On Automating Inductive and Non-Inductive
Termination Methods

Fairouz Kamareddine and Francois Monin

Department of Computing and Electrical Engineering,
Heriot-Watt University,
Edinburgh EH14 4AS, Scotland,

fairouz@cee.hw.ac.uk, monin@cee.hw.ac.uk

Abstract. The Coq and ProPre systems show the automated termina-
tion of a recursive function by first constructing a tree associated with
the specification of the function which satisfies a notion of terminal prop-
erty and then verifying that this construction process is formally correct.
However, those two steps strongly depend on inductive principles and
hence Coq and ProPre can only deal with the termination proofs that
are inductive. There are however many functions for which the termina-
tion proofs are non-inductive. In this article, we attempt to extend the
class of functions whose proofs can be done automatically a la Coq and
ProPre to alarger class including functions whose termination proofs are
not inductive. We do this by extending the terminal property notion and
replacing the verification step above by one that searches for a decreasing
measure which can be used to establish the termination of the function.

1 Introduction

Termination is an important property in the verification of programs defined
on recursive data structure that use automated deduction. While the problem
is undecidable, several proof methods of termination of functions have been de-
veloped using for instance formal proof methods in functional programming or
orderings of rewriting systems. For instance we mention polynomial interpreta-
tions [3,9,21], recursive path orderings [14] and Knuth-Bendix orderings [7,12].
The latter methods are characterized by orderings called simplification order-
ings [5, 18] and deal with the termination of functions called simply terminating
functions. Some functions that are non-simply terminating can be proven to ter-
minate with methods based on structural inductive proofs because they focus
on recursive functions which can be viewed as sorted constructor systems that
allow reasoning on the orderings’ structure of the data objects.

But there are other recursive functions that are non-simply terminating for
which inductive methods fail to prove the termination since precisely the struc-
tural orderings on the terms of the algebra cannot be used. These functions,
which we call, non-inductive-simply terminating functions form an important
class of functions used in recursive data structures and hence, automatically es-
tablishing their termination is an important property. This is witnessed by the

recent literature where techniques coming from rewriting [6, 1,2, 8] have been
proposed to automate the termination of such functions.

We are interested in automating the termination (inductive or non-inductive)
of recursive functions in a theorem proving framework. We choose the framework
of the system called ProPre developed in [17,15,16] which is also the one used
in Coq [4]. ProPre is devoted to the termination of recursively defined functions.
The Coq and ProPre systems show the automated termination of a recursive
function by first constructing a tree associated with the specification of the
function which satisfies a notion of terminal property and then verifying that the
process of constructing such a tree is formally correct. The search of such trees,
from which it is also possible to extract decreasing measures [19,10] through the
recursive call of the function, relies in particular on the structure of multi-sorted
algebras and hence automated termination proofs in Coqg and ProPre strongly
depend on inductive principles. This means that Coq and ProPre can only deal
with the termination proofs that are inductive.

Our aim is to extend the Coq and ProPre approaches to deal with automated
non-inductive termination proofs. To do this, we introduce a new notion of ter-
minal state property which has an algorithmic content that enables the method
to be automated as an inductive one. From each tree that enjoys the terminal
state property we associate an ordinal measure that couldn’t be previously ob-
tained from the ProPre system [19, 10] and we show the decreasing property that
ensures in this way the termination of the recursive function. As a consequence,
the technique allows inductive methods to go further in the proof search when
natural structural orderings are not enough to achieve the proof.

The paper is divided as follows: In Section 2, we set out the formal machinery.
In Section 3, we introduce ProPre notion of terminal state property and our own
extension of it. We show that our extension strictly includes the ProPre notion
and establish in Theorem 1 that if a distributing tree A has the terminal state
property in the system ProPre, then A has the new terminal state property and
that the opposite does not hold. In Section 4, we explain how it is possible to
define ordinal measures against trees of functions where if the ordinal measure
decreases in the recursive call of the function, then this function terminates.
We recall the ramified measures that come from the analysis of the ProPre
system and we give new measures which will help in establishing terminations of
functions where the proofs of terminations are non-inductive. Our main theorem
of this section (Theorem 2) establishes that our new notion of terminal state
and our extended notion of measures, enable us to establish the termination of
functions (inductive and non inductive).

