
On Automating Inductive and Non-InductiveTermination MethodsFairouz Kamareddine and Fran�cois MoninDepartment of Computing and Electrical Engineering,Heriot-Watt University,Edinburgh EH14 4AS, Scotland,fairouz@cee.hw.ac.uk, monin@cee.hw.ac.ukAbstract. The Coq and ProPre systems show the automated termina-tion of a recursive function by �rst constructing a tree associated withthe speci�cation of the function which satis�es a notion of terminal prop-erty and then verifying that this construction process is formally correct.However, those two steps strongly depend on inductive principles andhence Coq and ProPre can only deal with the termination proofs thatare inductive. There are however many functions for which the termina-tion proofs are non-inductive. In this article, we attempt to extend theclass of functions whose proofs can be done automatically �a la Coq andProPre to a larger class including functions whose termination proofs arenot inductive. We do this by extending the terminal property notion andreplacing the veri�cation step above by one that searches for a decreasingmeasure which can be used to establish the termination of the function.1 IntroductionTermination is an important property in the veri�cation of programs de�nedon recursive data structure that use automated deduction. While the problemis undecidable, several proof methods of termination of functions have been de-veloped using for instance formal proof methods in functional programming ororderings of rewriting systems. For instance we mention polynomial interpreta-tions [3,9, 21], recursive path orderings [14] and Knuth-Bendix orderings [7, 12].The latter methods are characterized by orderings called simpli�cation order-ings [5, 18] and deal with the termination of functions called simply terminatingfunctions. Some functions that are non-simply terminating can be proven to ter-minate with methods based on structural inductive proofs because they focuson recursive functions which can be viewed as sorted constructor systems thatallow reasoning on the orderings' structure of the data objects.But there are other recursive functions that are non-simply terminating forwhich inductive methods fail to prove the termination since precisely the struc-tural orderings on the terms of the algebra cannot be used. These functions,which we call, non-inductive-simply terminating functions form an importantclass of functions used in recursive data structures and hence, automatically es-tablishing their termination is an important property. This is witnessed by the

recent literature where techniques coming from rewriting [6, 1, 2, 8] have beenproposed to automate the termination of such functions.We are interested in automating the termination (inductive or non-inductive)of recursive functions in a theorem proving framework. We choose the frameworkof the system called ProPre developed in [17,15, 16] which is also the one usedin Coq [4]. ProPre is devoted to the termination of recursively de�ned functions.The Coq and ProPre systems show the automated termination of a recursivefunction by �rst constructing a tree associated with the speci�cation of thefunction which satis�es a notion of terminal property and then verifying that theprocess of constructing such a tree is formally correct. The search of such trees,from which it is also possible to extract decreasing measures [19, 10] through therecursive call of the function, relies in particular on the structure of multi-sortedalgebras and hence automated termination proofs in Coq and ProPre stronglydepend on inductive principles. This means that Coq and ProPre can only dealwith the termination proofs that are inductive.Our aim is to extend the Coq and ProPre approaches to deal with automatednon-inductive termination proofs. To do this, we introduce a new notion of ter-minal state property which has an algorithmic content that enables the methodto be automated as an inductive one. From each tree that enjoys the terminalstate property we associate an ordinal measure that couldn't be previously ob-tained from the ProPre system [19, 10] and we show the decreasing property thatensures in this way the termination of the recursive function. As a consequence,the technique allows inductive methods to go further in the proof search whennatural structural orderings are not enough to achieve the proof.The paper is divided as follows: In Section 2, we set out the formalmachinery.In Section 3, we introduce ProPre notion of terminal state property and our ownextension of it. We show that our extension strictly includes the ProPre notionand establish in Theorem 1 that if a distributing tree A has the terminal stateproperty in the system ProPre, then A has the new terminal state property andthat the opposite does not hold. In Section 4, we explain how it is possible tode�ne ordinal measures against trees of functions where if the ordinal measuredecreases in the recursive call of the function, then this function terminates.We recall the rami�ed measures that come from the analysis of the ProPresystem and we give new measures which will help in establishing terminations offunctions where the proofs of terminations are non-inductive. Our main theoremof this section (Theorem 2) establishes that our new notion of terminal stateand our extended notion of measures, enable us to establish the termination offunctions (inductive and non inductive).2 Preliminaries2.1 Constructor systemsIn this paper we deal with constructor systems and more precisely with sortedconstructor systems. The following standard de�nitions are needed.

