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{ ��exp may be translated to �exp {a named explicit �-calculus{ using an extensionof the continuation-passing style translation;{ the CPS translation maps simply typable ��exp-terms to simply typable �exp-terms and generalises Kolmogorov's double-negation translation.The motivation for this work is three-fold:1. control-like operators play a crucial role in functional programming languages,such as LISP [29], SML [2], Scheme [12], etc. We will only be able to claim thatexplicit substitutions provide a bridge between higher-order rewriting systemsand their implementation if the theory of explicit substitutions can be extended{among other{ to control-like operators;2. control-like operators and explicit substitutions both have applications in theoremproving and proof theory. (See e.g. [24] for applications of control-like operatorsin theorem proving and [5, 14, 24] for applications of control-like operator inproof theory.) The former are used in classical theorem proving and the latterto represent incomplete proofs. By studying explicit substitutions with controloperators, we lay the foundations for a classical theorem prover with the abilityto handle incomplete proofs and for a classical proof theory based on explicitsubstitutions.3. control-like operators fundamentally di�er from �-calculus in that they are notstructure-preserving in the sense of [9]. Hence the results of [9] do not apply. Yetwe will show that the decency method [7] can be adapted to our setting. Thisconstitutes the �rst study of explicit substitutions for non-structure-preservingcalculi and suggests the possibility of extending the results of [9] to a large anduseful class of combinatory rewrite systems.Organisation of the paper In Section 2, we introduce the ��-calculus and state some ofits properties. In Section 3, we extend the ��-calculus with explicit substitutions. InSection 4, we establish the conuence and preservation of strong normalisation (PSN)of the ��exp-calculus. We use the interpretation method [15] to show conuence andthe decency method to establish PSN [7]. We also show that the structure preservingmethod of [9] does not apply to the ��exp-calculus. In Section 5 we introduce thesimply typed version of ��exp and show that it has the desirable properties such assubject reduction and strong normalisation. In Section 6, we present the �rst study ofCPS-translations for calculi of explicit substitutions by providing a CPS-translationfor ��exp and showing its soundness. In Section 7, we discuss related work. Weconclude in Section 8.Prerequisites and terminology We assume some basic familiarity with �-calculus [4]and abstract rewriting [19]. We let / denote the subterm relation and !R denote thecompatible closure of a relation R {compatibility is de�ned as usual. The transitiveand reexive-transitive closures of !R are denoted by !!+R and !!R respectively.Finally, we let SN(R) denote the set of strongly normalising terms w.r.t. !R.



2 The ��-calculusControl operators are programming constructs which allow the programmer to havemore direct control over the evaluation of a program. In the late 80's, Gri�n [14]observed that control operators could be simply typed by the classical axiom of dou-ble negation. After Gri�n's discovery, there has been a great interest �-calculi withcontrol-like structures. The ��-calculus is such calculus. More precisely, the ��-calculus is an extension of the �-calculus with a binding double negation operator� whose computational behavior is closely related to normalisation procedures forclassical natural deduction [?] (and of course to reduction rules for control operators).The following de�nition is taken from [27].De�nition 11. The set T of (pure) terms is given by the abstract syntax:T = V j TT j �V:T j�V:T with V = fxn : n 2 INgwhere � and � are binding operators.2. Meta-substitution :[:=:], free and bound variables are de�ned as usual. We let FV(a)and BV(a) denote respectively the sets of free and bound variables of a term a.3. �-reduction !� is de�ned as the compatible closure of(�x:a) b !� a[b=x]4. �-reduction !� is de�ned as !�1 [ !�2 [ !�3 where �i-reduction for 1 � i � 3is de�ned to be the compatible closure of the corresponding i-rule:(�x:a) b !�1 �y:a[�w:y (w b)=x] if y; w 62 FV(b); y 6= w�x:x a !�2 a if x 62 FV(a)�x:x (�y:x a)!�3 a if x; y 62 FV(a)5. !��=!� [ !�.For motivations and explanations of the �-operator, we refer the reader to [27]. Weshall briey mention however that the rule �1 is what makes the �-operator intoa control one. Note that �1, does not destroy the control nature of the term. Afterapplication, a �-term remains a �-term. �2 acts like an �-rule and together with �3allows to de�ne a catch and throw mechanism.We let x; y; z; w; : : : range over V and a; b; c; : : : range over T and O to range overf�;�g. For the sake of hygiene, we consider terms modulo �-conversion {generalisedover �{ and assume Barendregt's variable convention [4].The following proposition is taken from [27].Proposition 2 !�� is conuent (CR).Finally, we de�ne the norm ��-norm ��(a) of a pure term a as the maximal numberof ��-reduction steps in a reduction starting from a. It is �nite if a 2 SN(��) andin�nite otherwise. The norm of a term will be used in Section 4.



