
Explicit substitutions for the ��-calculus?Gilles Barthe1 Fairouz Kamareddine2 Alejandro R��os21 CWI, P.O. Box 94079, 1090 GB Amsterdam, the Netherlands, email gilles@cwi.nl2 University of Glasgow, Department of Computing Science, 17 Lilybank Gardens,Glasgow G12 8QQ, Scotland, UK, email ffairouz,riosg@dcs.gla.ac.ukAbstract. The ��-calculus is a �-calculus with a control-like operator whosereduction rules are closely related to normalisation procedures in classical logic.We introduce ��exp, an explicit substitution calculus for ��, and study itsproperties. In particular, we show that ��exp preserves strong normalisation,which provides us with the �rst example {moreover a very natural one indeed{of explicit substitution calculus which is not structure-preserving and has thepreservation of strong normalisation property. One particular application ofthis result is to prove that the simply typed version of ��exp is strongly nor-malising.In addition, we show that Plotkin's call-by-name continuation-passing styletranslation may be extended to ��exp and that the extended translation pre-serves typing. This seems to be the �rst study of CPS translations for calculiof explicit substitutions.1 IntroductionExplicit substitutions were introduced by Abadi, Cardelli, Curien and L�evy in [1] asa bridge between �-calculus and its implementation. The fundamental idea behindexplicit substitutions is simple: in order to provide a full account of the computationsinvolved in computing a �-term, one must describe a method to compute substitutions.Since the seminal work of Abadi, Cardelli, Curien and L�evy, explicit substitutions havedeveloped into a subject of their own, �nding further applications e.g. in proof-search[28], uni�cation [11], representation of incomplete proofs [23, 21] and proof theory[16].In this paper, we generalise some of the results on explicit substitutions for �-calculi to classical �-calculi, i.e. �-calculi with control-like structures. More precisely,we consider a speci�c calculus with a control-like operator, called �� [27], and de�neits explicit substitution variant ��exp. Then we prove that the ��exp enjoys someimportant properties:{ ��exp preserves strong normalisation, i.e. every strongly normalising ��-term isstrongly normalising with respect to the reduction relation of ��exp;{ the simply typed ��exp calculus is strongly normalizing;? This work is supported by NWO and the British council under UK/Dutch joint scienti�cresearch project JRP240 and EPSRC grant GR/K 25014.

{ ��exp may be translated to �exp {a named explicit �-calculus{ using an extensionof the continuation-passing style translation;{ the CPS translation maps simply typable ��exp-terms to simply typable �exp-terms and generalises Kolmogorov's double-negation translation.The motivation for this work is three-fold:1. control-like operators play a crucial role in functional programming languages,such as LISP [29], SML [2], Scheme [12], etc. We will only be able to claim thatexplicit substitutions provide a bridge between higher-order rewriting systemsand their implementation if the theory of explicit substitutions can be extended{among other{ to control-like operators;2. control-like operators and explicit substitutions both have applications in theoremproving and proof theory. (See e.g. [24] for applications of control-like operatorsin theorem proving and [5, 14, 24] for applications of control-like operator inproof theory.) The former are used in classical theorem proving and the latterto represent incomplete proofs. By studying explicit substitutions with controloperators, we lay the foundations for a classical theorem prover with the abilityto handle incomplete proofs and for a classical proof theory based on explicitsubstitutions.3. control-like operators fundamentally di�er from �-calculus in that they are notstructure-preserving in the sense of [9]. Hence the results of [9] do not apply. Yetwe will show that the decency method [7] can be adapted to our setting. Thisconstitutes the �rst study of explicit substitutions for non-structure-preservingcalculi and suggests the possibility of extending the results of [9] to a large anduseful class of combinatory rewrite systems.Organisation of the paper In Section 2, we introduce the ��-calculus and state some ofits properties. In Section 3, we extend the ��-calculus with explicit substitutions. InSection 4, we establish the con
uence and preservation of strong normalisation (PSN)of the ��exp-calculus. We use the interpretation method [15] to show con
uence andthe decency method to establish PSN [7]. We also show that the structure preservingmethod of [9] does not apply to the ��exp-calculus. In Section 5 we introduce thesimply typed version of ��exp and show that it has the desirable properties such assubject reduction and strong normalisation. In Section 6, we present the �rst study ofCPS-translations for calculi of explicit substitutions by providing a CPS-translationfor ��exp and showing its soundness. In Section 7, we discuss related work. Weconclude in Section 8.Prerequisites and terminology We assume some basic familiarity with �-calculus [4]and abstract rewriting [19]. We let / denote the subterm relation and !R denote thecompatible closure of a relation R {compatibility is de�ned as usual. The transitiveand re
exive-transitive closures of !R are denoted by !!+R and !!R respectively.Finally, we let SN(R) denote the set of strongly normalising terms w.r.t. !R.