De�nition 2.1. We assume a set F of function symbols, called signature, anda set S of sorts. To each function f 2 F we associate a natural number n thatdenotes its arity and a type s1; : : : ; sn ! s with s; s1; : : : ; sn 2 S. A function iscalled constant if its arity is 0.We assume that the set of functions F is divided in two disjoint sets Fc and Fd.Functions in Fc (which also include the constants) are called constructor symbolsor constructors and those in Fd are called de�ned symbols or de�ned functions.De�nition 2.2. Let X be a set of variables disjoint from F . We assume thateach variable of X has a unique sort and that for each sort s there is a countablenumber of variables in X of sort s. If s is a sort, F and X are respectively setsincluded in Fc [Fd and X , then T (F;X)s is the smallest set such that:1. every element of X of sort s is a term of sort s,2. if t1; : : : ; tn are terms of sorts s1; : : : ; sn respectively, and if f is a functionof type s1; : : : ; sn ! s, then f(t1; : : : ; tn) is a term of sort s.If X is empty, we denote T (F;X)s by T (F)s whose elements are called groundterms. If the arity of c is 0, the constant term c() is also denoted c. Var(t) denotesthe set of variables that occur in the term t, and Pos(t) is the set of positionsof t. If s and t are terms and q is a position of t, then the term t[s]q is the termt in which the term s is now at position q.De�nition 2.3. A (sorted) equation is a pair (l; r)s of terms l and r of a sort s,which is also called rewrite rule and written l ! r. A set of (sorted) equationsis non overlapping i� no left-hand sides unify each other.De�nition 2.4. A speci�cation or constructor system E of a function f :s1; : : : ; sn ! s in Fd is a non overlapping set of left-linear equationsf(e1; e01)s; : : : ; (ep; e0p)sg such that for all 1 � i � p, ei is of the form f(t1; : : : ; tn)with tj 2 T (Fc;X)sj , j = 1; : : : ; n; and e0i 2 T (Fc [Fd;X)s.De�nition 2.5. Let E be a speci�cation of a function f with type s1; : : : ; sn !s. A recursive call of f is a pair (f(t1; : : : ; tn); f(u1; : : : ; un)) where f(t1; : : : ; tn)is a left-hand side of an equation of E and f(u1; : : : ; un) is a subterm of thecorresponding right-hand side.2.2 The term distributing treesWe give some ingredients that will be needed in the next sections. A term dis-tributing tree of a speci�cation is a tree whose root can be seen as an uplet ofdistinct variables, each node matches its children and each leaf corresponds to aleft-hand side of an equation. More precisely we have:De�nition 2.6. Let E be a speci�cation of a function f : s1; : : : ; sn ! s. A isa term distributing tree for E i� it is a tree such that:1. its root is of the form f(x1; : : : ; xn) where xi is a variable of sort si, i � n,

2. each left-hand side of an equation of E is a leaf of A (up to variable renaming)3. each node f(t1; : : : ; tn) of A admits one variable x0 of a sort s0 such that theset of children of the node is (for x01; : : : ; x0r are not in t1; : : : tn):ff(t1; : : : tn)[C(x01; : : :x0r)=x0]; C : s01; : : : ; s0r ! s0 2 Fcg.Notation 2.7. Let A be a term distributing tree. A branch B from the root �1to a leaf �k is denoted by (�1; x01); : : : ; (�k�1; x0k�1); �k where �1 is the root, �k isthe leaf, and for each i � k� 1, x0i is the variable x0 for the node �i in the thirdclause of De�nition 2.6.It can be easily seen, according to De�nition 2.6, that we have the following:Fact 2.8. Let E be a speci�cation of a function f of type s1; : : : ; sn ! s andA be a term distributing tree for E .1. For each (t1; : : : ; tn) 2 T (Fc)s1 � : : : � T (Fc)sn there exists one and onlyone leaf � of A and a ground constructor substitution � such that �(�) =f(t1; : : : ; tn).2. For every branch of A from the root to a leaf (�1; x1); : : : ; (�k�1; xk�1); �kand for all i � j � k, there exists a constructor substitution �j;i such that�j;i(�i) = �j . The substitutions �j;i may also be written as ��j;�iWe introduce here a well-founded ordering relation on the terms.De�nition 2.9. Assume a functionm on the terms ranging over natural numberthat is closed under substitutions, i.e. m(u) > m(v) implies m(�(u)) > m(�(v))for all ground substitution �. Let u; v 2 T (F ;X)s for a given sort s. We say thatu @ v i� u is linear and m(u) < m(v) with Var(u) � Var(v).3 Generalizing the Coq termination procedure and theProPre systemThe analysis of the termination proofs using the Recursive Definition of theCoq assistant and the ProPre system shows that writing a formal proof in thesesystems can be regarded as the search of a term distributing tree that enjoys aterminal state property. That is to say, if a formal tree for a speci�cation of afunction can be built having a terminal state property then the function termi-nates. We de�ne in this section a new terminal state property for a term distribut-ing tree generalizing that of Recursive Definition procedure and ProPre. We�rst give some notations that will be used in the rest of the paper.Notation 3.1. Let A be a term distributing tree for a speci�cation. If t is theleft-hand side of an equation, b(t) will denote the branch in the term distributingtree that leads to the term t. If b is a branch, then Lb will denote the leaf of thebranch b. Note that b and b(t) may denote two distinct branches.If a node � matches a term u of a recursive call (t; u), then the substitution willbe denoted by ��;u.