3 The ��exp-calculusThe ��exp-calculus is a named calculus of explicit substitutions for ��.De�nition 31. The set T e of terms of the ��exp-calculus is given by the abstract syntax:T e = V j T eT e j �V:T e j�V:T e j T e[V := T e] with V = fxn : n 2 IN:gwhere �;�; :[: := :] are binding operators. Free and bound variables are de�ned inthe obvious way.2. �-reduction !� is de�ned as the compatible closure of(�x:a) b !� a[x := b]3. �-reduction !� is de�ned as !�1 [ !�2 [ !�3 where �i-reduction for 1 � i � 3is de�ned to be the compatible closure of the corresponding i-rule:(�x:a) b !�1 �y:a[x := �w:y (w b)] if y; w 62 FV(b); y 6= w�x:x a !�2 a if x 62 FV(a)�x:x (�y:x a)!�3 a if x; y 62 FV(a)4. �-reduction !� is de�ned as the compatible closure ofx[x := b] !� by[x := b] !� y if x 6= y(a a0)[x := b] !� (a[x := b]) (a0[x := b])(Oy:a)[x := b]!� Oy:(a[x := b]) if y 62 FV(b)5. !���=!� [ !� [ !� and !��i=!� [ !�i for 1 � i � 3.Again we let a; b; c; : : : range over T e. The variable convention, �-conversion, meta-substitution, etc are generalised in the obvious way. In particular,FV(a[x := b]) = FV(b) [ (FV(a) n fxg)De�nition 4 The set �FV(a) of substitutable free variables of a term a is de�nedinductively as follows:�FV(x) = fxg�FV(ab) = �FV(a) [ �FV(b)�FV(Ox:a) = �FV(a) n fxg�FV(a[x := b]) = ��FV(a) if x 62 FV(a)(�FV(a) n fxg) [ �FV(b) if x 2 FV(a)We conclude this section by noting that ��exp contains �exp as a subcalculus. Thelatter is a named explicit �-calculus, called �x in [8], and obtained from ��exp byleaving out �.