2 The ��-calculusControl operators are programming constructs which allow the programmer to havemore direct control over the evaluation of a program. In the late 80's, Gri�n [14]observed that control operators could be simply typed by the classical axiom of dou-ble negation. After Gri�n's discovery, there has been a great interest �-calculi withcontrol-like structures. The ��-calculus is such calculus. More precisely, the ��-calculus is an extension of the �-calculus with a binding double negation operator� whose computational behavior is closely related to normalisation procedures forclassical natural deduction [?] (and of course to reduction rules for control operators).The following de�nition is taken from [27].De�nition 11. The set T of (pure) terms is given by the abstract syntax:T = V j TT j �V:T j�V:T with V = fxn : n 2 INgwhere � and � are binding operators.2. Meta-substitution :[:=:], free and bound variables are de�ned as usual. We let FV(a)and BV(a) denote respectively the sets of free and bound variables of a term a.3. �-reduction !� is de�ned as the compatible closure of(�x:a) b !� a[b=x]4. �-reduction !� is de�ned as !�1 [!�2 [!�3 where �i-reduction for 1 � i � 3is de�ned to be the compatible closure of the corresponding i-rule:(�x:a) b !�1 �y:a[�w:y (w b)=x] if y; w 62 FV(b); y 6= w�x:x a !�2 a if x 62 FV(a)�x:x (�y:x a)!�3 a if x; y 62 FV(a)5. !��=!� [!�.For motivations and explanations of the �-operator, we refer the reader to [27]. Weshall brie
y mention however that the rule �1 is what makes the �-operator intoa control one. Note that �1, does not destroy the control nature of the term. Afterapplication, a �-term remains a �-term. �2 acts like an �-rule and together with �3allows to de�ne a catch and throw mechanism.We let x; y; z; w; : : : range over V and a; b; c; : : : range over T and O to range overf�;�g. For the sake of hygiene, we consider terms modulo �-conversion {generalisedover �{ and assume Barendregt's variable convention [4].The following proposition is taken from [27].Proposition 2 !�� is con
uent (CR).Finally, we de�ne the norm ��-norm ��(a) of a pure term a as the maximal numberof ��-reduction steps in a reduction starting from a. It is �nite if a 2 SN(��) andin�nite otherwise. The norm of a term will be used in Section 4.

3 The ��exp-calculusThe ��exp-calculus is a named calculus of explicit substitutions for ��.De�nition 31. The set T e of terms of the ��exp-calculus is given by the abstract syntax:T e = V j T eT e j �V:T e j�V:T e j T e[V := T e] with V = fxn : n 2 IN:gwhere �;�; :[: := :] are binding operators. Free and bound variables are de�ned inthe obvious way.2. �-reduction !� is de�ned as the compatible closure of(�x:a) b !� a[x := b]3. �-reduction !� is de�ned as !�1 [!�2 [!�3 where �i-reduction for 1 � i � 3is de�ned to be the compatible closure of the corresponding i-rule:(�x:a) b !�1 �y:a[x := �w:y (w b)] if y; w 62 FV(b); y 6= w�x:x a !�2 a if x 62 FV(a)�x:x (�y:x a)!�3 a if x; y 62 FV(a)4. �-reduction !� is de�ned as the compatible closure ofx[x := b] !� by[x := b] !� y if x 6= y(a a0)[x := b] !� (a[x := b]) (a0[x := b])(Oy:a)[x := b]!� Oy:(a[x := b]) if y 62 FV(b)5. !���=!� [!� [!� and !��i=!� [!�i for 1 � i � 3.Again we let a; b; c; : : : range over T e. The variable convention, �-conversion, meta-substitution, etc are generalised in the obvious way. In particular,FV(a[x := b]) = FV(b) [(FV(a) n fxg)De�nition 4 The set �FV(a) of substitutable free variables of a term a is de�nedinductively as follows:�FV(x) = fxg�FV(ab) = �FV(a) [�FV(b)�FV(Ox:a) = �FV(a) n fxg�FV(a[x := b]) = ��FV(a) if x 62 FV(a)(�FV(a) n fxg) [�FV(b) if x 2 FV(a)We conclude this section by noting that ��exp contains �exp as a subcalculus. Thelatter is a named explicit �-calculus, called �x in [8], and obtained from ��exp byleaving out �.