As every function that terminates with the procedure of the Coq assistant alsoterminates with the ProPre system, we do not give here the property in thesetting of the Recursive Definition but only for the extended version of theProPre system. Note that it is actually devised in a di�erent way from belowin [16]. However it has been shown [11] that for each distributing tree de�nedin [16] that enjoys the terminal state property of [16] there is a correspondingterm distributing tree of De�nition 2.6 that has the following property (De�ni-tion 3.2) which is more convenient for our purpose.De�nition 3.2. Let A be a term distributing tree for a speci�cation. We saythat A has the terminal state property (tsp) if there is an application � : A !f0; 1g on the nodes of A such that if L is a leaf, �(L) = 0, and for all recursivecall (t; u), there is a node (�; x) in the branch b(t) with �(�) = 1 such that �matches u with ��;u(x) @ �Lb(t);�(x) and for all ancestor (�0; x0) of � in b(t) with�(�0) = 1, we have ��0 ;u(x0) v �Lb(t);�0(x0).As already mentioned, if a speci�cation E of a function admits a term distribut-ing tree that has the terminal state property, then E is terminating [17].The rest of this section is devoted to de�ne a new terminal state property gen-eralizing the previous one. We �rst need to introduce fresh variables as follows.For each position q and sort s, we will assume there is a new variable of sort sindexed by q and distinct from those of X .De�nition 3.3. Let t be a term and q be a position. The term [[t]]q is de�nedas follows: [[x]]q = x if x is a variable, [[C(t1; : : : ; tn)]]q = C([[t1]]q�1; : : : ; [[tn]]q�n)if C 2 Fc, and [[g(t1; : : : ; tn)]]q = xq if g 2 Fd.For a term u = g(u1; : : : ; un) and a substitution ', g('[[u]]) will denote the termg('([[u]]1); : : : ; '([[u]]n)).We introduce the following relations: For u; v in T (Fc;X)s, we will say thatu D v if u 6@ v with :(b) or :(c) orm(v) < m(u) in De�nition 2.9; and we will saythat u 4 v if u 6@ v with (b) and (c) and m(u) = m(v). We will use the so-calledsize measure j : j# for the mentioned measure m. In the following de�nitions ofthe section we will consider a function f : s1; : : : ; sn ! s, a speci�cation or asplit speci�cation E , and a term distributing tree A of E .De�nition 3.4. For each node �, C� will denote fb 2 A; � 2 bg and R� theset of recursive call (t; u) such that b(t) 2 C�. If (t; u) is a recursive call, thenMA(u) = fb 2 A; 9'; '0 such that f('[[u]]) = '0(f(Lb))g and QA(t; u) = f� 2b(t); 9�; �(f(�)) = ug.Note that the set QA(t; u) is not empty since the root node belongs to QA(t; u).Let b be a branch and two nodes �; �0 2 b, we say that � < �0 if � is closer than �0to the root (i.e. if � is an ancestor of �0). So we can writeNA(t; u) = maxQA(t; u).For each node � of A we assume an associated subset G� of R� which willbe made explicit in De�nition 3.7. Notice that the de�nitions below should begiven simultaneously but are introduced separately to ease the readability.

