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Abstract. The famous BNF grammar notation, as introduced and used in the
Algol 60 report, was subsequently followed by numerous notational variants
(EBNF, ABNF, RBNF, etc.), and later by a new formal “grammars” metalan-
guage used for discussing structured objects in Computer Science and Mathe-
matical Logic. We refer to this latter offspring of BNF as MBNF (Math-BNF), AQ1

and to aspects common to MBNF, BNF, and its notational variants as BNF-style.
MBNF is sometimes called “abstract syntax”, but we avoid that name because
MBNF is in fact a concrete form and there is a more abstract form. What all
BNF-style notations share is the use of production rules like (P) below which
state that “every instance of ◦i for i ∈ {1, ..., n} is also an instance of •”.

• ::= ◦1 | · · · | ◦n (P)

However, MBNF is distinct from all variants of BNF in the entities and opera-
tions it allows. Instead of strings, MBNF builds arrangements of symbols that we
call math-text and allows “syntax” to be built by interleaving MBNF production
rules and other mathematical definitions that can contain chunks of math-text.
The differences between BNF (or its variant forms) and MBNF have not been
clearly presented before. (There is also no clear definition of MBNF anywhere AQ2

but this is beyond the scope of this paper.)
This paper reviews BNF and some of its variant forms as well as MBNF, high-

lighting the differences between BNF (including its variant forms) and MBNF.
We show via a series of detailed examples that MBNF, while superficially sim-
ilar to BNF, differs substantially from BNF and its variants in how it is written,
the operations it allows, and the sets of entities it defines. We also argue that the
entities MBNF handles may extend far outside the scope of rewriting relations on
strings and syntax trees derived from such rewriting sequences, which are often
used to express the meaning of BNF and its notational variants. AQ3

1 Introduction

In this paper we discuss a form of BNF-style notation which is sometimes called
abstract syntax, but which we term Math-BNF (hereafter MBNF), because MBNF is
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2 D. Quinlan et al.

in fact a concrete form and there is a more abstract form.1 MBNF is important for inter-
preting papers in theoretical computer science. Out of the 30 papers in the ESOP 2012
proceedings [30], 19 used MBNF and none used BNF.2 Section 2 covers existing defi-
nitions for BNF as well as some formally defined standards which extend it into BNF
variants. It also covers some limitations of BNF and its notational variants, which drive
computer scientists to use what we term MBNF, despite the fact that MBNF lacks a
formal definition. Section 3 discusses how MBNF differs from BNF and its variants.

First we introduce some notational conventions. Since the text of other documents’
meta-levels is part of the object level of this one, we introduce the following notation.
We use “boxes” for both inline and block text.

“
”

Text placed in a quotebox (aside from this one) is quoted directly from
another document.

Text placed in an undecorated box (aside from this one) is intended to imitate the
text of other documents which we may look to deal with, and is usually derived
from things written elsewhere, but it is not a direct quote.

2 BNF and Its Variants

We give a brief overview of BNF and its more popular variants which remain broad
enough to cover how BNF variants normally work, the kinds of entity they work with
and the kinds of operations they usually allow. According to Zaytev [35]:

“The grammarware technological space is commonly perceived as mature and
drained of any scientific challenge, but provides many unsolved problems for
researchers who are active in that field.”

While we agree with Zaytev that there are still numerous reasons for a deeper com-
parison of these relatives to BNF, which might touch on more obscure examples and
order them in terms of how quickly they may be used to build syntax or their expressive

1 For example, consider an abstract syntax tree (AST) representing λx.e. An AST is a tree
where each branch goes to a syntactic evaluation of a metavariable and each node is either a
metavariable assignment which contains no further evaluations or a function taking metavari-
ables, which represents an evaluation. In an AST for λx.e, we would not be interested that the
x and the e are arranged with a dot between them and a λ in front of them. Rather, (λ�.�)
would just be a name for aparticular function taking two arguments of an appropriate type.