4 Conuence and preservation of Strong NormalisationIn this section, we show that the ��exp-calculus enjoys conuence and preservationof strong normalisation.4.1 ConuenceConuence is proved as usual, using the interpretation method of [10, 15].Lemma 5 Let a; b 2 T e. The following holds:1. !� is SN and CR. Hence, every term c 2 T e has a unique �-normal form, denoted�(c).2. �(ab) = �(a)�(b), �(�x:a) = �x:�(a), �(�x:a) = �x:�(a), �(a[x := b]) =�(a)[�(b)=x].3. Projection: If a!!��� b then �(a)!!�� �(b).4. Simulation: for pure terms a; b, if a!�� b then a!!+��� b.Proof: Analogous to the proofs of the corresponding results for �exp [8]. We justremark that the function used to prove SN should be here extended with h(�x:a) =h(a) + 1. 2Theorem 6 The ��exp-calculus is conuent.Proof: If a!!��� b1 and a!!��� b2 then by Lemma 5, �(a)!!�� �(bi), for i 2 f1; 2g.By CR of ��, there exists c such that �(bi) !!�� c, and by Lemma 5 �(bi) !!��� c.Hence, bi !!��� c. 24.2 Preservation of strong normalisationEvery term is ���-strongly normalising if the �-normal forms of its subterms are��-strongly normalising.Lemma 7 If a 2 SN(���) and b / a, then �(b) 2 SN(��).Proof: If �(b) 62 SN(��), then b 62 SN(���) as b !!� �(b) and we use Lemma 5.4.Absurd as b / a and a 2 SN(���). 2Corollary 8 If a is a pure term such that a 2 SN(���), then a 2 SN(��).Proof: If a is pure, �(a) = a. 2In other words, SN(���)\T � SN(��). The question arises if the converse holds, i.e.whether SN(��) � SN(���).De�nition 9



1. A term a 2 T obeys the preservation of strong normalisation (PSN) property ifa 2 SN(��) =) a 2 SN(���).2. A term a 2 T e obeys the generalised preservation of strong normalisation (GPSN)property if (8b / a:�(b) 2 SN(��)) =) a 2 SN(���).The GPSN property is a mild generalization of the PSN property.3 In our view, theGPSN property is more fundamental than the PSN property for two reasons:1. the GPSN property applies to all terms, not only the pure ones;2. for most typed �-calculi with explicit substitutions, strong normalisation is animmediate consequence of the GPSN property and of strong normalisation of thestandard calculus without explicit substitutions.We shall prove that the ��exp-calculus has the GPSN property using the decencytechnique of [7] {the technique was introduced to prove that �exp has the PSN prop-erty. First, we start with some technical de�nitions.De�nition 101. A substitution item [x := b] is superuous in a if x 62 �FV(c) for every c[x := b]/a.2. A reduction a !��� b is superuous if the contracted redex in a occurs in asuperuous substitution item [x := d].Superuous reduction plays a role similar to the internal reduction notions of [6, 18]{but the two notions are di�erent from each other. The following is a re�nement ofLemma 5.Lemma 11 If a!�� b is not superuous, then �(a)!!+�� �(b).Proof: By induction on the structure of a. 2The following de�nition of decent term is central to the GPSN proof. Note thatevery a 2 SN(���) is decent and every decent term is decent of order n.De�nition 121. A term a is called decent if for every [x := b] in a, b 2 SN(���).2. A term a is called decent of order n if for every [x := b] in a, b 2 SN(���) or��(�(b)) < n.Finally, the following notion of ancestor gives a full characterisation of how a substi-tution item might have been generated. This notion aims to achieve similar conditionsto those used in the backtracking lemmas of [6, 18] in the minimal derivation method.Note that we use \)a" to denote an application item. For example, in (�x:a)b theapplication item is )b.4De�nition 13 For a reduction a!!��� a0, we de�ne the notion of the ancestor of asubstitution item in a0 as follows:3 It is easy to show that a pure term obeys PSN i� it obeys GPSN.4 One can even go further as in [17] by calling �x the � item but this is not needed here.