2 Preliminaries

2.1 Constructor systems

In this paper we deal with constructor systems and more precisely with sorted
constructor systems. The following standard definitions are needed.

Definition 2.1. We assume a set F of function symbols, called signature, and
a set S of sorts. To each function f € F we associate a natural number n that
denotes its arity and a type s1,...,s, = s with s;s1,... s, € 5. A function is
called constant if its arity is 0.

We assume that the set of functions F is divided in two disjoint sets F,. and Fj.
Functions in F, (which also include the constants) are called constructor symbols
or constructors and those in F,; are called defined symbols or defined functions.

Definition 2.2. Let X be a set of variables disjoint from F. We assume that
each variable of X has a unique sort and that for each sort s there is a countable

number of variables in X’ of sort s. If s is a sort, F' and X are respectively sets
included in F, U Fy and X, then T(F, X); is the smallest set such that:

1. every element of X of sort s is a term of sort s,
2. if t1,...,t, are terms of sorts s1,...,s, respectively, and if f is a function
of type s1,...,8, = s, then f(t1,...,t,) is a term of sort s.

If X is empty, we denote T(F, X); by T(F)s; whose elements are called ground
terms. If the arity of ¢ is 0, the constant term ¢() is also denoted ¢. Var(t) denotes
the set of variables that occur in the term ¢, and Pos(t) is the set of positions
of t. If s and ¢ are terms and ¢ is a position of ¢, then the term t[s], is the term
t in which the term s is now at position q.

Definition 2.3. A (sorted) equation is a pair ({,r); of terms [and » of a sort s,
which is also called rewrite rule and written { — r. A set of (sorted) equations
1s non overlapping iff no left-hand sides unify each other.

Definition 2.4. A specification or constructor system & of a function [:

$1,...,8, = s 1in F4 is a non overlapping set of left-linear equations

{(e1,€1)s, .., (ep,ep)s } such that for all 1 < i < p, e; is of the form f(t1,...,1,)
with t; € T(Fe,X)s,, j=1,...,n,and e} € T(F. U Fq, X);.

Definition 2.5. Let & be a specification of a function f with type s1,... s, —
s. A recursive callof fis apair (f(t1,...,tn), fur,...,un)) where f(t1,...,t)
is a left-hand side of an equation of & and f(uy,...,u,) is a subterm of the

corresponding right-hand side.

2.2 The term distributing trees

We give some ingredients that will be needed in the next sections. A term dis-
tributing tree of a specification is a tree whose root can be seen as an uplet of
distinct variables, each node matches its children and each leaf corresponds to a
left-hand side of an equation. More precisely we have:

Definition 2.6. Let £ be a specification of a function f :s1,...,5, — s. Ais
a term distributing tree for £ iff 1t is a tree such that:

1. its root is of the form f(zy,...,x,) where x; is a variable of sort s;, i < n,

2. each left-hand side of an equation of £ is a leaf of A (up to variable renaming)
3. each node f(t1,...,%,) of A admits one variable z’ of a sort 5' such that the
set of children of the node is (for #),...,z. are not in ¢y, ...4,):

{f@y, .)[C(ey, . al) /2, C sy, .. st — s € Feb.

Notation 2.7. Let A be a term distributing tree. A branch B from the root 6;
to a leaf 8y is denoted by (61, 2%), ..., (6k—1, 2} _;), 0 where #; is the root, 8 is
the leaf, and for each i < k — 1, #} is the variable ' for the node 6; in the third
clause of Definition 2.6.

It can be easily seen, according to Definition 2.6, that we have the following:

Fact 2.8. Let &£ be a specification of a function f of type s1,...,s, — s and
A be a term distributing tree for £.

1. For each (t1,...,tn) € T(Fe)sy * ... % T(F.)s, there exists one and only
one leaf # of A and a ground constructor substitution p such that p(f) =
Flta, ... tn).

2. For every branch of A from the root to a leaf (61, 21),...,(Or—1,%5-1), O
and for all 7 < j < k, there exists a constructor substitution o;; such that
0j,i(0;) = 0;. The substitutions ¢; ; may also be written as oy, g,

We introduce here a well-founded ordering relation on the terms.