2 We chose ESOP 2012, but we could equally pick any other conferences. Because the first book
we picked contained an abundance of challenging instances of MBNF, our wider searching has
mainly been to find even more challenging examples. We will be happy to receive pointers to
additional interesting cases. We also checked the POPL 2017 proceedings [11] and found that
out of 46 papers using BNF-style notation, not one used notation exactly corresponding to the
EBNF [20], ABNF [6] or RBNF [10] standards and only one [16] could possibly be thought
of as EBNF or ABNF with variant syntax. Out of the other 45 POPL 2017 papers featuring
BNF-style notation, 44 use what we call MBNF.
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BNF-Style Notation as It Is Actually Used 3

power, this is not what we aim to provide here. The main purpose of this section is as
a preliminary to our examination of MBNF. The idea we intend readers to take away
from this section is that, while the notations examined here allow for a great deal of
variation between them, they are still more like one another than they are like MBNF.

2.1 How BNF Works

BNF can be thought of as a game: you start with a non-terminal and are then given rules
for what you can replace this with. The value of the non-terminal defined by the BNF
grammar is just the set of all things you can produce by applying these rules to each
non-terminal provided you reach a string entirely composed of terminal symbols after
a finite number of steps.

The rules are called production rules, and normally look like this:

• ::= ◦1 | · · · | ◦n

A production rule simply states that the symbol on the left-hand side of the ::=
must be replaced by one of the alternatives on the right hand side. For example the non-
terminal 〈a〉 in 〈a〉 ::= 〈b〉 | 〈b〉〈a〉 would range over things of the form 〈b〉, 〈b〉〈b〉,
〈b〉〈b〉〈b〉 etc. If we were also given 〈b〉 ::= cd , then it would range over cd, cdcd, etc.
The alternatives are separated by |. Alternatives usually consist of “non-terminals” and
“terminals”. Terminals are simply pieces of the final string that are not “non-terminals”.
They are called terminals because there are no production rules for them: they terminate
the production process. We can write a tree (sometimes called an abstract syntax tree) to
show how BNF style notation produces syntax as an instance of a non-terminal (where
each child node is an instance of its parent). Here is how we would write cdcd as an
instance of a given the rules 〈a〉 ::= 〈b〉 | 〈b〉〈a〉 and 〈b〉 ::= cd :

a

b

c d

a

b

c d

Non-terminals are distinguished from terminals either by placing them in triangular
brackets or by surrounding terminals by quotes and using either a comma or a space
to separate both non-terminals and terminals. The language of • is the set of all things
of the form ◦i for 1 < i < n. In the example where a ::= b | ba and b ::= cd the
language of a would be { (cd)n n ∈ N ∧ n > 0 } where N is the set of natural numbers
and (cd)n denotes something of the form cd concatenated with itself n times.

2.2 Backus and Naur

To illustrate what the original BNF looked like we present an example of BNF as it was
used by Backus and BNF as it was used by Naur.
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4 D. Quinlan et al.

Backus. [1, p. 129] used “:≡” to symbolise a production and “or” to separate production
rules. He picked out non-terminals by surrounding them with angle brackets.

“

”

〈digit〉 :≡ O or 1 or 2 or 3 or 4 or 5 or 6 or
7 or 8 or 9

〈integer〉 :≡ 〈digit〉 or 〈integer〉〈digit〉

Here, 〈digit〉 ranges over the set of symbols {“0”, “1”, “2”, “3”, “4”, “5”,
“6”, “7”, “8”, “9”}. 〈integer〉 ranges over the set of strings one would use to write the
non-negative integers using digits 0 to 9.

Naur. [2, p. 3,5] used “:: =” instead of “:≡” and “|” instead of “or”. Other than that the
grammar is the same.

“
”

〈digit〉 :: = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
〈unsigned integer〉 :: = 〈digit〉 | 〈unsigned integer〉〈digit〉

Here 〈digit〉 ranges over the same set 〈digit〉 ranged over in the previous example
and 〈unsigned integer〉 ranges over the same set 〈integer〉 did.