4 Con
uence and preservation of Strong NormalisationIn this section, we show that the ��exp-calculus enjoys con
uence and preservationof strong normalisation.4.1 Con
uenceCon
uence is proved as usual, using the interpretation method of [10, 15].Lemma 5 Let a; b 2 T e. The following holds:1. !� is SN and CR. Hence, every term c 2 T e has a unique �-normal form, denoted�(c).2. �(ab) = �(a)�(b), �(�x:a) = �x:�(a), �(�x:a) = �x:�(a), �(a[x := b]) =�(a)[�(b)=x].3. Projection: If a!!��� b then �(a)!!�� �(b).4. Simulation: for pure terms a; b, if a!�� b then a!!+��� b.Proof: Analogous to the proofs of the corresponding results for �exp [8]. We justremark that the function used to prove SN should be here extended with h(�x:a) =h(a) + 1. 2Theorem 6 The ��exp-calculus is con
uent.Proof: If a!!��� b1 and a!!��� b2 then by Lemma 5, �(a)!!�� �(bi), for i 2 f1; 2g.By CR of ��, there exists c such that �(bi) !!�� c, and by Lemma 5 �(bi) !!��� c.Hence, bi !!��� c. 24.2 Preservation of strong normalisationEvery term is ���-strongly normalising if the �-normal forms of its subterms are��-strongly normalising.Lemma 7 If a 2 SN(���) and b / a, then �(b) 2 SN(��).Proof: If �(b) 62 SN(��), then b 62 SN(���) as b !!� �(b) and we use Lemma 5.4.Absurd as b / a and a 2 SN(���). 2Corollary 8 If a is a pure term such that a 2 SN(���), then a 2 SN(��).Proof: If a is pure, �(a) = a. 2In other words, SN(���)\T � SN(��). The question arises if the converse holds, i.e.whether SN(��) � SN(���).De�nition 9

1. A term a 2 T obeys the preservation of strong normalisation (PSN) property ifa 2 SN(��) =) a 2 SN(���).2. A term a 2 T e obeys the generalised preservation of strong normalisation (GPSN)property if (8b / a:�(b) 2 SN(��)) =) a 2 SN(���).The GPSN property is a mild generalization of the PSN property.3 In our view, theGPSN property is more fundamental than the PSN property for two reasons:1. the GPSN property applies to all terms, not only the pure ones;2. for most typed �-calculi with explicit substitutions, strong normalisation is animmediate consequence of the GPSN property and of strong normalisation of thestandard calculus without explicit substitutions.We shall prove that the ��exp-calculus has the GPSN property using the decencytechnique of [7] {the technique was introduced to prove that �exp has the PSN prop-erty. First, we start with some technical de�nitions.De�nition 101. A substitution item [x := b] is super
uous in a if x 62 �FV(c) for every c[x := b]/a.2. A reduction a !��� b is super
uous if the contracted redex in a occurs in asuper
uous substitution item [x := d].Super
uous reduction plays a role similar to the internal reduction notions of [6, 18]{but the two notions are di�erent from each other. The following is a re�nement ofLemma 5.Lemma 11 If a!�� b is not super
uous, then �(a)!!+�� �(b).Proof: By induction on the structure of a. 2The following de�nition of decent term is central to the GPSN proof. Note thatevery a 2 SN(���) is decent and every decent term is decent of order n.De�nition 121. A term a is called decent if for every [x := b] in a, b 2 SN(���).2. A term a is called decent of order n if for every [x := b] in a, b 2 SN(���) or��(�(b)) < n.Finally, the following notion of ancestor gives a full characterisation of how a substi-tution item might have been generated. This notion aims to achieve similar conditionsto those used in the backtracking lemmas of [6, 18] in the minimal derivation method.Note that we use \)a" to denote an application item. For example, in (�x:a)b theapplication item is)b.4De�nition 13 For a reduction a!!��� a0, we de�ne the notion of the ancestor of asubstitution item in a0 as follows:3 It is easy to show that a pure term obeys PSN i� it obeys GPSN.4 One can even go further as in [17] by calling �x the � item but this is not needed here.