1. If a !��� a0 and b = b0 or if b !��� b0 and a = a0 then the substitution item[x := b0] in a0[x := b0] has ancestor [x := b] in a[x := b].2. In the following reductions, the �rst underlined item (which may be an applicationwritten \):00) is ancestor of the second underlined (substitution) item:(bc)[x := a] !��� (b[x := a])c[x := a](bc)[x := a] !��� (b[x := a])c[x := a](Oy:b)[x := a]!��� Oy:b[x := a]((�x:b)a) !��� b[x := a]((�x:a)b) !��� �y:a[x := �w:y(wb)]3. The ancestor relation behaves as expected in the confrontation with �-reductions;i.e., if �[x := a] is a context in which [x := a] appears, then:(�y:b)�[x := a] !��� b[y := �[x := a]](�y:b)�[x := a] !��� �z:b[y := �w:z(w�[x := a])](�y:�[x := a])b !��� �[x := a][y := b](�y:�[x := a])b !��� �z:�[x := a][y := �w:z(wb)](Oy:�[x := a])[z := b]!��� Oy:�[x := a][z := b](Oy:b)[z := �[x := a]]!��� Oy:b[z := �[x := a]](bc)[z := �[x := a]] !��� b[z := �[x := a]]c[z := �[x := a]](b�[x := a])[y := c] !��� b[y := c]�[x := a][y := c](�[x := a]b)[y := c] !��� �[x := a][y := c]b[y := c]4. The ancestor relation is compatible; e.g.: if a !��� a0 where [x := b0] in a0 hasancestor [x := b] resp., )b in a, and if c!��� c0 then [x := b0] in a0c0 has ancestor[x := b] resp., )b in ac.The following lemma is similar to bactracking in the minimal derivation method of[6, 18].Lemma 14 If a!��� a0 and [x := b0] is in a0, then one of the following holds:1. Exactly one [x := b] in a is an ancestor of [x := b0] in a0 and b!!��� b0.2. [x := b0] has an application item )b as ancestor with b = b0 or b0 = �w:y(wb) forsome y; w 62 FV(b) and y 6= w.Proof: By induction on the structure of a. 2The following technical lemma is informative about the subterms b of a term a thatare not part of substitution items [y := d] in a. It says that for any such b, performingsome meta-substitutions on �(b) results in a subterm of �(a).Lemma 151. If b/a and b is not a part of d for some [y := d] in a, then 9m;x1; : : : xm, c1; : : : cmsuch that �(b)[c1=x1][c2=x2] : : : [cm=xm] is a subterm of �(a).2. If (Ox:b)c / a which is not part of d for any [y := d] in a, and if �(a) 2 SN(��)then ��(�(c)) < ��(�(a)).



Proof: 1: By induction on the structure of a. 2: By 1 and Lemma 5, there existsci; xi; 1 � i � m such that (Ox:�(b))�(c)[c1=x1] : : : [cm=xm] / �(a). Hence��(((Ox:�(b))�(c))) � ��(�(a)). It follows that ��(�(c)) < ��(�(a)). 2The following lemma is the key to proving GPSN. It says that any ���-reduct a0of a decent term a whose �-normal form has no in�nite ��-derivations, is itself decentand its �-normal form has no in�nite ��-derivations.Lemma 16 If a is a decent term s.t. �(a) 2 SN(��) and a!!���a0, then a0 is decentof order ��(�(a)).Proof: By induction on the number of reduction steps in a!!��� a0.{ For the base case, as a is decent, a is decent of order ��(�(a)).{ For the induction step, assume a!!��� a00 !��� a0. By IH, a00 is decent of order��(�(a)). Let [x := b] in a0. We must show that b 2 SN(���) or ��(�(b)) <��(�(a)).The ancestor of [x := b] in a00 is either:1. [x := b0] in a00 where b0 !!��� b2. )b in a00 and (�x:c)b!��� c[x := b] is the contracted redex in a00 !��� a0.3. )b0 in a00 where (�x:c)b0 !��� c[x := �w:y(wb0)] is the contracted redex ina00 !��� a0 and b = �w:y(wb0).Case 1 As a00 is decent of order ��(�(a)), then either b0 2 SN(���) or ��(�(b0)) <��(�(a)). Hence, b 2 SN(���) or ��(�(b)) � ��(�(b0)) < ��(�(a)) usingLemma 5.Case 2 If )b is not part of d for some [y := d] in a00, then by Lemma 15, as ��(�(a00)) <1, ��(�(b)) < ��(�(a00)) � ��(�(a)) by Lemma 5. If )b is part of d forsome [y := d] in a00, then we may assume that there is no [z := e] suchthat )b is part of e and [z := e] is part of d. Then as a00 is decent, eitherd 2 SN(���) or ��(�(d)) < ��(�(a00)). If d 2 SN(���) then b 2 SN(���).If ��(�(d)) < ��(�(a00)) � ��(�(a)) then as (�x:c)b is not part of some[z := e] in d, we get by Lemma 15 that ��(��(b)) < ��(��(d)). Hence,��(��(b)) < ��(��(a)).Case 3 Similar to the second but note that ��(�(�w:y(wb0))) = ��(��(b0)) by Lemma 5,and b0 2 SN(���) i� �w:y(wb0) 2 SN(���). 