Definition 2.9. Assume a function m on the terms ranging over natural number
that is closed under substitutions, i.e. m(u) > m(v) implies m(o(u)) > m(o(v))
for all ground substitution o. Let u,v € T(F, X); for a given sort s. We say that
u C v iff wis linear and m(u) < m(v) with Var(u) C Var(v).

3 Generalizing the Coq termination procedure and the
ProPre system

The analysis of the termination proofs using the Recursive Definition of the
Coq assistant and the ProPre system shows that writing a formal proof in these
systems can be regarded as the search of a term distributing tree that enjoys a
terminal state property. That 1s to say, if a formal tree for a specification of a
function can be built having a terminal state property then the function termi-
nates. We define in this section a new terminal state property for a term distribut-
ing tree generalizing that of Recursive Definition procedure and ProPre. We
first give some notations that will be used in the rest of the paper.

Notation 3.1. Let A be a term distributing tree for a specification. If ¢ is the
left-hand side of an equation, b(t) will denote the branch in the term distributing
tree that leads to the term ¢. If b is a branch, then L; will denote the leaf of the
branch b. Note that b and (%) may denote two distinct branches.

If a node @ matches a term u of a recursive call (¢, u), then the substitution will
be denoted by pg o

As every function that terminates with the procedure of the Coq assistant also
terminates with the ProPre system, we do not give here the property in the
setting of the Recursive Definition but only for the extended version of the
ProPre system. Note that it is actually devised in a different way from below
in [16]. However it has been shown [11] that for each distributing tree defined
in [16] that enjoys the terminal state property of [16] there is a corresponding
term distributing tree of Definition 2.6 that has the following property (Defini-
tion 3.2) which is more convenient for our purpose.

Definition 3.2. Let A be a term distributing tree for a specification. We say
that A has the terminal state property (tsp) if there is an application y : A —
{0, 1} on the nodes of A such that if L is a leaf, (L) = 0, and for all recursive
call (¢, u), there is a node (6,) in the branch b(¢) with u(0) = 1 such that ¢
matches u with pg ,(2) C O'Lb(t)yg(l‘) and for all ancestor (6, 2') of 6 in b(¢) with
wu(6') =1, we have pg: ,(2') C O'Lb(t)ygl(l‘/).

As already mentioned, if a specification & of a function admits a term distribut-
ing tree that has the terminal state property, then & is terminating [17].

The rest of this section is devoted to define a new terminal state property gen-
eralizing the previous one. We first need to introduce fresh variables as follows.
For each position ¢ and sort s, we will assume there 1s a new variable of sort s
indexed by ¢ and distinct from those of A’.

Definition 3.3. Let ¢ be a term and ¢ be a position. The term [t], is defined
as follows: [z], = # if is a variable, [C(t1,...,t:)]y = C([t1]g1,-- -, [Enlgn)
it C € F.,and [g(t1,... .tn)]; =2, if g € Fu.

For a term u = g(uy, ..., u,) and a substitution ¢, g([u]) will denote the term
9(e([uly), - - e ([uln)).

We introduce the following relations: For u, v in T (F., X);, we will say that
u D> vifu i vwith =(b) or =(¢) or m(v) < m(w) in Definition 2.9; and we will say
that u < v if w Z v with (b) and (¢) and m(u) = m(v). We will use the so-called
size measure | . |4 for the mentioned measure m. In the following definitions of
the section we will consider a function f : sy,...,s, — s, a specification or a
split specification &, and a term distributing tree A of £.

Definition 3.4. For each node 6, Cy will denote {b € A,0 € b} and Ry the
set of recursive call (¢, u) such that b(t) € Cy. If (¢, u) is a recursive call, then
Ma(u) = {b € A, Ip, ¢ such that f(p[u]) = ¢'(f(Ls))} and Qu(t, u) = {6 €
b(t),Jo, o(f(9)) = u}.

Note that the set Q4(¢, u) is not empty since the root node belongs to Q4(t, u).
Let b be a branch and two nodes 8, 0' € b, we say that § < 6’ if § is closer than ¢’
to the root (i.e. if # is an ancestor of 8’). So we can write N 4 (¢, u) = maxQ 4 (¢, u).
For each node 6 of A we assume an associated subset Gy of Ry which will
be made explicit in Definition 3.7. Notice that the definitions below should be
given simultaneously but are introduced separately to ease the readability.