De�nition 3.5. Let (�; x) be a node of A and G� be a subset of R�. For eachrecursive call (t; u) of G� such that � 2 QA(t; u), we assume that one of the twofollowing cases below holds and we de�ne ��(t;u), as follows:1. If ��;u(x) @ �Lb(t);�(x) or ��;u(x) D �Lb(t);�(x), then ��(t;u) = 1,2. If ��;u(x) 4 �Lb(t);�(x), then ��(t;u) = 0.The meaning of the above de�nition and the following one is to give decreasingcriteria extending those of De�nitions 2.9 and 3.2. It relies in particular on thehierarchical structure of the trees.De�nition 3.6. Let (�; x) be a node of A and G� be a subset of R�. For eachrecursive call (t; u) of G� such that � 2 QA(t; u) and for each branch b 2 C�, wewill de�ne ��(t;u);b in the following way:1. First take all (t; u) such that ��;u(x) D �Lb(t);�(x), and let for all b 2 C�:��(t;u);b = (0 if b 2MA(u),1 if not.2. Next, consider each (t; u) in G� such that there is a (t0; u0) with ��(t0;u0);b(t) = 0,and for which no ��(t;u);b0 is already de�ned for any b0 2 C�. Then also take��(t;u);b = (0 if b 2MA(u),1 if not.3. Finally if item 2 cannot be applied, put ��(t;u);b = 1 for each b 2 C�.Notice that the cases 1 and 2 are made distinct in the above de�nition as thevalue ��(t;u) is algorithmically de�ned; namely case 1 is the initial case.We de�ne, for each node � of A and each left-hand side t of an equationwhere � with b(t) 2 C�, ��t = Q(t0;u0)2G��2QA(t0;u0)��(t0;u0);b(t) if G� 6= ;, and ��t = 0 if not.We now explicit the subset G� ofR� for a node �. The following states whetherfrom each node, a recursive call can be eliminated from a set of recursive calls:De�nition 3.7. Let �1 be the root of the recursive distributing tree A. We �rstput G�1 = R�1 . Now assume that G� is de�ned for a node � of A and let �0 bea child of � with �0 in A. The set G�0 is then de�ned as follows: (t; u) 2 G�0 i�(t; u) 2 R�0 \ G� and (��(t;u); ��t) 6= (1; 1).Now, we de�ne F which is a necessary condition for the termination statement.De�nition3.8. Let � be a node of associated tree A of the recursive distributingtree A distinct from a leaf. We put F (�) = 0 if there is a child �0 of � and (t; u)in G�0 such that � > NA(t; u); and we put F (�) = 1 if not.Now the new terminal state property can be de�ned below.

De�nition 3.9. The recursive distributing tree A is said to have the newterminal state property if for each node � of A distinct from a leaf we haveF (�) = 1 and for each branch b there is node �0 in b such that G�0 = ;.We now come to Theorem 1 that states the above de�nition of the new terminalstate property strictly includes the ProPre notion of terminal state property.Theorem 1. Let E be a speci�cation of a function with a distributing tree A.If A has the terminal state property in the system ProPre, then A has the newterminal state property. The opposite does not hold.A crucial point is of course to make sure that the new terminal state propertyleads a function to terminate. We prove this result in the next section by showingthe existence of measures decreasing through the recursive calls of the functions.Note that there exist decreasing measures coming from the formal terminationproofs in Coq or in ProPre. But in contrast with these measures, the new one,with the new terminal state property, will allow one to prove the terminationfunctions that usually cannot be done with inductive methods.4 Dealing with a non inductive methodA close notion to term distributing trees of a speci�cation that has the termi-nal state property is the rami�ed measures. The measures coming from Coq orProPre characterize in some sense the induction proofs made in the systems.We recall the rami�ed measures and explain why we need to introduce othermeasures to deal with termination that usually cannot be proven with inductivemethods. Among these measures, a particular class is de�ned that is related toterm distributing trees enjoying the new terminal state property and we showthat they have the decreasing property. This, therefore, implies that the cor-responding functions terminate. As a consequence, this provides a method ofreasoning about termination of recursive functions where the underlying proofsrely on non-inductive as well as inductive axioms.4.1 The rami�ed measures and the ProPre systemDe�nition 4.1. Let A be a tree and � a node of A. The height of � in A,denoted by H(�;A), is the height of the subtree of A whose root is � minus one.For a term distributing tree A, we assume that for each node �i di�erent from aleaf there is an application mi that maps on natural numbers. The general formof ordinal measures introduced in [19] is given by the followingDe�nition 4.2. Let E be a speci�cation of a function f : s1; : : : ; sn ! s, Abe a term distributing tree for a speci�cation of E and ! be the least in�niteordinal. The rami�ed measure
A : T (Fc)s1 � : : : � T (Fc)sn ! !! is de�ned by:Let t = (t1; : : : ; tn) be an element of the domain and � be the leaf of A suchthat there is a substitution � with �(�) = f(t) (Fact 2.8). Let B be the branch