1. If a !��� a0 and b = b0 or if b !��� b0 and a = a0 then the substitution item[x := b0] in a0[x := b0] has ancestor [x := b] in a[x := b].2. In the following reductions, the �rst underlined item (which may be an applicationwritten \):00) is ancestor of the second underlined (substitution) item:(bc)[x := a] !��� (b[x := a])c[x := a](bc)[x := a] !��� (b[x := a])c[x := a](Oy:b)[x := a]!��� Oy:b[x := a]((�x:b)a) !��� b[x := a]((�x:a)b) !��� �y:a[x := �w:y(wb)]3. The ancestor relation behaves as expected in the confrontation with �-reductions;i.e., if �[x := a] is a context in which [x := a] appears, then:(�y:b)�[x := a] !��� b[y := �[x := a]](�y:b)�[x := a] !��� �z:b[y := �w:z(w�[x := a])](�y:�[x := a])b !��� �[x := a][y := b](�y:�[x := a])b !��� �z:�[x := a][y := �w:z(wb)](Oy:�[x := a])[z := b]!��� Oy:�[x := a][z := b](Oy:b)[z := �[x := a]]!��� Oy:b[z := �[x := a]](bc)[z := �[x := a]] !��� b[z := �[x := a]]c[z := �[x := a]](b�[x := a])[y := c] !��� b[y := c]�[x := a][y := c](�[x := a]b)[y := c] !��� �[x := a][y := c]b[y := c]4. The ancestor relation is compatible; e.g.: if a !��� a0 where [x := b0] in a0 hasancestor [x := b] resp.,)b in a, and if c!��� c0 then [x := b0] in a0c0 has ancestor[x := b] resp.,)b in ac.The following lemma is similar to bactracking in the minimal derivation method of[6, 18].Lemma 14 If a!��� a0 and [x := b0] is in a0, then one of the following holds:1. Exactly one [x := b] in a is an ancestor of [x := b0] in a0 and b!!��� b0.2. [x := b0] has an application item)b as ancestor with b = b0 or b0 = �w:y(wb) forsome y; w 62 FV(b) and y 6= w.Proof: By induction on the structure of a. 2The following technical lemma is informative about the subterms b of a term a thatare not part of substitution items [y := d] in a. It says that for any such b, performingsome meta-substitutions on �(b) results in a subterm of �(a).Lemma 151. If b/a and b is not a part of d for some [y := d] in a, then 9m;x1; : : : xm, c1; : : : cmsuch that �(b)[c1=x1][c2=x2] : : : [cm=xm] is a subterm of �(a).2. If (Ox:b)c / a which is not part of d for any [y := d] in a, and if �(a) 2 SN(��)then ��(�(c)) < ��(�(a)).

Proof: 1: By induction on the structure of a. 2: By 1 and Lemma 5, there existsci; xi; 1 � i � m such that (Ox:�(b))�(c)[c1=x1] : : : [cm=xm] / �(a). Hence��(((Ox:�(b))�(c))) � ��(�(a)). It follows that ��(�(c)) < ��(�(a)). 2The following lemma is the key to proving GPSN. It says that any ���-reduct a0of a decent term a whose �-normal form has no in�nite ��-derivations, is itself decentand its �-normal form has no in�nite ��-derivations.Lemma 16 If a is a decent term s.t. �(a) 2 SN(��) and a!!���a0, then a0 is decentof order ��(�(a)).Proof: By induction on the number of reduction steps in a!!��� a0.{ For the base case, as a is decent, a is decent of order ��(�(a)).{ For the induction step, assume a!!��� a00 !��� a0. By IH, a00 is decent of order��(�(a)). Let [x := b] in a0. We must show that b 2 SN(���) or ��(�(b)) <��(�(a)).The ancestor of [x := b] in a00 is either:1. [x := b0] in a00 where b0 !!��� b2.)b in a00 and (�x:c)b!��� c[x := b] is the contracted redex in a00 !��� a0.3.)b0 in a00 where (�x:c)b0 !��� c[x := �w:y(wb0)] is the contracted redex ina00 !��� a0 and b = �w:y(wb0).Case 1 As a00 is decent of order ��(�(a)), then either b0 2 SN(���) or ��(�(b0)) <��(�(a)). Hence, b 2 SN(���) or ��(�(b)) � ��(�(b0)) < ��(�(a)) usingLemma 5.Case 2 If)b is not part of d for some [y := d] in a00, then by Lemma 15, as ��(�(a00)) <1, ��(�(b)) < ��(�(a00)) � ��(�(a)) by Lemma 5. If)b is part of d forsome [y := d] in a00, then we may assume that there is no [z := e] suchthat)b is part of e and [z := e] is part of d. Then as a00 is decent, eitherd 2 SN(���) or ��(�(d)) < ��(�(a00)). If d 2 SN(���) then b 2 SN(���).If ��(�(d)) < ��(�(a00)) � ��(�(a)) then as (�x:c)b is not part of some[z := e] in d, we get by Lemma 15 that ��(��(b)) < ��(��(d)). Hence,��(��(b)) < ��(��(a)).Case 3 Similar to the second but note that ��(�(�w:y(wb0))) = ��(��(b0)) by Lemma 5,and b0 2 SN(���) i� �w:y(wb0) 2 SN(���). 2Finally, we show that every decent term whose �-normal form is ��-strongly normal-ising is itself ���-strongly normalising:Theorem 17 If a is a decent term and �(a) 2 SN(��), then a 2 SN(���).Proof: By strong induction on ��(�(a)) < 1 (note that �(a) 2 SN(��)). ByLemma 16, 8a0, if a!!���a0, then a0 is decent of order ��(�(a)).Assume a has an in�nite derivation. We shall derive a contradiction. As � is SN(Lemma 5), this derivation can be written asa!!� b1 !�� c1 !!� b2 !�� c2 : : :