2.3 Extensions to BNF

The following are extensions to BNF, which, unlike MBNF have a formal definition.

EBNF. (Extended Backus-Naur Form) adds facilities for dealing with repetition of syn-
tactic rules (braces around repeated text), special sequences (Two ?s around names of
special characters), optional choice of syntactic rules (square brackets around optional
text) and exceptions to syntactic rules (written R − E where R is a rule and E an excep-
tion). Instead of having non-terminal symbols surrounded by angle brackets, terminal
symbols are surrounded by single quotes and all symbols are separated by commas.
Each line is ended in a semicolon. A full copy of the syntax for EBNF is found in [20].

In EBNF, the terminating decimals DI can be written as:

DI ::= [‘ − ’],D, {D}, [‘.’,D, {D}];
D ::= ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’;

We read the rule DI ::= [‘ − ’],D, {D}, [‘.’,D, {D}]; as giving the following
instructions for producing something of the form DI: First, begin with an optional
minus, [‘ − ’] , followed by a choice of D, D , followed by any number of choices

of D, {D} , followed by an optional choice of a member of a group, [‘.’,D, {D}] . This

group consists of things produced with the following instructions: begin with a dot, ‘.’ ,

followed by a choice of D, D , followed by any number of choices of D, {D} .
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BNF-Style Notation as It Is Actually Used 5

EBNF without exceptions to syntactic rules is not more powerful than BNF in terms
of what sets of strings it can generate, but it is more convenient and the parse trees it
generates may look different. The above example is more cumbersome in BNF:

〈DI〉 ::= 〈PD〉 | −〈PD〉 | 〈PD〉.〈PD〉 | −〈PD〉.〈PD〉
〈PD〉 ::= 〈D〉 | 〈PD〉〈D〉

D ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Lemma 1. Repetition and choice can be written into equivalent BNF productions.

Proof. Let ε stands for the empty string. We outline the process:

– Convert every repetition { E } to a fresh non-terminal X and add X = ε | X E.
– Convert every option [ E ] to a fresh non-terminal X and add X = ε | E.

(We can convert X = A [ E ] B. to X = A E B | A B.)
– Convert every group ( E ) to a fresh non-terminal X and add X = E.

Exceptions to syntactic rules mean EBNF is not context-free.

Lemma 2. Production rules of the form R − E have no BNF equivalent.

Proof. Let ε stands for the empty string. First consider intersection

1. The language of L1 = {anbnam | n,m ≥ 0} is generated by:
〈L1〉:: =〈X〉〈A〉 〈X〉:: =a〈X〉b | ε 〈A〉:: =〈A〉a | ε

2. The language of L2 = {anbmam | n,m ≥ 0} is generated by: 〈L2〉 ::= 〈A〉〈X〉
3. L1 ∩ L2 = {anbnan | n ≥ 0} is not context free by the pumping lemma [3, p. 110]

since, for a given p ≥ 1 we can choose n > p such that s = anbnan is in our language
and we cannot pick any substring q of s such that q is of length p, s = xqy for some
strings x and y, and xqny ∈ L1 ∩ L2 (since q would have to take in at least one a and
should take in the same number of as on the left as on the right).

It follows easily that rules of the form R − E cannot be modelled in BNF, since BNF
only generates the context free grammars and {anbnan | n ≥ 0} = L1 − (L1 − L2)

Lemma 2 shows that some things represented in EBNF cannot be represented in
BNF.