2Finally, we show that every decent term whose �-normal form is ��-strongly normal-ising is itself ���-strongly normalising:Theorem 17 If a is a decent term and �(a) 2 SN(��), then a 2 SN(���).Proof: By strong induction on ��(�(a)) < 1 (note that �(a) 2 SN(��)). ByLemma 16, 8a0, if a!!���a0, then a0 is decent of order ��(�(a)).Assume a has an in�nite derivation. We shall derive a contradiction. As � is SN(Lemma 5), this derivation can be written asa!!� b1 !�� c1 !!� b2 !�� c2 : : :



Again by Lemma 5, �(a) = �(b1)!!�� �(c1)!!�� �(c2)!!�� : : :.By Lemma 11 and the fact that ��(�(a)) < 1, only �nitely many of the reductionsbm !�� cm are not superuous {otherwise, we will have an in�nite ��-derivationstarting at �(a) which is impossible since ��(�(a)) < 1. So let bM !�� cM be thelast non-superuous !��-reduction and de�ne h2 as follows:h2(x) = 1 h2(ab) = h2(a) + h2(b) + 1h2(Ox:b) = h2(b) + 1 h2(a[x := b]) = �h2(a):(h2(b) + 2) if x 2 �FV(b)2h2(a) otherwiseIt is easy to prove by induction on the structure of terms that:{ If a!��� b is superuous then h2(a) = h2(b);{ If a!�2�3 b is not superuous then h2(a) > h2(b);{ If a!� b is not superuous then h2(a) > h2(b).Now, 9N > M such that 8n � N , h2(cn) = h2(cN ), as 8n > M , bn !��1 cn issuperuous. Hence, h2(bn) = h2(cn). Moreover, h2(d) <1 for any term d.Next, look at the part of the derivation: cN !!� bN+1 !�� cN+1 !!� : : :.We know that in this derivation, all ��-reduction steps are superuous. As 8n � N ,h2(cn) = h2(cN ) = h2(bn) = h2(bn+1), it must be also the case that cn !!� bn+1 issuperuous for all n � N , otherwise, h2(cn) > h2(bn+1), contradiction.Hence, one [x := d] in cN has an in�nite ���-derivation. Otherwise, there wouldn'tbe an in�nite ���-derivation starting at cN , contradicting in�nity of cN !!� bN+1 !��cN+1 : : :.Now, take one innermost [x := d] in cN which has an in�nite ���-derivation. Then d isdecent. As cN is a ���-reduct of a, then cN is decent of order ��(�(a)) by Lemma 16.Moreover, ��(�(d)) < ��(�(a)).Hence, by IH, we get that d 2 SN(���). Absurd. 2Now, the proof of GPSN is immediate:Theorem 18 (Generalised Preservation of Strong Normalisation)Let a 2 T e, if every subterm b of a satis�es �(b) 2 SN(��), then a 2 SN(���).Proof: By induction on the structure of a. As a is a subterm of a, then �(a) 2 SN(��).If [x := b] is a substitution item in a, then the IH holds for b and b 2 SN(���) andhence a is decent. So by Theorem 17, a 2 SN(���). 25 A type-assignment for ��expIn [27], a classical type-assignment system for �� is presented. The type-assignmentsystem is simply typed, with a speci�c type ? standing for absurdity. � is typed withdouble negation.De�nition 191. The set of types is given by the abstract syntax: T = ? j T ! T



2. A variable declaration is a pair x : A where x 2 V and A 2 T .3. A context is a �nite list of declarations � = x1 : A1; : : : ; xn : An such thati 6= j ) xi 6= xj . If � = x1 : A1; : : : ; xn : An is a context, B 2 T and x does notoccur in � , then �; x : B is used to denote the context x1 : A1; : : : ; xn : An; x : B.4. The set of contexts is denoted by C.5. The derivability relation `��� C�T �T is de�ned as follows (using the standardnotation):(var ) � `�� x : A if (x : A) 2 � (�) �; x : A `�� a : B� `�� �x:a : A! B(ap) � `�� a : A! B � `�� b : A� `�� a b : B (�) �; x : A! ? `�� a : ?