viii); (2)(x) (�x:f(xx))(�x:f(xx)) : �2 (iii); (ix); (3)(xi)�f:(�x:f(xx))(�x:f(xx)) : (�2 ! �2)! �2 (i) : : : (x); (4)Example 3.6 (�x : �0:x)y where y : �1 and �0; �1 are type variables, is also typable andthe system will deduce that the type of (�x : �0:x) is �0 ! �0 and it will try to check andsee if �0 � �1 but as �1 is a variable, the system makes �1 become �0 and returns �0 as theresult. Here some work is involved in unifying these variable types and this can be found in[Kamareddine 92A].It should be added moreover, that the theory provided in this paper has a tidy seman-tics which is provided in [Kamareddine, Klein 93] (excluding variable types). The models ofthis theory are constructed following the lines of [Aczel 80] or of [Scott 75]. Furthermore,[Kamareddine, Klein 94] provides a tree of theories where an extension of �L is the root andwhere all relevant theories of natural and programming languages are the roots of subtrees ofthe big tree, by showing that all the other theories are interpretable in that extension. Theextension however di�ers from �L only by the addition of meta-types. Now, as meta-typeshave not been used in [Parsons 79] or [Chierchia, Turner 88], we can conclude that �L can beseen as superior to these two systems.4 Type freeness or typesLet us recall the discussion in Section 1 where we said that the presence of the paradoxled to two routes of research. The �rst route concentrated on logic and abandoned variousforms of self-reference. The second route, abandoned logic and concentrated on self-reference.We said moreover that type theory was created under both routes. This was not without areason of course. Moreover, the reason was not only due to the paradoxes. The fact is, type17

theory provides with a powerful classi�cation scheme which can explain the meaningfulness orsenselessness of many constructs. In fact, looking at both programming and natural languages,one �nds that types are indispensable. For an extensive discussion of why types are useful asa classi�cation scheme for natural language, the reader is referred to [Chierchia, Turner 88].In this paper however, we shall in order to complete the discussion of [Chierchia, Turner 88],ask four questions and attempt to answer them.Question 4.1 Are types or levels necessary in the avoidance of the paradox?.Answer Not necessarily. For example, ZF was another solution to the paradox where we don'tneed to classify sets iteratively ([Boolos 71]), yet the Foundation Axiom FA was includedin ZF despite the fact that it was shown that antifoundation axioms are consistent withZF (see [Aczel 84] for such a discussion). The formulation of the Foundation Axiom FA is(9x)(x 2 a) ! (9x 2 a)(8y 2 x):(y 2 a). As a corollary of it, we do not get solutions tox = fxg, or x = ffxgg. Moreover, the inclusion of FA was unnecessary and it was not theresponsible axiom for avoiding the paradox.Question 4.2 Are types needed?Answer Yes of course. The fact that we ask for the full expressive power of the type free�-calculus does not mean that types are not needed. In fact when we ask for a type free settheory, or a set theory where the de�nition of a set may be impredicative, we don't go andforget completely about sets. In type free theories, one asks for the furthest expressive power,where we can live with self reference and impredicativity but without paradoxes. The bettersuch an expressive system is, the more we are moving towards type freeness. Just it is enoughto remember that up to the discovery of the paradoxes, the most ideal system was of coursetype free. Due to the paradoxes, helas this type free paradise had to be abandoned. Typestoo found an attractive place in the history of foundation and in most areas of applications oflogic. For after all types help in the classi�cation of programs, in the mixing of terms (suchas a noun and a verb) and so on. And moreover they play an important role in explainingthe paradoxes (if such an explanation is actually possible). For example, Girard's system F([Girard 86]) is no less type free than Feferman's theory T0 yet types play a valuable role inthat system with respect to impredicativity. The di�erence between F and T0 might be inthe explicitness or implicitness of the typing scheme. Now even though one works in a typefree system such as that of Feferman, one needs to introduce types such as recursive types,dependent types and the like. After all many of our proofs are for a particular collection ofobjects and not for all possible objects. Exactly as in set theory, intersection, union and soon are absolute necessity. Note also that a fully type free language cannot accommodate anunrestricted logic or an unrestricted �-conversion. It is also the case that Natural Languageimplicitly has inside it a notion of type. In fact Parsons' paper gives many insights on hownatural language is implicitly typed, yet type freeness must be present to deal with selfreferentiality.Question 4.3 So if types are needed why talk about type free theories? Why not ignoretype freeness?Answer. The reason is that we may not want to be inexible from the start if we coulda�ord to be exible. Type free theories are very elegant and simple, so we can have a clearpicture of how much we have and how is the paradox avoided. Then the detail of constructingtypes if followed will produce all the polymorphic higher order types that are needed. So a18