P.E.G.s. (Parsing Expression Grammars) [12] have many of the same facilities as
EBNF, but contain an ordered choice operator which indicates parsing preference
between options. For example, the EBNF rules A = a, b | a and A = a | a, b are
equivalent, but the P.E.G. rules A ← a b / a and A ← a / a b are different. The sec-
ond alternative in the latter P.E.G. rule will never succeed because the first choice is
always taken if the input string to be recognized begins with ‘a’. P.E.G. rules also add
and, ‘&’, and not, ‘!’, syntactic predicates which match a pattern only if a certain con-
text is present. The expression ‘&e’ attempts to match pattern e, then unconditionally
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6 D. Quinlan et al.

backtracks to the starting point, preserving only the knowledge of whether e succeeded
or failed to match. Conversely, the expression ‘!e’ fails if e succeeds, but succeeds if e
fails. E.g. !EndOfLine . matches any single character so long as the nonterminal End-
OfLine does not match starting at the same position. P.E.G. provides us with slightly
more power than EBNF. However, understanding P.E.G. rules rests on the user’s intu-
itive understanding of parsing and string recognition - the body of literature for which
is very large. In addition there is not a particularly close correspondence between the
extra operators provided by P.E.G. and anything in the syntax of MBNF.

ABNF. (Augmented Backus-Naur Form) [6] contains no facilities not also included
in ENBF (which ISO gives as the standard for BNF itself at the time of writing). We
include it here only for completeness.

RBNF. (Routing Backus-Naur Form) [10] Contains most of the facilities of EBNF aside
from the ability to write exceptions to syntactic rules. RBNF can generate the same
syntax as BNF. We include it here only for completeness.

LBNF. (Labelled BNF) [13] extends EBNF with functionality for dealing with poly-
morphic lists of rules. It also provides a few pre-defined sets such as characters, integers,
strings, and identifiers. It also provides labels which deal with higher order abstract syn-
tax [26], however this is not intended to be used in LBNF grammars written by hand,
but in ones generated from the grammar formalism GF (Grammatical Framework) [28].

Again there is no clear mathematical model of this functionality to aid human under-
standing; analysing the given functions requires understanding the programs used to
compile expressions in the grammar. In addition there is not a particularly close corre-
spondence between the labels provided by LBNF and anything in the syntax of MBNF.

TBNF. (Translational Backus-Naur Form) [24] Puts non terminals in the place of inter-
nal nodes and terminals in place of external nodes on a tree (which we call an abstract
syntax tree or AST). When the resulting syntax is parsed, the AST it creates is traversed.
It adds to EBNF additional production arrows as follows:

[∼>] Reverse Production Arrow. An arrow preceding the right side of a rule for
which you want the nodes to be arranged in reverse order.

[=>] Call A Function. This means to call a function when a rule in the grammar
has been recognized. A rule in the grammar may have multiple function
calls.

[+>] Make A Node. This means to make a node corresponding to this rule in the
grammar. During AST traversal this node will be processed with a built-in
default node processing function.

[*>] Make A Node and during AST traversal, call a function with the same name
as this node, instead of calling the default node-processing function. This
allows customization of the code-generation process.

[$1] Parse Stack Position. This refers to the symbol in parse stack position # 1,
the first symbol in the right side of the rule. $n refers to the nth position.
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BNF-Style Notation as It Is Actually Used 7

[..*] Node Traversal Indicator. Indicates when processing for this node should
occur, at top-down, pass-over, or bottom-up time, respectively. *.. indicates
top-down only. ..* indicates bottom-up only. *.* indicates top-down and
bottom-up.

[(...)] The Arguments. Arguments are used for function calls (=>) and node proc-
essing (+>). For node processing the arguments apply to the relative ‘*’ in
the Node Traversal Indicator. *-* would require two string arguments.

[& 0] Counter Indicator. When the AST processor enters a node, it increments a
counter for the node and puts in on a stack. The ‘& 0’ indicates the current
count for the node taken from the stack. A ‘& 1’ means the counter for the
parent node on the stack and ‘& 2’ means the counter of the grandparent.
This provides a unique number for labels.

TBNF provides a very rich extension to EBNF which is particularly well suited for
relating expressions to their abstract syntax trees. However a clear mathematical model
of the trees generated by TBNF is not provided alongside its syntax (again these are
created in a compiler rather than presented in a form intuitive to human beings). In
addition while it covers some of the functionality authors expect when they use MBNF
it does not particularly resemble the way in which it is written.