Again by Lemma 5, �(a) = �(b1)!!�� �(c1)!!�� �(c2)!!�� : : :.By Lemma 11 and the fact that ��(�(a)) < 1, only �nitely many of the reductionsbm !�� cm are not super
uous {otherwise, we will have an in�nite ��-derivationstarting at �(a) which is impossible since ��(�(a)) < 1. So let bM !�� cM be thelast non-super
uous !��-reduction and de�ne h2 as follows:h2(x) = 1 h2(ab) = h2(a) + h2(b) + 1h2(Ox:b) = h2(b) + 1 h2(a[x := b]) = �h2(a):(h2(b) + 2) if x 2 �FV(b)2h2(a) otherwiseIt is easy to prove by induction on the structure of terms that:{ If a!��� b is super
uous then h2(a) = h2(b);{ If a!�2�3 b is not super
uous then h2(a) > h2(b);{ If a!� b is not super
uous then h2(a) > h2(b).Now, 9N > M such that 8n � N , h2(cn) = h2(cN), as 8n > M , bn !��1 cn issuper
uous. Hence, h2(bn) = h2(cn). Moreover, h2(d) <1 for any term d.Next, look at the part of the derivation: cN !!� bN+1 !�� cN+1 !!� : : :.We know that in this derivation, all ��-reduction steps are super
uous. As 8n � N ,h2(cn) = h2(cN) = h2(bn) = h2(bn+1), it must be also the case that cn !!� bn+1 issuper
uous for all n � N , otherwise, h2(cn) > h2(bn+1), contradiction.Hence, one [x := d] in cN has an in�nite ���-derivation. Otherwise, there wouldn'tbe an in�nite ���-derivation starting at cN , contradicting in�nity of cN !!� bN+1 !��cN+1 : : :.Now, take one innermost [x := d] in cN which has an in�nite ���-derivation. Then d isdecent. As cN is a ���-reduct of a, then cN is decent of order ��(�(a)) by Lemma 16.Moreover, ��(�(d)) < ��(�(a)).Hence, by IH, we get that d 2 SN(���). Absurd. 2Now, the proof of GPSN is immediate:Theorem 18 (Generalised Preservation of Strong Normalisation)Let a 2 T e, if every subterm b of a satis�es �(b) 2 SN(��), then a 2 SN(���).Proof: By induction on the structure of a. As a is a subterm of a, then �(a) 2 SN(��).If [x := b] is a substitution item in a, then the IH holds for b and b 2 SN(���) andhence a is decent. So by Theorem 17, a 2 SN(���). 25 A type-assignment for ��expIn [27], a classical type-assignment system for �� is presented. The type-assignmentsystem is simply typed, with a speci�c type ? standing for absurdity. � is typed withdouble negation.De�nition 191. The set of types is given by the abstract syntax: T = ? j T ! T

2. A variable declaration is a pair x : A where x 2 V and A 2 T .3. A context is a �nite list of declarations � = x1 : A1; : : : ; xn : An such thati 6= j) xi 6= xj . If � = x1 : A1; : : : ; xn : An is a context, B 2 T and x does notoccur in � , then �; x : B is used to denote the context x1 : A1; : : : ; xn : An; x : B.4. The set of contexts is denoted by C.5. The derivability relation `��� C�T �T is de�ned as follows (using the standardnotation):(var) � `�� x : A if (x : A) 2 � (�) �; x : A `�� a : B� `�� �x:a : A! B(ap) � `�� a : A! B � `�� b : A� `�� a b : B (�) �; x : A! ? `�� a : ?� `�� �x:a : A6. The derivability relation `���� C � T e � T is de�ned by the above rules and thenew rule: (subst) �; x : A `��� a : B � `��� b : A� `��� a[x := b] : BThe following lemma establishes three basic properties of the type system:Lemma 201. Subject Reduction: if � `��� a : A and a!��� b, then � `��� b : A.2. Conservativity: if � `��� a : A then � `�� �(a) : A.3. Closure under subterms: every subterm of a well-typed term is well-typed.Proof: By an easy induction on the derivation of � `��� a : A. 2The following proposition establishes that the simply typed version of ��exp isSN. Its proof is simple thanks to the generalised PSN.Proposition 211. If � `�� a : A, then a 2 SN(��).2. If � `��� a : A, then a 2 SN(���).Proof: 1: proved in [27]. 2: assume a is a term of minimal length such that � `���a : A and a 62 SN(���). By Lemma 20.2 and 1 above, �(a) 2 SN(��). By GPSN(Theorem 18), a must therefore contain a strict subterm b such that �(b) 62 SN(��).By Lemma 4,!��� !!��� , hence it follows that �(b) 62 SN(���) and so b 62 SN(���).By Lemma 20.3, b is a well-typed term. This contradicts the minimality of a. 26 CPS translationContinuation-passing style (CPS) translation is a standard compilation technique. Itsproperties have been thoroughly studied in the context of pure and typed �-calculus,see for example [26, 22]. In this section, we extend these results to the ��exp-calculus.To our knowledge, it is the �rst study of CPS translations for calculi of explicitsubstitutions.