Definition 3.5. Let (0,) be a node of A and Gy be a subset of Ry. For each
recursive call (¢, u) of Gy such that § € Q4(t, u), we assume that one of the two
following cases below holds and we define €(€t wy a8 follows:

LI pou(®) T 0ryy,0(%) OF pou() > 0L, 0(2), then €(€t7u) =1,
2. If ppu(@) % 0L,y 0(2), then fﬁt,u) =0.

The meaning of the above definition and the following one is to give decreasing
criteria extending those of Definitions 2.9 and 3.2. It relies in particular on the
hierarchical structure of the trees.

Definition 3.6. Let (0,) be a node of A and Gy be a subset of Ry. For each
recursive call (¢, u) of Gg such that 8 € Q4(¢, «) and for each branch b € Cy, we
will define 77(€t Wb in the following way:

1. First take all (¢, u) such that pg ,(z) > O'Lb(t)yg(l‘), and let for all b € Cy:

P] 0 if b e Ma(u),
My o = 1 if not.
2. Next, consider each (¢, «) in Gy such that there is a (¥, «’) with 77(€t/ W) p(t) = 0,
and for which no 77(€t Wb is already defined for any &’ € Cy. Then also take

779 _ 0 ifbeMu(u),
(tu),b 1 1if not.

3. Finally if item 2 cannot be applied, put 77(€t wb = 1 for each b € Cy.

Notice that the cases 1 and 2 are made distinct in the above definition as the
value 5(9“0 is algorithmically defined; namely case 1 is the initial case.

We define, for each node @ of A and each left-hand side ¢ of an equation
where 6 with b(t) € Cy, nf = I1 U(et',u'),b(t) if Gy # 0, and 5! = 0 if not.

t'u')eGe
G(EQA()t’,u’)

We now explicit the subset Gy of Rg for anode 8. The following states whether

from each node, a recursive call can be eliminated from a set of recursive calls:

Definition 3.7. Let 81 be the root of the recursive distributing tree 4. We first
put Gy, = Ry,. Now assume that Gy is defined for a node 6 of A and let 6" be
a child of @ with #" in A. The set Gy is then defined as follows: (¢, u) € Gy iff
(t’ u) € Rg: NGy and (gﬁt,u)’ 77t€) # (1’ 1)'

Now, we define I’ which is a necessary condition for the termination statement.

Definition 3.8. Let 6 be a node of associated tree A of the recursive distributing
tree A distinct from a leaf. We put F(9) = 0 if there is a child ' of § and (¢, u)
in Ggr such that 8 > N4(¢, u); and we put F(#) = 1 if not.

Now the new terminal state property can be defined below.

Definition 3.9. The recursive distributing tree A is said to have the new
terminal state property if for each node @ of A distinct from a leaf we have

F(6) = 1 and for each branch b there is node 6’ in b such that Gy = 0.

We now come to Theorem 1 that states the above definition of the new terminal
state property strictly includes the ProPre notion of terminal state property.

Theorem 1. Let £ be a specification of a function with a distributing tree A.
If A has the terminal state property in the system ProPre, then A has the new
terminal state property. The opposite does not hold.

A crucial point 1s of course to make sure that the new terminal state property
leads a function to terminate. We prove this result in the next section by showing
the existence of measures decreasing through the recursive calls of the functions.
Note that there exist decreasing measures coming from the formal termination
proofs in Coq or in ProPre. But in contrast with these measures, the new one,
with the new terminal state property, will allow one to prove the termination
functions that usually cannot be done with inductive methods.

4 Dealing with a non inductive method

A close notion to term distributing trees of a specification that has the termi-
nal state property is the ramified measures. The measures coming from Cogq or
ProPre characterize in some sense the induction proofs made in the systems.
We recall the ramified measures and explain why we need to introduce other
measures to deal with termination that usually cannot be proven with inductive
methods. Among these measures, a particular class is defined that is related to
term distributing trees enjoying the new terminal state property and we show
that they have the decreasing property. This, therefore, implies that the cor-
responding functions terminate. As a consequence, this provides a method of
reasoning about termination of recursive functions where the underlying proofs
rely on non-inductive as well as inductive axioms.