2.4 Limitations of BNF and Its Variants

When deciding if a BNF-like syntax can be readily converted into BNF, it is important to
note that BNF is a language for building sets of strings and the only notion of equality
it deals with easily is string equality. It is possible to derive a notion of tree equality
from the parse trees generated by an EBNF grammar, but there is no guarantee that
parse trees will be unambiguous. Unless an author writes their grammar with a parser
in mind, inferring a sensible parse tree from a set of productions is non-trivial.

BNF can describe exactly the context-free grammars in Chomsky’s hierarchy [5].
Non-context-free grammars cannot be written without extending BNF in some way.

3 MBNF

In this section, we highlight ways in which the notation we call MBNF differs from BNF
and its variants. We show that MBNF is non-trivially different from existing extensions
of BNF and does not deal with the same kinds of entities as these extensions.

3.1 Where BNF and Its Variants Use Strings, MBNF Uses Math-Text

Parentheses for disambiguation are not needed in MBNF grammars and when an MBNF
grammar specifies such parentheses they can often be omitted without any need to
explain. E.g. writing (λx.xx)λy.y instead of ((λx.(xx))(λy.y)) . When possible, MBNF
takes advantage of the tree-like structure implicit in the layout of symbols on the page

when features like superscripting and overbarring are used. E.g. in f n+1
x + y · f j .
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8 D. Quinlan et al.

Instead of non-terminal symbols, MBNF uses metavariables3, which appear in what
we call math-text and obey the conventions of mathematical variables. Metavariables
are not distinguished from other symbols by annotating them as BNF and its notational
variants do, but by math-text features such as font, spacing, or merely tradition.

In addition to arranging symbols from left to right on the page, math-text allows sub-
scripting, superscripting, pre-subscripting, pre-superscripting and placing text above or
below other text. It also allows for marking whole segments of text, for example with an
overbar (a vinculum). Readers can find more detailed information on how math-text can
be laid out in The TeXbook [22], or the Presentation MathML [19] and OpenDocument
[21] standards. Here is a nonsense piece of Math-text to show how it may be laid out:

c↓ a′ = p̌〈v′′x � a2+1〉 − f n
x + y · f j +

∞∑
i=0

si∈1...n −a,b,c−−−→ bâ

3.2 MBNF Is Aimed Exclusively at Human Readers

MBNF can be used to write all of the grammars BNF and its variants can produce,
but it also defines grammars BNF does not. However, unlike BNF, MBNF is meant to
be interpreted by humans, not computers, as it has not been adequately formalised yet.
Authors may define an MBNF grammar in an article for humans and a separate grammar
for use with a parser generator to build a corresponding implementation. MBNF defines
entities not intended or expected to be serialized or parsed. Dolan and Mycroft provide
a typical example in [7, pp. 61–65]

“

”

e ::= x | λx.e | e1e2 | {�1 = e1, ..., �n = en} | e.� | true | false | if e1 then e2 else e3

| x̂ | let x̂ = e1 in e2

Γ ::= ε | Γ, x : τ | Γ, x̂ : ∀α.τ
τ ::= bool | τ1 → τ2 | {�1 : τ1, ..., �n : τn} | α | � | ⊥ | τ � τ | τ � τ
Δ ::= ε | Δ, x : τ
Π ::= ε | Π, x̂ : [Δ]τ

In this example Γ, Δ and Π are never intended to be serialised. The authors provide an
implementation in OCaml which looks very little like the above syntax.4

Most MBNF grammars are missing features needed to disambiguate complex terms
(e.g. notation for separating metavariables from concrete syntax and from other kinds
of evaluated syntax (like 〈 and 〉 do in BNF), bracketing (as covered in Sect. 3.1) and
notation for declaring operator precedence (for the example above [7], no rules are
given for the order in which patterns should be matched). Papers often put complicated
uses of the mathematical metalanguage inside MBNF notation (examples of this can be
found throughout this section).