� `�� �x:a : A6. The derivability relation `���� C � T e � T is de�ned by the above rules and thenew rule: (subst) �; x : A `��� a : B � `��� b : A� `��� a[x := b] : BThe following lemma establishes three basic properties of the type system:Lemma 201. Subject Reduction: if � `��� a : A and a!��� b, then � `��� b : A.2. Conservativity: if � `��� a : A then � `�� �(a) : A.3. Closure under subterms: every subterm of a well-typed term is well-typed.Proof: By an easy induction on the derivation of � `��� a : A. 2The following proposition establishes that the simply typed version of ��exp isSN. Its proof is simple thanks to the generalised PSN.Proposition 211. If � `�� a : A, then a 2 SN(��).2. If � `��� a : A, then a 2 SN(���).Proof: 1: proved in [27]. 2: assume a is a term of minimal length such that � `���a : A and a 62 SN(���). By Lemma 20.2 and 1 above, �(a) 2 SN(��). By GPSN(Theorem 18), a must therefore contain a strict subterm b such that �(b) 62 SN(��).By Lemma 4,!��� !!��� , hence it follows that �(b) 62 SN(���) and so b 62 SN(���).By Lemma 20.3, b is a well-typed term. This contradicts the minimality of a. 26 CPS translationContinuation-passing style (CPS) translation is a standard compilation technique. Itsproperties have been thoroughly studied in the context of pure and typed �-calculus,see for example [26, 22]. In this section, we extend these results to the ��exp-calculus.To our knowledge, it is the �rst study of CPS translations for calculi of explicitsubstitutions.



De�nition 22 The CPS translation : takes as input a ��exp-term and returns asoutput a �exp-term. It is de�ned as follows:1. CPS translation on terms:x = �k: x k�x: M = �k: k (�x: M)M1 M2 = �k: M1 (�y: y M2 k)�x: M = �k: M [x := �h: h �j: �i: i (j k)]�z: zM [x := N ] =M [x := N ]2. CPS translations on types: h[�]i = ::�h[A! B]i = ::(h[A]i ! h[B]i)where :A � A! ? for some �xed type ?.The translation is an extension of Plotkin's call-by-name translation for the untyped�-calculus. When considered as a translation on typed terms, the translation corre-sponds to Kolmogorov's double-negation translation. Also note that the explicit CPStranslation yields a CPS translation : from pure ��-terms to pure �-terms in theobvious way; this translation is proved correct in [5].Theorem 23 (Correctness of CPS translation)1. For every two terms M;N ,M =��� N ) M =�� N2. For every judgement (�;M;A),� `��exp M : A ) h[� ]i `�exp M : h[A]iProof. The �rst item is proved in three steps:1. prove by induction on the structure of the terms that for every term a,�(b)[�(c)=x] !!�� �(b)[�(c)=x]2. prove that for every term a, we have a!!���(a). We treat the case where a �b[x := c]. We have a!!�� �(b)[x := �(c)] by I.H.!!�� �(b)[�(c)=x]!!�� �(b)[�(c)=x]� �(b[x := c])



3. use the interpretation method, the correctness of : and the fact that a!!��a toconclude. M =��� N ) �(M) =�� �(N)) �(M) =� �(N)) �(M) =�� �(N))M =�� NFor the second item, proceed by induction on the structure of derivations.The above theorem proves that the CPS translation preserves equalities. One mayconsider whether the CPS translation preserves reductions. Unfortunately, : does not.Lemma 24 Let a and b be ��exp-terms.1. a!�� b ) a!!+��b2. a!� b ) a =�� bProof. Show that for every term a, we have �k:a k!!