De�nition 22 The CPS translation : takes as input a ��exp-term and returns asoutput a �exp-term. It is de�ned as follows:1. CPS translation on terms:x = �k: x k�x: M = �k: k (�x: M)M1 M2 = �k: M1 (�y: y M2 k)�x: M = �k: M [x := �h: h �j: �i: i (j k)]�z: zM [x := N] =M [x := N]2. CPS translations on types: h[�]i = ::�h[A! B]i = ::(h[A]i ! h[B]i)where :A � A! ? for some �xed type ?.The translation is an extension of Plotkin's call-by-name translation for the untyped�-calculus. When considered as a translation on typed terms, the translation corre-sponds to Kolmogorov's double-negation translation. Also note that the explicit CPStranslation yields a CPS translation : from pure ��-terms to pure �-terms in theobvious way; this translation is proved correct in [5].Theorem 23 (Correctness of CPS translation)1. For every two terms M;N ,M =��� N) M =�� N2. For every judgement (�;M;A),� `��exp M : A) h[�]i `�exp M : h[A]iProof. The �rst item is proved in three steps:1. prove by induction on the structure of the terms that for every term a,�(b)[�(c)=x] !!�� �(b)[�(c)=x]2. prove that for every term a, we have a!!���(a). We treat the case where a �b[x := c]. We have a!!�� �(b)[x := �(c)] by I.H.!!�� �(b)[�(c)=x]!!�� �(b)[�(c)=x]� �(b[x := c])

3. use the interpretation method, the correctness of : and the fact that a!!��a toconclude. M =��� N) �(M) =�� �(N)) �(M) =� �(N)) �(M) =�� �(N))M =�� NFor the second item, proceed by induction on the structure of derivations.The above theorem proves that the CPS translation preserves equalities. One mayconsider whether the CPS translation preserves reductions. Unfortunately, : does not.Lemma 24 Let a and b be ��exp-terms.1. a!�� b) a!!+��b2. a!� b) a =�� bProof. Show that for every term a, we have �k:a k!!�expa. Then proceed by inductionon the structure of the terms.In the ��-calculus, it is possible to obtain a reduction-preserving translation by de�n-ing an optimized CPS-translation which performs some so-called administrative re-ductions. This reduction correspondence may be used for example to deduce strongnormalisation of the ��-calculus from strong normalisation of the simply typed �-calculus [5].The question arises whether such an optimized CPS translation may be used toprove PSN for ��exp. In calculi on explicit substitutions, it is however not possibleto obtain such a reduction-preserving translation unless some form of composition ofsubstitutions is assumed:a[x := b][y := c] ! a[x := b[y := c]] if y 62 FV (a) (�)The above rule is needed in order to obtain an optimized CPS translation which isnot too optimizing. Indeed, assume that we want to �nd optimizations c1 and c2 s.t.(�x: a) b!!�exp c1�y: a[x := �w:y (w b)]!!�exp c2c1 !!�exp c2In the current calculus, we have to perform too many steps to �nd such a c1. We have:(�x: a) b � �k:(�k0:a[x := �h:h �j:�i:i (j k0)] �z:z) �j:j b k!! �k:a[x := �h:h �j:�i:i (j k0)][k0 := �j:j b k] �z:zIf we want to proceed further without reducing the substitution items, then someform of composition of substitutions, as indicated above, is necessary. Unfortunately,the rule (�) breaks PSN, as shown in [8]. It remains open whether one can �nd a

restriction of (�) which does not break PSN and which allows to obtain a reductioncorrespondence for CPS.Remark: it may be possible to obtain a reduction-preserving translation by usingmeta-substitution instead of explicit substitution in the de�nition of the CPS transla-tion for �-abstractions. However, we consider that a CPS translation between calculiof explicit substitutions should use explicit substitution rather than meta-substitution.7 Related work7.1 On preservation of strong normalisationIn a recent paper [9], Bloo and Rose describe how to construct an explicit substitutionCRS from an arbitrary CRS.5 Moreover they show that PSN holds for a restricted classof CRSs, which they call structure-preserving. Unfortunately, PSN for the ��exp-calculus cannot be derived from [9]. Indeed, the �rst �-rewrite rule is written in theCRS framework as (�x:X(x)) Y ! �y:X(�w:y (w Y)). The condition of structure-preserving requires the argument �w:y (w Y) of the meta-application in the right-hand side to be a subterm of the left-hand side. Obviously this is not the case.Independently of [9], Bloo and Geuvers have developed a technique based on re-cursive