lot of unnecessary details (like constructing types) are left till later which will make it easierto prove results about the strength of the system, the expressive power, completeness and soon. Also from the point of view of computation, type free theories could be regarded as �rstorder theories and hence are computionally more tractable than typed theories. Completenessalso holds for �rst order logics but has to be forced for higher order ones. Hence what I amarguing for is the use of type freeness followed by the construction of exible polymorphictypes. It is also the case that the self referentiality of language requires type freeness. Sowe can talk about a property having itself as a property. For example, the property of thosethings equal to themselves is equal to itself.Question 4.4 Where does Natural Language �t between the type free and typed paradigms?Answer. Natural language is implicitly typed in that sentences don't really carry their typewith them but we do attribute types to them and to their constituents in order to makesense of certain combinations. Moreover, not only we attribute types to the constituents of asentence to make sense of it, but many sentences, when spoken are immediately assumed tobe well typed. This is an evidence that NL is implicitly typed.5 Embedding Parsons' system into oursRecall that the paradox was avoided by using the notion of circular types. Recall moreoverRemark 2.20. Hence in our interpretation of Parsons' system, the categories and types willhave to be changed accordingly. We will avoid intensions via s for the sake of clarity. What wewill do is basically use the same syntax of expressions but make sure that the correspondingsemantic types are not circular. Let us start by formalising the syntax of parsons' categoriesand semantic types (called here Pcategories and Ptypes respectively).De�nition 5.1 (Ptypes)Parsons' types are de�ned by the following syntax:PT ::= ejtj < s; PT > j < PT; PT >We let PT; PT 0; PT1; PT2 : : : range over Ptypes.De�nition 5.2 (Unlabelled Pcategories)The unlabelled categories used are the following:UC ::= CujCrjClrjClrr whereCu ::= sjADFCr ::= CN jV P jNP jADVClr ::= V jPREPClrr ::= VDe�nition 5.3 (Pcategories)The categories of Parsons are de�ned as follows:PC ::= CujCrPT jPTClrPT 0jPTClrrPT 0;PT 00We let PC;PC 0; PC1; PC2; : : : range over Pcategories.We will de�ne a function which rules out all the s's from a Parsons' type. This function isde�ned as follows:De�nition 5.4The attening function ext : Ptypes �! Ptypes is de�ned as follows:19

� ext(t) = t� ext(e) = e� ext(hs; PT i) = ext(PT)� ext(hPT; PT 0i) = hext(PT); ext(PT 0)i if PT 6= s.Lemma 5.5 ext is well de�ned.Proof: This is easy because we never get pairs hPT; PT 0i of the form hPT; si. That is, wenever have to apply ext to s. 2The function I below will take Ptypes into types.De�nition 5.6 We de�ne the function I : Ptypes �! Types as follows:� I(e) = e� I(t) = p� I(hs; PT i) = I(PT)� I(hPT; PT 0i) = I(PT)! I(PT 0)Lemma 5.7 I is well de�ned.Proof: Obvious. 2Note that some I(PT) might be circular. For example I(hhe; ti; ti) = (e ! p)! p. For thisreason we introduce the functions H and g. The function g will atten the range types. Thiswill be used inside the function H below, in order to avoid the circular types. For example,if we have the type (e ! p) ! p, which is circular, we look for H((e ! p) ! p) = g((e !p)! p) = (e! p)! e which is not circular.De�nition 5.8 The function g : Types! Types is de�ned as follows:� g(�) = �� g(T) = e if T is basic� g(T1 ! T2) = H(T1)! e otherwise.De�nition 5.9 We de�ne the function H: Types! Types as follows:� H(�) = �� H(T) = T if T is basic.� H(T1 ! T2) = H(T1)! H(T2) if T1 ! T2 is not circularH(T1 ! T2) = g(T1 ! T2) otherwise 20