4.1 The ramified measures and the ProPre system

Definition 4.1. Let A be a tree and # a node of A. The height of 6 in A,
denoted by #(6,.A), is the height of the subtree of A whose root is # minus one.

For a term distributing tree A, we assume that for each node 6; different from a
leaf there is an application m; that maps on natural numbers. The general form
of ordinal measures introduced in [19] is given by the following

Definition 4.2. Let £ be a specification of a function f : sq,...,s, — s, A
be a term distributing tree for a specification of £ and w be the least infinite
ordinal. The ramified measure 24 : T(F,)s, *...% T (F.)s, — w® is defined by:
Let t = (#1,...,ts) be an element of the domain and @ be the leaf of A such
that there is a substitution p with p(8) = f(¢) (Fact 2.8). Let B be the branch

(61,21),...,(0p=1,2p=1), 6 of A from the root to @, let o, , be the substitutions
of Fact 2.8 and for each 8; the associated application m;, 1 < k — 1. Then

2a(0) = 3 O < (oo o(21)

The ramified measures can be illustrated by Figures 1 and 4. An interesting
subclass of the above measures is the class of R-measures. It has been shown that
to each formal termination proof of recursive functions made with the Recursive
Definition procedure of the Coq assistant, there is a distributing tree that has
the terminal state property implying the decreasing property of the R-measure
associated to the distributing tree [19]. This class of measures could be enlarged
with I-measures [10] that can be related to a more efficient version of ProPre [16].

The functions m; that occur in the definition of these measures belonging to
the class of Definition 4.2 are directly supplied from formal proofs made in the
system. This can be illustrated by Figures 2 and 3, where m is the parameterized
function of Definition 2.9.

Definition 4.3. The recursive length lg of a term ¢ of sort s is defined by:

1. if ¢ is a constant or a variable, then lg(t) = 1,

2.ift =C(ty,...,ty) with C :s1,... sy, = s then lg(t) = 1 + Z ly(t;).

$5=5
0;, x; 0;, x; 0;, x;
\
my lg \ ly my
my; lg \ my
\
\ \
Fig.1. Ramified measures Fig.2. R-measures Fig.3. [-measures,
m; € {m,0}

4.2 Extended ordinal measures

We motivate here the definition of new ordinals illustrated with some examples.

It is well known that the structural ordering is the most used among the
well-founded orderings on natural numbers. As it is claimed in [20], other well-
orderings on natural number are difficult to find automatically. As a simple
illustration the constant function with value 0 is given in [20] that can be defined
with the following specification &;.

f(0) = f(s(0)); f(s(0)) = f(s(s(0)); f(s(s(x)) = 0. (1)

Though a well-founded ordering is of course easy to find by a human in
this case, it is however difficult to obtain one in an automated way since it is
a non-simply terminating function and not suited to inductive methods. Note
that proving at the same time the correctness of the specification (i.e. f(z) = 0)

and the termination seems not really relevant here as this is usually done with
an ordering. Moreover the specification of the quot function given in this paper
clearly shows that the correctness cannot be helpful in that case.

Note that there is no term distributing tree of £ which has the terminal
state property, but there is one that satisfies the new terminal state property.

The following example & of the function evenodd : nat, nat — Bool is bor-
rowed from [1]. As mentioned in [1] the modifications of mutually recursive func-
tions to obtain a function without mutual recursion leads to such specifications
as that of evenodd below. We assume that not 1s already defined.

evenodd(z,0) — not(evenodd(x, s(0)))
evenodd(0, s(0)) — false (2)
evenodd(s(z), s(0)) — evenodd(z,0).

The second argument is used as a flag that enables evenodd to compute
either the even function or the odd function. This function, which is a non
simply terminating function, cannot be proven with usual inductive methods
since precisely there is no natural orderings that can be used.

Consider the next example of specification of the function quot : nat, nat, nat —
nat, borrowed from T. Kolbe [13] and that can be found in [2].

The value of quot(x,y, z) corresponds to 1+ |*=£] when z # 0 and y < z,
that is to say quot(x,y,y) computes L%J

quot(0, s(y), s(z)) = 0
quot(s(x), s(y), z) — quot(z,y, z) (3)
quot(x,0,s(2)) = s(quot(z, s(z), s(2)).