(�1; x1); : : : ; (�k�1; xk�1); � of A from the root to �, let �r;s be the substitutionsof Fact 2.8 and for each �i the associated application mi, i � k � 1. Then
A(t) = k�1Xi=1 !H(�i;A) �mi(�(�k;i(xi))) :The rami�ed measures can be illustrated by Figures 1 and 4. An interestingsubclass of the above measures is the class of R-measures. It has been shown thatto each formal termination proof of recursive functions made with the RecursiveDefinition procedure of the Coq assistant, there is a distributing tree that hasthe terminal state property implying the decreasing property of the R-measureassociated to the distributing tree [19]. This class of measures could be enlargedwith I-measures [10] that can be related to a more e�cient version of ProPre [16].The functions mi that occur in the de�nition of these measures belonging tothe class of De�nition 4.2 are directly supplied from formal proofs made in thesystem. This can be illustrated by Figures 2 and 3, where m is the parameterizedfunction of De�nition 2.9.De�nition 4.3. The recursive length lg of a term t of sort s is de�ned by:1. if t is a constant or a variable, then lg(t) = 1,2. if t = C(t1; : : : ; tn) with C : s1; : : : ; sn ! s then lg(t) = 1 +Xsj=s lg(tj).�i; xi����mi

 mi@@@@miFig.1. Rami�ed measures �i; xi����lg

 lg @@@@lgFig.2. R-measures �i; xi����mi

 mi@@@@miFig.3. I-measures,mi 2 fm;~0g4.2 Extended ordinal measuresWe motivate here the de�nition of new ordinals illustrated with some examples.It is well known that the structural ordering is the most used among thewell-founded orderings on natural numbers. As it is claimed in [20], other well-orderings on natural number are di�cult to �nd automatically. As a simpleillustration the constant function with value 0 is given in [20] that can be de�nedwith the following speci�cation E1.f(0)! f(s(0)); f(s(0)) ! f(s(s(0)); f(s(s(x)) ! 0: (1)Though a well-founded ordering is of course easy to �nd by a human inthis case, it is however di�cult to obtain one in an automated way since it isa non-simply terminating function and not suited to inductive methods. Notethat proving at the same time the correctness of the speci�cation (i.e. f(x) = 0)

and the termination seems not really relevant here as this is usually done withan ordering. Moreover the speci�cation of the quot function given in this paperclearly shows that the correctness cannot be helpful in that case.Note that there is no term distributing tree of E1 which has the terminalstate property, but there is one that satis�es the new terminal state property.The following example E2 of the function evenodd : nat; nat! Bool is bor-rowed from [1]. As mentioned in [1] the modi�cations of mutually recursive func-tions to obtain a function without mutual recursion leads to such speci�cationsas that of evenodd below. We assume that not is already de�ned.evenodd(x; 0)! not(evenodd(x; s(0)))evenodd(0; s(0))! falseevenodd(s(x); s(0)) ! evenodd(x; 0): (2)The second argument is used as a
ag that enables evenodd to computeeither the even function or the odd function. This function, which is a nonsimply terminating function, cannot be proven with usual inductive methodssince precisely there is no natural orderings that can be used.Consider the next example of speci�cation of the function quot : nat; nat; nat!nat, borrowed from T. Kolbe [13] and that can be found in [2].The value of quot(x; y; z) corresponds to 1 + bx�yz c when z 6= 0 and y � x,that is to say quot(x; y; y) computes bxy c.quot(0; s(y); s(z))! 0quot(s(x); s(y); z)! quot(x; y; z)quot(x; 0; s(z))! s(quot(x; s(z); s(z)): (3)The last rule shows that the speci�cation is not simply terminating. The samerule also shows that the termination cannot be proven by usual inductions proofs.It turns out that speci�cation functions such as (1), the evenodd function(2) or the quot function (3) cannot be proven by the system ProPre and noR-measures neither I-measures [19,10] have the decreasing property for any ofthese speci�cations. However, the following ordinal function
(u; 0) = ! � juj# + 1,
(u; s(v)) = ! � juj#;where j � j# is the size function, i.e. j0j# = 1, js(u)j# = 1 + juj#, re
ectsthe speci�cation of evenodd in the sense that it decreases in the recursive callof the function. There is also an ordinal measure below that has the decreasingproperty for the speci�cation of the quot function
(u; s(v); w) = ! � juj#,
(u; 0; w) = ! � juj# + 1.It would be possible to �nd a decreasing measure in the class of De�nition 4.2for (1), (2) or (3), but the choice of the mi is di�cult to obtain in an automatedway. In particular we want to have mi functions that are as simple as possi-ble, such as for instance the size functions that are found in the above ordinal.Furthermore we would like to relate decreasing measures to term distributingtrees that satisfy the new notion of terminal state property generalizing those