Note that g and H are mutually recursive. Moreover, they are related by the followingLemma:Lemma 5.10 g �H = H � g.Proof: By cases on Types.� If T is a variable type then g �H(T) = H � g(T) = T .� If T is a basic type then g �H(T) = H � g(T) = e.� If T � T1 ! T 0{ Case T1 ! T 0 is non circular,g(H(T1 ! T 0)) = g(H(T1)! H(T 0)) = H(H(T1))! e andH � g(T1 ! T) = H(H(T1)! e) = H(H(T1))! e{ Case T1 ! T 0 is circular,g(H(T1 ! T 0)) = g(g(T1 ! T 0)) = g(H(T1)! e)) = H(H(T1))! e andH(g(T1 ! T 0)) = H(H(T1)! e) = H(H(T1))! e 2Lemma 5.11 H � g = g � g.Proof: By cases on T .� If T is basic or is a variable type then obvious.� H � g(T ! T 0) = H(H(T)! e) andg � g(T ! T 0) = g(H(T)! e) = H(H(T)! e. 2Lemma 5.12� H � g 6= H �H� H �H 6= g � gProof:� H � g(p) = e 6= H �H(p) = p.� g � g(p) = e 6= H �H(p) = p. 2Lemma 5.13 H(T) and g(T) are not circular for any T in types.Proof: By induction on T in Types. 21

� If T is basic or s a variable type then obvious.� If T � T1 ! T2 where property holds for T1 and T2, then:{ Case T1 ! T2 is circularH(T1 ! T2) = g(T1 ! T2) = H(T1) ! e which is not circular by IH and thede�nition of circular types.{ Case T1 ! T2 is not circularg(T1 ! T2) = H(T1)! e which is not circular by IH and the de�nition of circulartypes.H(T1 ! T2) = H(T1)! H(T2). Again, by IH, H(T1) and H(T2) are not circularby IH. Moreover, it can't be the case that H(T2) � p and that H(T1) � T 0 ! T 00where T 00 � p, because if this was the case, we get T1 ! T2 is circular, absurd. 2The following Lemma is very useful. It says that once we have made sure the type is notcircular (via H), then another application of H is useless. That is:Lemma 5.14 H �H = H.Proof: By induction on T .� If T is basic or is a variable type then obvious.� Assume the property holds for T1 and T2 then{ Case T1 ! T2 is not circular thenH �H(T1 ! T2) = H(H(T1)! H(T2)) =H(H(T1))! H(H(T2)) =IH H(T1)! H(T2) =H(T1 ! T2).{ Case T1 ! T2 is circular thenH �H(T1 ! T2) = H(g(T1 ! T2)) =H(H(T1)! e) = H(H(T1))! e =IH=H(T1)! e = g(T1 ! T2) =H(T1 ! T2).Note that we could have de�ned H and g so that for example H((e ! p) ! p) = (e !e)! p, but this faces two problems:� First is that we lose all the closure properties stated in the above lemmas.� Second, it is precisely this which makes our system superior to that of Parsons. In factas we will see in the next section, Parsons system allows some sentences which involvepolymorphic types but there are many more that he can't represent. These can be easilyrepresented in our system. 22

We assume similar unlabelled syntactic categories as Parsons (as given in De�nition 5.2) andlet f be the function which maps the syntactic types of Parsons into his semantic ones. Thatis, f is de�ned in Table 2.7 and Tables 2.8 and 2.9 give examples of categories and theircorresponding Ptypes. Our set of labelled categories will also be de�ned similarly to that ofParsons except that our labels are elements of Types rather than of Ptypes. That is:De�nition 5.15 (Categories)C ::= CujCrT jTClrT 0 jTClrrT 0;T 00In fact, categories can be de�ned in terms of Pcategories as follows:De�nition 5.16 (Translating Pcategories to Categories)C : Pcategories �! Categories� C(Cu) = Cu� C(CrPT) = CrI(PT)� C(PTClrPT 0) =I(PT)) ClrI(PT 0)� C(PTClrrPT 0;PT 00) =I(PT) ClrI(PT 0);I(PT 00)We de�ne f 0 to be our function which corresponds to Parsons' f . That is, f 0 takes a syntacticcategory and returns an element in Types.f 0 is de�ned via Table 5.17. Moreover, Tables 5.18 and 5.19 show examples of the resultof f 0. Tables 5.17 : : : 5.19 correspond to Tables 2.7 : : : 2.9:Table 5.17Categories C Corresponding semantic types f 0(C)s pCN � H(� ! p)VP� H(� ! p)NP� H(f 0(V P �)! p)�1V �2 H(f 0(NP �2)! f 0(V P �1))�1V �2;�3 H(f 0(NP �2)! f 0(�1V �3))ADV� H(f 0(V P �))! f 0(V P �))ADF p! p�1PREP�2 H(f 0(NP �2)! f 0(ADV �1))It is now easy to check that the words of �xed type of PTQA, which are listed below havethe corresponding semantic types:44Note the semantic type corresponding to pVe. This is because p ! p � p and hence ((e ! e) ! p) !(p! p) � ((e! e)! p)! p which is circular.
23