path ordering (RPO) to prove PSN for various calculi of explicit substitutions.As was pointed to us by Roel Bloo, the RPO technique may be used to prove PSNfor ��exp. Finally, the minimal derivation technique of [6, 18] may be used to provePSN of ��exp.7.2 On explicit substitutions for control-like operatorsAudebaud and Pym, Ritter and Wallen have studied calculi of explicit substitutionsfor another classical �-calculus, namely Parigot's ��-calculus [25]. Audebaud's cal-culus [3] of explicit substitutions is an explicit substitution calculus with de Bruijnindices and composition of substitutions {in the spirit of ��{ whereas Pym, Ritterand Wallen's ��� [28] calculus is a named explicit substitution calculus without com-position of substitutions {in the spirit of �exp.In [3], the system presented is shown to be con
uent on open terms. Con
uenceon open terms is not however a question that is usually studied in calculi written withnamed variables (such as the ��exp).In [28], it is shown by a computability predicate argument that simply typable���-terms are strongly normalising. Their result and ours do not imply each otherin neither way. Yet we are con�dent that the GPSN proof of this paper may beadapted to ���. The advantage of GPSN is that it implies strong normalisation ofthe simply-typed, polymorphic, higher-order ���-calculus.5 The theory of Combinatory Reduction Systems was developed by J.W. Klop [20].

8 ConclusionWe have introduced a calculus of explicit substitutions ��exp for the calculus ��and proved various properties of the calculus.On the one hand, we showed that ��exp has the GPSN property. To our knowl-edge, ��exp is the �rst calculus of explicit substitutions which has the PSN propertyand is not structure-preserving. Its study suggests that one may be able to prove PSNfor a class of CRSs substantially bigger than the class of structure-preserving CRSs.On the other hand, we showed that Plotkin's call-by-name CPS translation canbe extended to the ��exp in such a way that typing is preserved. Studying CPStranslations for calculi of explicit substitutions seems to be an interesting subject,which we plan to investigate in greater depth.Our choice of the ��-calculus rather than other calculi of control-like operators isbased on the fact that the ��-calculus is the simplest (and most restrictive) controlcalculus. It is an open question to study explicit substitutions for non-local controloperators such as Felleisen's C [13]. Interestingly, expliciting such calculi will requirean explicit handling of contexts. This subject is left for future work.Finally, it remains to exploit the results of this paper in classical theorem-provingand proof theory and other applications mentioned in the introduction. An imple-mentation of a proof/type checker based on ��exp is currently being developed atGlasgow.Acknowledgements We are grateful for Roel Bloo for his observation that the RPOmethod of [8] does apply to ��exp. The �rst author would also like to thank JohnHatcli� and Morten Heine S�rensen for discussions on classical �-calculi.References1. M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. L�evy. Explicit Substitutions. Journal ofFunctional Programming, 1(4):375{416, 1991.2. A. W. Appel. Compiling with Continuations. Cambridge University Press, 1992.3. P. Audebaud. Explicit substitutions for the ��-calculus. Technical Report RR94-26,Ecole Normal Superieure de Lyon, 1994.4. H. Barendregt. The Lambda Calculus : Its Syntax and Semantics. North Holland, 1984.5. G. Barthe, J. Hatcli�, and M.H. S�rensen. A notion of classical pure type system. InProceedings of MFPS'97, volume 6 of Electronic Notes in Theoretical Computer Science,1997.6. Z. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. ��, a calculus of explicitsubstitutions which preserves strong normalisation. Journal of Functional Programming,6(5), 1996.7. R. Bloo. Preservation of Strong Normalisation for Explicit Substitution. TechnicalReport CS-95-08, Department of Mathematics and Computing Science, Eindhoven Uni-versity of Technology, 1995.8. R. Bloo and H. Geuvers. Explicit substitution: On the edge of strong normalisation.Technical Report CS-96-10, Department of Mathematics and Computing Science, Eind-hoven University of Technology, 1996. To appear in Theoretical Computer Science.