3 Here a metavariable is a variable at the meta-level which denotes something at an object-level.
4 www.cl.cam.ac.uk/∼sd601/mlsub/.
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BNF-Style Notation as It Is Actually Used 9

3.3 MBNF Allows Powerful Operators Like Context Hole Filling (a.k.a Tree
Splicing)

Chang and Felleisen [4, p 134] present an MBNF grammar defining the λ-term contexts
with one hole where the spine5 is a balanced segment6 ending in a hole. For explanatory
purposes, we write e@e instead of e e and add parentheses. Concrete syntax and BNF-
style notation are green. Metavariables are blue. Tree-splicing operators are red.

e :: = x | (λx.e) | (e@e)
A :: = [ ] | (A[(λx.A)]@e)

One can think of the context hole filling operation ( [ ] in (A[(λx.A)]@e) ) as per-
forming tree splicing operations within the syntax. Here are trees illustrating steps in
building syntax trees for A (the operation •@• is higher up the tree than •[ • ] because
of parsing precedence inherited from math):

@

[ ]

[ ] λx1

[ ]

x2

@

λx1

[ ]

x2

These trees show the result of the second rule where each A is [ ] and e is a vari-
able. The tree on the left is the tree corresponding to A[λx.A]@e before the hole filling
operation is performed, where the first A is assigned [ ]. The tree on the right represents
an unparsing of the typical syntax tree for ((λx1.[ ])@x2). x1 and x2 are disambiguated
instances of x. A metavariable assigned a value won’t appear in the final tree. If it’s not
a terminal node, [ ] tells us to fill in the leaf in the frame on the left with the tree in the
frame on the right. Once performed, [ ] disappears.

We can show that unlike BNF, the “language” of the metavariable/non-terminal A
(the set of strings derived from A using roughly the rules of BNF plus hole filling) is
not context-free and so MBNF certainly isn’t.

For this section we use ToStr informally to mean a function which takes an object
that an MBNF metavariable may range over, provided it can be written as a chunk of
math-text whose only operation is concatenation and whose only equivalence is syn-
tactic equivalence, and takes them to the fully parenthesised string one might use to
refer to them. For example if O = (λa.[ ])@b declares the object O, then ToStr(O) =
“((λa.[ ])@b)” where “((λa.[ ])@b)” is the symbol “(” concatenated with another “(”
concatenated with “λ” etc. and O is the data structure (λa.[ ])@b represents. In order

5 The root node is on the spine. If A is applied to B by an application on the spine, the root node
of A is on the spine and the root node of B is not. If a node on the spine is an abstraction each
of its children is on the spine (i.e., every node appearing on the furthest left hand side of the
tree is on the spine).

6 A balanced segment is one where each application has a matching abstraction and where each
application/abstraction pair contains a balanced segment.
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10 D. Quinlan et al.

to show that MBNF is not context free this we make use of the pumping lemma for
context-free languages [3, p. 110].

Lemma 3. Hole Filling is Not “Context-free” For A given by the MBNF above, the
language given by { x ∈ String x = ToStr(A) } is not context-free.

Proof Sketch. We need to show that for any given p ≥ 1 we can produce an s =
ToStr(A) such that no substring of s can be “pumped” (some non-empty part of one
or both of its outermost substrings repeated) to give another string in the language
{ x ∈ String x = ToStr(A) }.

Since each A has a balanced segment along the spine we must be expected to keep
count of both abstractions and applications. Parentheses must also be balanced. Getting
the desired result is as simple as picking an s = ToStr(A) such that the abstraction at the
bottom of the spine of A is more than p abstractions away from the application closest
to the bottom of the spine of A and such that A contains no e long enough to be pumped.
Since parentheses are balanced, the only possible section we might pick to “pump” is
around the hole and since there are p abstractions before we reach an application, there
is no way that “pumping” this could give us a balanced segment.

BNF itself is context free. EBNF [20], ABNF [6] and RBNF [10] don’t use tree-
splicing or context hole filling.