Table 5.18Words of �xed type Syn Type Sem Typemane, womane, parke, �she,pene, unicorne, -bodye CNe e! pfactp, propositionp, answerp CNp p! prune, walke, talke, risee, changee VPe e! pobtainp VPp p! pJohne, Marye, ite0; ite1 : : : NPe (e! p)! eThe Pythagorean theoremp; itp0; itp1 : : : NPp (p! p)! eeeate, edatee eVe ((e! p)! e)! (e! p)pbelievep, eassertp eVp ((p! p)! e)! (e! p)pamazee pVe ((e! p)! e)! (p! p)ebuye;e eVe;e ((e! p)! e)! (((e! p)! e)! (e! p))etelle;p eVe;p ((e! p)! e)! (((p! p)! e)! (e! p))rapidlye, slowlye, voluntarilye ADVe ((e! p)! (e! p))necessarily ADF p! peine ePREPe ((e! p)! e)! ((e! p)! (e! p))The syntactic rules of PTQA are exactly those listed in Parsons' paper. We are in thesame position as Parsons in that the sentences walks or obtains, Bill obtains, That John walksruns, : : : are ungrammatical. The formation of these sentences depends on the syntactic ruleS4 and has nothing to do with the subsumption of types. The above �xed types will notaccommodate polymorphism which will be able to deal with John talks about Mary and Johntalks about a proposition. For this we will follow Parsons in his notion of oating types.5Table 5.19Words of oating types Type Semantic Typething� CN� H(� ! p)set�!p CN�!p H(� ! p)! eproperty�!p CN�!p H(� ! p)! eexist� VP�!p H(�; p)it�0 ; it�1 ; : : : NP� H(f 0(V P �)! p) = H(H(� ! p)! p)e�nd� , elose� , elove� ;ehate� , eseek� , econceive� eV� H(f 0(NP �))! (e! p)�have�!p, �exemplify�!p �V�!p H(f 0(NP �!p)! f 0(V P �))egivee;� eVe;� H(f 0(NP e)! f 0(eV �))eabout� ePREP� H(f 0(NP �)! ((e! p)! (e! p)))�1be�2 �1V�2 H(f 0(NP �2)! f 0(NP �1))Helas however, we still do not have f 0 and f related by the following equation:f 0(C(PC)) = H(I(f(PC))).In fact, the following diagram does not commute:That is: H � I � f 6= f 0 � C.5Note the semantic type of eV� . This is because f(NP �)! (e! p) is not circular.24

-
f 0categories Types?

Pcategories
C -

f Ptypes
H � I?

HHHHHHHHHHHHHHHHHHHHHHHHj
Example 5.20 H(I(f(eV e))) = ((e! p)! e)! e, whereas f 0 �C(eV e) = ((e! p)! e)!(e! p).According to this translation, the accounts of John talks about Mary and John talks abouta proposition are the same as Parsons except that the values that we obtain out of the tablesays that the type of the sentence is e rather than p. The type however is still p as thesentence is of category s and we are consistent because p � e.Table 5.21Our account of category Rule TypeJohn talks about Maryabout ePREDe ((e! p)! e)! ((e! p)! (e! p))Mary NPe (e! p)! eabout Mary ADVe S6 (e! p)! (e! p)talk VPe e! ptalk about Mary VPe S10 e! pJohn NPe (e! p)! eJohn talks about Mary s eTable 5.22Our account of Category Rule TypeJohn talks about a propositionproposition CNp p! pa proposition NPp S2 (p! p)! eabout ePREDp ((p! p)! e)! ((e! p)! (e! p))about a proposition ADVe S6 (e! p)! (e! p)talk VPe e! ptalk about a proposition VPe S10 e! pJohn NPe (e! p)! eJohn talks about a propostion s e25