The last rule shows that the specification is not simply terminating. The same
rule also shows that the termination cannot be proven by usual inductions proofs.

It turns out that specification functions such as (1), the evenodd function
(2) or the quot function (3) cannot be proven by the system ProPre and no
R-measures neither I-measures [19,10] have the decreasing property for any of
these specifications. However, the following ordinal function

2u,0) =w*|ulg+1, 2(u,s(v)) =w*|u|g,

where | - |4 is the size function, i.e. |0l = 1, |s(u)|lg = 1 + |u|g, reflects
the specification of evenodd in the sense that it decreases in the recursive call
of the function. There is also an ordinal measure below that has the decreasing
property for the specification of the quot function

2u, s(v),w) =w*|ulg, £2(u,0,w)=wx*|ulg+ 1.

It would be possible to find a decreasing measure in the class of Definition 4.2
for (1), (2) or (3), but the choice of the m; is difficult to obtain in an automated
way. In particular we want to have m; functions that are as simple as possi-
ble, such as for instance the size functions that are found in the above ordinal.
Furthermore we would like to relate decreasing measures to term distributing
trees that satisfy the new notion of terminal state property generalizing those

of Coq and ProPre. It turns out that such suitable measures actually belong to
the extended ordinal measures defined below. We first introduce the following

Definition 4.4. Let £ be a specification of a function f :sy,...,s, — s such
that there exists a term distributing tree A for £. For each node 6; of A, we will
assume that there are associated applications m; 1, ..., m; ;, that map on natural
numbers whose number is equal to the number of the sub-branches starting from
the node #;. Note that this number may be distinct from the number of the
children of the node. These applications will be called node measures. If 6 is a
leaf of a branch where #; appears, we will also use my, y to make explicit one of
the node measures of #; when necessary.

Definition 4.5. Let £ be a specification of a function f :sy,...,s, — s such
that there exists a term distributing tree A for £. The extended measure

2a:T(Fsy *...xT(F.)s, = w* is defined as follows:

Let t = (#1,...,ts) be an element of the domain and @ be the leaf of A such
that there is a substitution p with p(8) = f(¢) (Fact 2.8). Let B be the branch
(61,21),...,(0p=1,2p=1), 6 of A from the root to @, let o, , be the substitutions

of Fact 2.8. Then

Zw) s mg, o(plowi(2:))) -

An extended measure can be illustrated by Figures 5 and 6.

mo/%\mo " 1/ \\

0 0
/ \ml my 1 ‘ m1,2‘ ‘m1,3
2 2 Ly
/ XM ma 1 ‘ ma 2 ‘
Ly Ls
F1g.4. Term dlstributing with Fig.5. Term distributing with
ramified measure extended measure

For instance the specification & with the equations (1) in Section 4.2 admits
a term distributing tree with an extended measure defined as follows

2a(0) = w04, 2a(5(0) = 0}, 2als(s())) = 0.
This measure has obviously the decreasing property in the recursive calls of &;.

One may wonder whether the automation of decreasing measures belonging
to Definition 4.5 is possible since we have to take account of the m; ; applications.
We will show that it will be enough to consider a subclass of measures, called
hole-measures, generalizing R- and I-measures. These measures will be associated
to term distributing trees enjoying the new terminal state property. We will show
that they have the decreasing property and that functions which admit a term
distributing tree with the new terminal state property, are therefore terminating.

4.3 The hole-measures

Definition 4.6. Let £ be a specification of a function f :sy,...,s, — s such
that there exists a term distributing tree A for £. The hole measure

2a:T(Fsy *...xT(F.)s, = w* is defined as follows:

Let t = (#1,...,ts) be an element of the domain and @ be the leaf of A such
that there is a substitution p with p(8) = f(¢) (Fact 2.8). Let B be the branch
(61,21),...,(0p=1,2p=1), 6 of A from the root to @, let o, , be the substitutions

of Fact 2.8. Then
E—1
2a(t) =Y WM s (gl |(p(on i) 4) -
i=1

That is to say mg, 5 = 70" % | . 4.

Note that, due to the relation between the leaf # and the term ¢, nf’ I P
depends both on #; and @ in the above definition.

i, z;

Fig.6. Extended measures Fig.7. Hole-measures with m; ; € {m,0}

Now we come to the main theorem of this paper. It states that our new notion
of new terminal state property and our extended notion of measures enable us
to establish the inductive and non inductive termination of functions.