�expa. Then proceed by inductionon the structure of the terms.In the ��-calculus, it is possible to obtain a reduction-preserving translation by de�n-ing an optimized CPS-translation which performs some so-called administrative re-ductions. This reduction correspondence may be used for example to deduce strongnormalisation of the ��-calculus from strong normalisation of the simply typed �-calculus [5].The question arises whether such an optimized CPS translation may be used toprove PSN for ��exp. In calculi on explicit substitutions, it is however not possibleto obtain such a reduction-preserving translation unless some form of composition ofsubstitutions is assumed:a[x := b][y := c] ! a[x := b[y := c]] if y 62 FV (a) (�)The above rule is needed in order to obtain an optimized CPS translation which isnot too optimizing. Indeed, assume that we want to �nd optimizations c1 and c2 s.t.(�x: a) b!!�exp c1�y: a[x := �w:y (w b)]!!�exp c2c1 !!�exp c2In the current calculus, we have to perform too many steps to �nd such a c1. We have:(�x: a) b � �k:(�k0:a[x := �h:h �j:�i:i (j k0)] �z:z) �j:j b k!! �k:a[x := �h:h �j:�i:i (j k0)][k0 := �j:j b k] �z:zIf we want to proceed further without reducing the substitution items, then someform of composition of substitutions, as indicated above, is necessary. Unfortunately,the rule (�) breaks PSN, as shown in [8]. It remains open whether one can �nd a



restriction of (�) which does not break PSN and which allows to obtain a reductioncorrespondence for CPS.Remark: it may be possible to obtain a reduction-preserving translation by usingmeta-substitution instead of explicit substitution in the de�nition of the CPS transla-tion for �-abstractions. However, we consider that a CPS translation between calculiof explicit substitutions should use explicit substitution rather than meta-substitution.7 Related work7.1 On preservation of strong normalisationIn a recent paper [9], Bloo and Rose describe how to construct an explicit substitutionCRS from an arbitrary CRS.5 Moreover they show that PSN holds for a restricted classof CRSs, which they call structure-preserving. Unfortunately, PSN for the ��exp-calculus cannot be derived from [9]. Indeed, the �rst �-rewrite rule is written in theCRS framework as (�x:X(x)) Y ! �y:X(�w:y (w Y )). The condition of structure-preserving requires the argument �w:y (w Y ) of the meta-application in the right-hand side to be a subterm of the left-hand side. Obviously this is not the case.Independently of [9], Bloo and Geuvers have developed a technique based on re-cursive path ordering (RPO) to prove PSN for various calculi of explicit substitutions.As was pointed to us by Roel Bloo, the RPO technique may be used to prove PSNfor ��exp. Finally, the minimal derivation technique of [6, 18] may be used to provePSN of ��exp.7.2 On explicit substitutions for control-like operatorsAudebaud and Pym, Ritter and Wallen have studied calculi of explicit substitutionsfor another classical �-calculus, namely Parigot's ��-calculus [25]. Audebaud's cal-culus [3] of explicit substitutions is an explicit substitution calculus with de Bruijnindices and composition of substitutions {in the spirit of ��{ whereas Pym, Ritterand Wallen's ��� [28] calculus is a named explicit substitution calculus without com-position of substitutions {in the spirit of �exp.In [3], the system presented is shown to be conuent on open terms. Conuenceon open terms is not however a question that is usually studied in calculi written withnamed variables (such as the ��exp).In [28], it is shown by a computability predicate argument that simply typable���-terms are strongly normalising. Their result and ours do not imply each otherin neither way. Yet we are con�dent that the GPSN proof of this paper may beadapted to ���. The advantage of GPSN is that it implies strong normalisation ofthe simply-typed, polymorphic, higher-order ���-calculus.5 The theory of Combinatory Reduction Systems was developed by J.W. Klop [20].
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