Also, like him this approach captures that a property runs is ungrammatical. Up tohere, all Parsons framework is accommodated in a type free theory with logic and where theparadoxes are avoided via circular types. In order to give Parsons' framework an interpretationin this type free theory, we kept exactly the same syntax and syntatctic categories, yet wechanged the semantic domains. This is because for type free �-calculus, to have logic insideit, there must be a way to avoid the paraodxes.6 Paradoxical sentences, Parsons approach and usefulness of�LParsons' approach is very attractive and explains in an elegant way the grammaticality orungrammaticality of sentences. For example, we can say that john runs but not that aproperty runs. The problem that we �nd with his approach is its limitation in terms of selfreference. For example, Parsons approach rules out sentences such as a property has itself. Infact the following examples which are an implementation of the theory of types in which weimplemented Parsons system ([Kamareddine 92A]) will give a feel of how the system works:Expressions Types1 �x:x �0 ! �02 �x : e:x e! e3 �x:xx (�0 ! �1)! �14 (�x:xx)(�x:xx) �15 �x : p:xx p! �06 �x : e! p:xx error: (e! p)! p is circular7 8x : (�0 ! �1):xy p8 8x : e:x error, not a proposition9 8x : (e! �1):xy p10 8x:xx p11 �x : (�0 ! �1):xy (�0 ! �1)! �112 �f:(�s : e! pf(ss))(�s : e! pf(ss)) error: (p! p)! p is circular13 �f : e! p:(�s : e! pf(ss))(�s : e! pf(ss)) error: (e! p)! p is circular14 �f:(�x:f(xx))(�x:f(xx)) (�2 ! �2)! �215 (�f:(�x:f(xx))(�x:f(xx)))(�x : p:xx) p16 (�f:(�x:f(xx))(�x:f(xx)))(�f:(�x:f(xx))(�x:f(xx))) �217 (�f:(�x:f(xx))(�x:f(xx)))(�x:xx) �218 (�x:xx)(�f:(�x:f(xx))(�x:f(xx))) �119 �x::xx error, circular type20 �x : (�0 ! t)::xx error, circular type21 �x : (�0 ! p)::xx error, circular type22 �x:xx! ? error, circular typeExample 6 shows that Parsons' system cannot have a property which holds of itself.Example 12 shows that he can't �nd the �xed points of properties. Example 11 shows thathe can have everything holds of everything and so on. Of course we can solve the problemof a property holds of itself. For example the �rst thing that we can do is take have tohave for syntactic type �have� , and to have semantic type �V � . This will also enable himto say John has a letter, John has Mary and so on. This idea however would have to be26