Theorem 2. Let £ be a specification of a function f : s1,...,8, — s and
A be a distributing tree A for £ having the new terminal state property. The
associated measure §24 satisfies the decreasing property. Le., for each recursive
call (f(t1, ... tn), fur, ..., upn)) of € and ground constructor substitution ¢ we

have: 2a(p(t1), ..., o(ta)) > 2ale([uilr), - e([unln))-

5 Conclusion

In this paper we have proposed a method that extends the automation of the
proofs of termination of recursive functions used in ProPre and Coq. Whereas
Coq and ProPre could only deal with the automation of inductive proofs, the
method allows the automation of a larger class of recursive functions because
non structural orderings can be handled by the method. The method is also
a good vehicle for extending the automation of termination proofs of recursive
functions to deal with issues not yet incorporated in theorem provers.

References

[1] T. Arts and J. Giesl. Automatically proving termination where simplification order-
ings failin Proceeding TAPSOFT’97, LNCS, volume 1214, 261-272.

[2] T. Arts and J. Giesl. Proving innermost normalisation automaticallyin Proceeding
RTA’97, LNCS, volume 1232, 157-171.

[3] A. Ben Cherifa and P. Lescanne. Termination of rewriting systems by polynomial
interpretations and its implementation. Science of Computer Programming 9(2),
137-159, 1987.

[4] C. Cornes et al.. The Coq proof assistant reference manual version 5.10. Technical
Report 077, INRIA, 1995.

[5] N. Dershowitz. Termination of rewriting. Theoretical Computer Science 17, 279-
301, 1982.

[6] N. Dershowitz and C. Hoot. Natural termination. Theoretical Computer Science
142(2), 179-207, 1995.

[7] J. Dick, J. Kalmus and U. Martin. Automating the Knuth Bendix ordering. Acta
Informatica 28, 95-119, 1990.

[8] T. Genet and I. Gnaedig. Termination proofs using gpo ordering constraints. T4 P-
SOFT, LNCS 1214, 249-260, 1997.

[9] J. Giesl. Generating polynomial orderings for termination proofs. Proceedings of
the 6th International Conference on Rewriting Techniques and Application, Kaiser-
lautern, LNCS, volume 914, 1995.

[10] F. Kamareddine and F. Monin. On formalised proofs of termination of recursive
functions. In Proc. International Conference on Principles and Practice of Declar-
ative Programming, Paris, France, 1999.

[11] F. Kamareddine and F. Monin. Induction Lemmas for Termination of Recursive
Functions in a Typed System Proc. submatted.

[12] D. E. Knuth and P.B. Bendix. Simple word problems in universal algebras. In J.
Leech, editor, Computational problems in abstract algebra, Pergamon Press, 263-297,
1970.

[13] T. Kolbe. Challenge problems for automated termination proofs of term rewriting
systems. Technical Report IBN96-42, Technische Hochshule Darmstadt, Alexander-
str. 10, 64283 Darmstadt, Germany, 1996.

[14] P. Lescanne. On the recursive decomposition ordering with lexicographical status
and other related orderings. Journal of Automated Reasoning 6(1) 39-49, 1990.

[15] P. Manoury. A User’s friendly syntaz to define recursive functions as typed lambda-
terms. Proceedings of Type for Proofs and Programs TYPES’94 LNCS, volume 996,
1994.

[16] P. Manoury and M. Simonot. Des preuves de totalité de fonctions comme synthése
de programmes. PhD thesis, University Paris 7, 1992.

[17] P. Manoury and M. Simonot. Automatizing termination proofs of recursively de-
fined functions. Theoretical Computer Science 135(2) 319-343, 1994.

[18] A.Middeldorp and H. Zantema. Simple termination of rewrite systems. Theoretical
Computer Science 175, 127-158, 1997.

[19] F. Monin and M. Simonot. An ordinal measure based procedure for termination
of functions. To appear in Theoretical Computer Science.

[20] M. Parigot. Recursive programming with proofs. Theoretical Computer Science
94(2) 335-356, 1992.

[21] J. Steinbach. Generating polynomial orderings. Information Processing Letters 49,
85-93, 1994.