of Coq and ProPre. It turns out that such suitable measures actually belong tothe extended ordinal measures de�ned below. We �rst introduce the followingDe�nition 4.4. Let E be a speci�cation of a function f : s1; : : : ; sn ! s suchthat there exists a term distributing tree A for E . For each node �i of A, we willassume that there are associated applicationsmi;1; : : : ;mi;ji that map on naturalnumbers whose number is equal to the number of the sub-branches starting fromthe node �i. Note that this number may be distinct from the number of thechildren of the node. These applications will be called node measures. If � is aleaf of a branch where �i appears, we will also use m�i ;� to make explicit one ofthe node measures of �i when necessary.De�nition 4.5. Let E be a speci�cation of a function f : s1; : : : ; sn ! s suchthat there exists a term distributing tree A for E . The extended measure
A : T (Fc)s1 � : : : � T (Fc)sn ! !! , is de�ned as follows:Let t = (t1; : : : ; tn) be an element of the domain and � be the leaf of A suchthat there is a substitution � with �(�) = f(t) (Fact 2.8). Let B be the branch(�1; x1); : : : ; (�k�1; xk�1); � of A from the root to �, let �r;s be the substitutionsof Fact 2.8. Then
A(t) = k�1Xi=1 !H(�i;A) �m�i ;�(�(�k;i(xi))) :An extended measure can be illustrated by Figures 5 and 6.�0m0 m0

 JJJL1 �1m1 m1

 JJJ�2m2 m2

L2 JJJL3 L4Fig.4. Term distributing withrami�ed measure Fig.5. Term distributing withextended measure
�0m0;1 m0;2 m0;3 m0;4

L1 m1;1 m1;2 m1;3HHHHH�1�2L2m2;1 m2;2XXXXXXXX�1�2L3hhhhhhhhhhh�1L4For instance the speci�cation E1 with the equations (1) in Section 4.2 admitsa term distributing tree with an extended measure de�ned as follows
A(0) = ! � j0j#,
A(s(0)) = j0j#,
A(s(s(u))) = 0.This measure has obviously the decreasing property in the recursive calls of E1.One may wonder whether the automation of decreasing measures belongingto De�nition 4.5 is possible since we have to take account of the mi;j applications.We will show that it will be enough to consider a subclass of measures, calledhole-measures, generalizing R- and I-measures. These measures will be associatedto term distributing trees enjoying the new terminal state property. We will showthat they have the decreasing property and that functions which admit a termdistributing tree with the new terminal state property, are therefore terminating.

4.3 The hole-measuresDe�nition 4.6. Let E be a speci�cation of a function f : s1; : : : ; sn ! s suchthat there exists a term distributing tree A for E . The hole measure
A : T (Fc)s1 � : : : � T (Fc)sn ! !! , is de�ned as follows:Let t = (t1; : : : ; tn) be an element of the domain and � be the leaf of A suchthat there is a substitution � with �(�) = f(t) (Fact 2.8). Let B be the branch(�1; x1); : : : ; (�k�1; xk�1); � of A from the root to �, let �r;s be the substitutionsof Fact 2.8. Then
A(t) = k�1Xi=1 !H(�i ;A) � (��it � j(�(�k;i(xi)))j#) :That is to say m�i ;� = ��it � j : j#.Note that, due to the relation between the leaf � and the term t, ��it � j : j#depends both on �i and � in the above de�nition.�i; xi����mi;1