3.4 MBNF Mixes Mathematical Language with BNF-Style Notation

Germane and Might [14, p. 20] mix BNF-style notation freely with mathematical nota-
tion in such a way that the resulting grammar relies upon both sets produced with set
theory notation and MBNF production rules which use metavariables defined using
mathematical notation:

“

”

u ∈ UVar = a set of identifiers ccall ∈ CCall ::= (q e∗)γ
k ∈ CVar = a set of identifiers e, f ∈ UExp = UVar + ULam

lam ∈ Lam = ULam + CLam q ∈ CExp = CVar + CLam
ulam ∈ ULam ::= (λe(u∗k)call) � ∈ ULab = a set of labels
clam ∈ CLam ::= (λγ(u∗)call) γ ∈ CLab = a set of labels

call ∈ Call = UCall + CCall ucall ∈ UCall ::= ( f e∗q)�

The results of math computations are interleaved with MBNF production rules, not
just applied after the results of the production rules have been obtained. This grammar
uses •1 ∈ •2 to mean “•2 is the language of •1” (this is the case in both the MBNF
production rules (:: =) and the math itself (=)).

In the MBNF above + is used as union and we have the additional requirement that
there must exist some procedure for choosing sets fulfilling these constraints such that,
if, for some terms X and Y , X+Y appears in the grammar, then X and Y do not intersect.
Here, the requirement is most likely fulfilled by the author following the convention
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BNF-Style Notation as It Is Actually Used 11

that any arbitrary sets declared separately are disjoint (i.e., CVar∩UVar = ∅). However,
in order to check that grammars like the one above are correct, we would still need a
general procedure for checking that ULam and CLam don’t overlap if such a convention
is chosen.

BNF, EBNF, ABNF and RBNF don’t have a concept of disjoint union and don’t
allow one to interleave set theoretic operations on the language of a non-terminal with
ordinary BNF definitions.

3.5 MBNF Has at Least the Power of Indexed Grammars

Inoe and Taha [18, p. 361] use this MBNF:

“ ”
E�,m ∈ ECtx�,mn ::= · · · | 〈E�+1,m〉 | · · ·

This suggests that MBNF deals with the family of indexed grammars [17, p 389-
390], which is yet another reason it’s not context-free. The � + 1 is a calculation that is
not intended to be part of the syntax. The production rule above defines an infinite set
of metavariables ranging over different sets.

BNF, EBNF, ABNF and RBNF don’t allow for indexing.

3.6 MBNF Has a Native Concept of Binding

In Germane and Might [14, p. 20] we found the following:

pr ∈ Pr = {ulam : ulam ∈ Ulam, closed(ulam)}
In order to perform this evaluation of the set Ulam we must recognise which variables
are bound.

In addition we need a notion of binding to deal with some of the issues surrounding
α-equivalence that often arise when authors start working with the grammar they define
as part of a reduction system. Chang and Felleisen [4, p 134] give the following axiom:

Â[A1[λx.Ǎ[E[x]]]A2[v]] = Â[A1[A2[Ǎ[E[x]]x := v]]] where Â[Ǎ] ∈ A

Here we are meant to recognise an implicit convention, known as the Baren-
dregt convention, on the terms we are β-reducing over. In this case the Baren-
dregt convention would require that we pick terms from the α-equivalence class of
Â[A1[λx.Ǎ[E[x]]]A2[v]] such that no bound variable of A1[λx.Ǎ[E[x]]] is a free variable
in A2[v] and none of the bound variables in A2[v] are free variables in Ǎ[E[x]]].7 Since
Chang and Felleisen also expect the Church-Rosser property to hold of their reduction
relations, terms are identified up to α-equivalence again after performing the reduction
and filling the holes.

A notion of binding is not native to BNF, EBNF, ABNF, RBNF or TBNF but must
be defined after the grammar.