carried out very carefully because syntactically this is how Parsons avoided the paradox. Inour language however, syntactically anything is acceptable because we are working in a typefree framework. Hence it is semantically that we have to explain the meaning of a propertyhaving itself or not having itself. Assume here that we change have to the following, then ourgeneration of a property has itself and of a property not having itself are as follows:property CN�!p H(� ! p)! ea property NP�!p H((� ! p)! p)! e = (H(� ! p)! e)! e�!phas�!p �!pV�!pitself NP�!phas itself VP�!pa property has itself s eA property does not have itself is dealt with by adding the syntactic clause for not.If � is in VP�!p then not � is in VP�!p.It must be noted here that parsons' system is much weaker than that described by listingthe 22 examples above. In fact, parsons' system is not capable of typechecking term 14 above(which is the �xed point operator). In fact, we have improved Parsons' system by allowingit to accommodate and type check many sentences that it could not do originally. Evenmore, we don't have the limitation of Parsons' system. That is a property can apply toitself in our system. It is not without a reason that the negation operator accepts objectsand returns objects rather than just accepting propositions and returning propositions. If weallowed the latter, we will fall foul of the paradox. For example, �x : (e! p)::xx applied toitself gives that a proposition is equal to its negation. According to our approach however,�x(e ! e)::xx applied to itself will be equal to its negation. This however, will not resultin a paradox, because it is not obvious how to show that the result is a proposition. So insummary, for the non problematic sentences, we get propostions but for the probelmatic ones,we restrict the types to those non circular via the function H.7 Comparison and ConclusionFrom the previous section, we have improved a lot in the expressivity of Parsons' system byallowing him to talk about sentences that he could not talk about previously. Even more, wesaid that with our exible typing scheme, we can allow any sentence and type check it as longas its type was not circular. If the type is circular, we change the �nal type of the sentenceso that a paradox is impossible to derive. This approach is certainly exible. Furthermore,all the type free �-calculus is accommodated in this approach, all self reference and all logic.Let us now complete the comparison that we started in the previous section by remarking onthe di�erences between our system and that of [Chierchia, Turner 88].There is a broad correspondence between our type `he; pi' and the sort `nf ' of the Chier-chia and Turner paper, and to this extent the two fragments are quite similar. However,[Chierchia, Turner 88]'s semantic domain Dnf is the nominalization of all functions from e toe, rather than those from e to p.Second, for Chierchia and Turner, only expressions of type nf are nominals. Since theirnominalization operator is exclusively de�ned for expressions of type he; ei, and they do nothave any kind of type containment for functional types, they do not allow transitive verbs likelove and ditransitives like give to be nominalised. Yet examples such as 1 (from [Parsons 79])27

and 2 in the example below, show that untensed transitive verbs enter into the same nominalpatterns as intransitives:Example 7.11. To love is to exalt.2. To give is better than to receive.By contrast, our approach can accommodate such data straightforwardly.Third, recall that Turner abandoned the comprehension principle. Now the abandonmentof Frege's full comprehension axiom will impose the use of two logics, one inside the predi-cation operator in addition to the usual one for w�s. This is due to the fact that breakingthe equivalence between p(�x:A; t) and A(t; x) will disconnect the reasoning about w�s andproperties.We have argued in this paper that Natural Language items cannot be rigidly typed andthat if we start from the type free �-calulus, we can exibly type natural language terms.That is anything is an expression and anything non problematic will have a type. These typesare polymorphic in the sense that expressions can have variable types and these variable typesmay be instantiated to anything. For example, the identity function has type �0 ! �0, andthe identity function applied to of type e will result in elements of type e. The polymorphicpower of the system comes from the ability to typecheck all polymorphic functions eventhose which are problematic in other systems. For example the �xed point operator, Y =�f:(�x:f(xx))(�x:f(xx)) is typechecked to (�2 ! �2) ! �2 and even can apply to itself.Even YY is typechecked to �2. ! = �x:xx is also typechecked to (�1 ! �1) ! �1 and !applied to itself is typechecked to �1 . As said earlier, these types can be instantiated so thatYI where I is the identity function over e (i.e. I = �x : e:x), is typechecked to e naturally.We believe this system is one of the �rst which can typecheck all the above while remaininga very expressive and simple one. Another nice characteristic of the system is its abilityto combine logic and the type free �-calculus while remaining consistent. So even thoughthe Russell sentence (�x::(xx)) is a well formed sentence of the system, its type cannotbe found. In fact, the system returns an error message explaining that this sentence has acircular type. The same thing applies to Curry's sentence (�x:xx ! ?). Finally, the typingscheme that we presented can have a wide range of applications (see [Kamareddine, Klein 93],[Kamareddine, Klein 94] and [Kamareddine 94]). The reason being that even though typesare very informative either in programming or in natural languages, type freeness and thenon-restricted typing schemes are a necessity in interpreting many natural and programminglanguage constructs. We believe in the need to have your cake and eat it in the disciplines ofprogramming and natural languages. That is, we believe it necessary not to be too scared ofthe paradoxes to the point of using too restricted languages. We must have the courage totouch as much as we can the boundary of logic and type freeness between safety and danger.References[Aczel 80] Aczel, P., Frege structures and the notions of truth and proposition, Kleene Symposium,1980. 28