9. R. Bloo and K. Rose. Combinatory reduction systems with explicit substitutions thatpreserve strong normalisation. RTA '96, Lecture Notes in Computer Science 1103, 1996.10. P.-L. Curien, T. Hardin, and J.-J. L�evy. Con
uence properties of weak and strong calculiof explicit substitutions. Journal of the ACM, 43(2):362{397, March 1996.11. G. Dowek, T. Hardin, and C. Kirchner. Higher-order uni�cation via explicit substitu-tions. In Proceedings of the Tenth Annual Symposium on Logic in Computer Science,pages 366{374. IEEE Computer Society Press, 1995.12. R.K. Dybvig. The Scheme Programming Language. Prentice-Hall, 1987.13. M. Felleisen, D.P. Friedman, E. Kohlbecker, and B. F. Duba. A syntactic theory ofsequential control. Theoretical Computer Science, 52(3):205{237, 1987.14. T.G. Gri�n. A formulae-as-types notion of control. In Principles of ProgrammingLanguages, pages 47{58. ACM Press, 1990.15. T. Hardin. Con
uence Results for the Pure Strong Categorical Logic CCL : �-calculi asSubsystems of CCL. Theoretical Computer Science, 65(2):291{342, 1989.16. H. Herbelin. Elimination des coupures dans les sequents qu'on calcule. PhD thesis,Universit�e de Paris 7, 1994.17. F. Kamareddine and R. P. Nederpelt. A useful �-notation. Theoretical Computer Sci-ence, 155:85{109, 1996.18. F. Kamareddine and A. R��os. A �-calculus �a la de Bruijn with explicit substitutions.Proceedings of PLILP'95. Lecture Notes in Computer Science, 982:45{62, 1995.19. J.-W. Klop. Term rewriting systems. Handbook of Logic in Computer Science, II, 1992.20. J.-W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory reduction systems:Introduction and survey. Theoretical Computer Science, 121:279{308, 1993.21. L. Magnusson. The implementation of ALF: a proof editor based on Martin-L�of'smonomorphic type theory with explicit substitution. PhD thesis, Department of Com-puter Science, Chalmers University, 1994.22. A.R. Meyer and M. Wand. Continuation semantics in typed lambda-calculi (summary).In R. Parikh, editor, Logics of Programs, volume 193 of Lecture Notes in ComputerScience, pages 219{224. Springer-Verlag, 1985.23. C. Mu~noz. Proof representation in type theory: State of the art. XXII LatinamericanConference of Informatics CLEI Panel 96, June 3{7, 1996, Santaf�e de Bogot�a, Colombia,April 1996.24. C. Murthy. Extracting Constructive Contents from Classical Proofs. PhD thesis, CornellUniversity, 1990.25. M. Parigot. ��-calculus: An algorithmic interpretation of classical natural deduction.In International Conference on Logic Programming and Automated Reasoning, volume624 of Lecture Notes in Computer Science, pages 190{201. Springer-Verlag, 1992.26. G. Plotkin. Call-by-name, call-by-value and the �-calculus. Theoretical Computer Sci-ence, 1(2):125{159, December 1975.27. N.J. Rehof and M.H. S�rensen. The �� calculus. In M. Hagiya and J. Mitchell, editors,Theoretical Aspects of Computer Software, volume 789 of Lecture Notes in ComputerScience, pages 516{542. Springer-Verlag, 1994.28. E. Ritter, D. Pym, and L. A. Wallen. On the intuitionistic force of classicalsearch. In P. Miglioli, U. Moscato, D. Mundici, and M. Ornaghi, editors, Procedingsof TABLEAU'96, volume 1071 of Lecture Notes in Arti�cial Intelligence, pages 295{311.Springer Verlag, 1996.29. G. L. Steele. Common Lisp: The Language. Digital Press, Bedford, MA, 1984.This article was processed using the LATEX macro package with LLNCS style