 mi;2@@@@mi;jiFig.6. Extended measures �i; xi����mi;ji 2 fm;~0g

 mi;22 fm;~0g@@@@mi;ji 2 fm;~0gFig.7. Hole-measures with mi;j 2 fm;~0gNow we come to the main theorem of this paper. It states that our new notionof new terminal state property and our extended notion of measures enable usto establish the inductive and non inductive termination of functions.Theorem 2. Let E be a speci�cation of a function f : s1; : : : ; sn ! s andA be a distributing tree A for E having the new terminal state property. Theassociated measure
A satis�es the decreasing property. I.e., for each recursivecall (f(t1; : : : ; tn); f(u1; : : : ; un)) of E and ground constructor substitution ' wehave:
A('(t1); : : : ; '(tn)) >
A('([[u1]]1); : : : ; '([[un]]n)).5 ConclusionIn this paper we have proposed a method that extends the automation of theproofs of termination of recursive functions used in ProPre and Coq. WhereasCoq and ProPre could only deal with the automation of inductive proofs, themethod allows the automation of a larger class of recursive functions becausenon structural orderings can be handled by the method. The method is alsoa good vehicle for extending the automation of termination proofs of recursivefunctions to deal with issues not yet incorporated in theorem provers.

References[1] T. Arts and J. Giesl. Automatically proving termination where simpli�cation order-ings fail in Proceeding TAPSOFT'97, LNCS, volume 1214, 261-272.[2] T. Arts and J. Giesl. Proving innermost normalisation automatically in ProceedingRTA'97, LNCS, volume 1232, 157-171.[3] A. Ben Cherifa and P. Lescanne. Termination of rewriting systems by polynomialinterpretations and its implementation. Science of Computer Programming 9(2),137-159, 1987.[4] C. Cornes et al.. The Coq proof assistant reference manual version 5.10. TechnicalReport 077, INRIA, 1995.[5] N. Dershowitz. Termination of rewriting. Theoretical Computer Science 17, 279-301, 1982.[6] N. Dershowitz and C. Hoot. Natural termination. Theoretical Computer Science142(2), 179-207, 1995.[7] J. Dick, J. Kalmus and U. Martin. Automating the Knuth Bendix ordering. ActaInformatica 28, 95-119, 1990.[8] T. Genet and I. Gnaedig. Termination proofs using gpo ordering constraints. TAP-SOFT, LNCS 1214, 249-260, 1997.[9] J. Giesl. Generating polynomial orderings for termination proofs. Proceedings ofthe 6th International Conference on Rewriting Techniques and Application, Kaiser-lautern, LNCS, volume 914, 1995.[10] F. Kamareddine and F. Monin. On formalised proofs of termination of recursivefunctions. In Proc. International Conference on Principles and Practice of Declar-ative Programming, Paris, France, 1999.[11] F. Kamareddine and F. Monin. Induction Lemmas for Termination of RecursiveFunctions in a Typed System Proc. submitted.[12] D. E. Knuth and P.B. Bendix. Simple word problems in universal algebras. In J.Leech, editor, Computational problems in abstract algebra, Pergamon Press, 263-297,1970.[13] T. Kolbe. Challenge problems for automated termination proofs of term rewritingsystems. Technical Report IBN96-42, Technische Hochshule Darmstadt, Alexander-str. 10, 64283 Darmstadt, Germany, 1996.[14] P. Lescanne. On the recursive decomposition ordering with lexicographical statusand other related orderings. Journal of Automated Reasoning 6(1) 39-49, 1990.[15] P. Manoury. A User's friendly syntax to de�ne recursive functions as typed lambda-terms. Proceedings of Type for Proofs and Programs TYPES'94, LNCS, volume 996,1994.[16] P. Manoury and M. Simonot. Des preuves de totalit�e de fonctions comme synth�esede programmes. PhD thesis, University Paris 7, 1992.[17] P. Manoury and M. Simonot. Automatizing termination proofs of recursively de-�ned functions. Theoretical Computer Science 135(2) 319-343, 1994.[18] A. Middeldorp and H. Zantema. Simple termination of rewrite systems. TheoreticalComputer Science 175, 127-158, 1997.[19] F. Monin and M. Simonot. An ordinal measure based procedure for terminationof functions. To appear in Theoretical Computer Science.[20] M. Parigot. Recursive programming with proofs. Theoretical Computer Science94(2) 335-356, 1992.[21] J. Steinbach. Generating polynomial orderings. Information Processing Letters 49,85-93, 1994.