[Aczel 84] Aczel, P., Non well founded sets, CSLI lecture notes, No 14, 1984.[Barendregt, Hemerik 90] Barendregt, H., and Hemerik, C., Types in Lambda calcului and program-ming languages, in: European Symposium on programming, ed. N. Jones, Lecture notes in Com-puter Science 423, Springer, pp. 1-36, 1990.[Boolos 71] Boolos, g., The iterative conception of sets, Journal of Philosophy LXVIII, pp 215-231,1971.[Chierchia, Turner 88] Chierchia, and Turner, R., Semantics and property theory, Linguistics andPhilosophy 11, pp 261-302, 1988.[Cocchiarella 84] N. Cocchiarella, Frege's Double Correlation Thesis and Quine's set theories NF andML, Journal of Philosophical Logic 14, pp. 1-39, 1984.[Feferman 79] Feferman, S., Constructive theories of functions and classes, Logic Colloquium '78, M.Bo�a et al (eds), pp 159-224, North Holland, 1979.[Feferman 84] Feferman, S., Towards useful type free theories I, Journal of Symbolic logic 49, pp75-111, 1984.[Girard 86] Girard, J.Y., The system F of variable types, �fteen years later, Theoretical ComputerScience 45, pp 159- 192, North-Holland, 1986.[Kamareddine 89] Kamareddine, F., Semantics in a Frege structure, PhD thesis, University of Edin-burgh, 1989.[Kamareddine 92A] Kamareddine, F., A system at the cross roads of logic and functional program-ming, Science of Computer Programming 19, pp. 239-279, 1992.[Kamareddine 92B] Kamareddine, F., �-terms, logic, determiners and quanti�ers, Journal of Logic,Language and Information, Volume 1, No 1, pp 79-103, 1992.[Kamareddine 92C] Kamareddine, F., Set Theory and Nominalisation, Part I, Journal of Logic andComputation, Volume 2, No 5, pp. 579-604, 1992.[Kamareddine 92D] Kamareddine, F., Set Theory and Nominalisation, Part II, Journal of Logic andComputation, Volume 2, No 6, pp 687-707, 1992.[Kamareddine, Klein 93] Kamareddine, F., and Klein, E., Polymorphism, Type containment andNominalisation, Journal of Logic, Language and Information 2, pp 171-215, 1993.[Kamareddine, Nederpelt 93] Kamareddine, F., and Nederpelt, R.P., On Stepwise explicit substitu-tion, International Journal of Foundations of Computer Science 4 (3), 197-240, 1993.[Kamareddine, Klein 94] Kamareddine, F., and Klein, E., Polymorphism and Logic in Natural andProgramming Languages, submitted for publication.[Kamareddine 94] Kamareddine, F., Non well-typedness and Type-freeness can unify the interpre-tation of functional application, to appear in the Journal of Logic, Language and Information,1994.[Kamareddine, Nederpelt 94A] Kamareddine, F., and Nederpelt, R.P., A uni�ed approach to TypeTheory through a re�ned �-calculus, Proceedings of the 1992 conference on Mathematical Foun-dations of Programming Langauge Semantics, edited by Michael Mislove et al, 1994.[Kamareddine, Nederpelt 94B] Kamareddine, F., and Nederpelt, R.P., The beauty of the �-calculus,to appear.[Martin-L�of 73] Martin-L�of, P., An intuitionistic theory of types: predicative part, logic colloquium'73 , Rose and Shepherdson (eds), North Holland, 1973.[Milner 78] Milner, R., A theory of type polymorphism in programming, Journal of Computer andSystem Sciences, Volume 17, No 3, 1978. 29

[Parsons 79] Parsons, T., Type Theory and Natural Language, Linguistics, Philosophy and Montaguegrammar, S Davis and M Mithum (eds), University of Texas press, pp 127-151, 1979.[Poincar�e 1900] H. Poincar�e, Du role de l'intuition et de la logique en mathematiques, C.R. du IICongr. Intern. des Math., pp. 200-202, 1900.[Russell 1908] B. Russell, Mathematical logic as based on the theory of types, American Journal ofof Math. 30, pp. 222-262, 1908.[Scott 75] Scott, D., Combinators and classes, in Lambda Calculus and Computer Science, LectureNotes in Computer Science 37, B�ohm (ed), Springer, Berlin, pp 1-26, 1975.[Turner 84] Turner, R., Three Theories of Nominalized Predicates, Studia Logica XLIV2, pp. 165-186,1984.[Turner 87] Turner, R., A Theory of properties Journal of Symbolic Logic 52, pp. 63-89, 1987.

30