7 Actually a slightly weaker condition than the one we give here is probably sufficient for the
Barendregt convention to hold, but it would be more complicated to state.
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3.7 MBNF Allows “Arbitrary” Side Conditions on Production Rules

An example of a production rule with a side condition can be found in Chang and
Felleisen [4, p 134]:

“ ”
E = [ ] | Ee | A[E] | Â[A[λx.Ǎ[E[x]]]E] where Â[Ǎ] ∈ A

It is possible to make side conditions that prevent MBNF rules from having a solu-
tion. A definition for MBNF can help in finding conditions on side conditions that
ensure MBNF rules actually define something.

Potential Contradictions When Dealing with Side Conditions. Side conditions may
cause problems in making sure an MBNF is well defined. We offer a set of assumptions
about what one may be allowed to do in an MBNF which are separately plausible and
unproblematic, but which allow us to create a grammar which is obviously undefined if
we use all of them unrestrictedly.

Where we are allowed to use ∈ we are usually allowed to use �. The side condition
of the MBNF for E has a metavariable that is created by filling a hole in a member of Â
with a member of Ǎ. This suggests that we may be allowed to use mathematical produc-
tions similar to those used in the production rules themselves to create the metavariables
featuring in the side conditions of the production rules. We may conclude that, provided
we have a production rule for B, we can have λx.B in one of our side conditions. MBNF
also allows us to have production rules that reference themselves, either directly or indi-
rectly. By allowing all these assumptions, we can produce an MBNF which defines a
non existent language.

A ::= x | λx.A | B Where λx.B � C
B ::= x | A | πx.B
C ::= A | B

There exists b ∈ B such that b is of the form πx.B, consider one such b. Suppose that
λx.b � C. Then b ∈ A and since, for all a ∈ A, λx.a ∈ A we would have that λx.b ∈ A
and, since C ::= A | B, λx.b ∈ C. Suppose instead that λx.b ∈ C, then either λx.b ∈ A
or λx.b ∈ B. Every statement in B is either an x, or else it begins with π, or else it is also
in A, so λx.b ∈ A. λx.y ∈ A if and only if y ∈ A, so b ∈ A. Since b is not of the form x
or λx.A, then b can only be produced by the production rule B, in which case λx.b � C.
So we have that, if λx.b ∈ C then λx.b � C and if λx.b � C then λx.b ∈ C.

So there is no set of statements we can produce that satisfies the rules of the gram-
mar. We can’t isolate any particular production rule which causes the problem, each
rule alone may be fine within the context of a slightly different grammar.

We believe that authors often have some heuristic in mind which allows them to
avoid cross reference of the sort in our fictitious example, but do not know of a definition
which explicitly says what’s allowed.

Neither BNF nor its variants allow arbitrary side conditions on production rules.
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3.8 MBNF Can Contain Very Large Infinite Sets as Part of the “Syntax”

Toronto and McCarthy [34, p 297] write:

“
”

e:: = · · · | 〈tset, {e∗κ}〉
Here {e∗κ} means sets of no more than κ terms from the language of e.

“
”

...The language of v:: = 〈tset, {v∗κ}〉 consists of the encodings of all the hered-
itarily accessible sets.

The author does not state what κ is, but elsewhere in the paper it is an inaccessible
cardinal. It seems as though κ is also intended to be an inaccessible cardinal here.

BNF and its notational variants, by contrast, only deal with strings of finite length.

3.9 MBNF Allows Infinitary Operators

Dı́az and Núñez [23, p. 539] write an MBNF with an infinitary operator:

“

”

P:: = · · · |
�

i∈I

Pi | · · ·

...But, for instance in our language we have the term
�

n∈N
Pn

where each Pn is born at time n, and so P is born at time ω + 1.
...So, to fully formalize the set of valid expressions, we begin by bound-

ing the size of the possible sets of indices I, and that of the set of actions Act
by some infinite cardinal κ. The functional governing the right hand side of
the equation is clearly monotone, but it is not so obvious whether it has any
fixpoint. Fortunately it has. Besides, it is guaranteed that it is reached after
(at most) λ iterations, where λ is the smallest regular cardinal bigger than
κ. Then, the principle of structural induction is valid and corresponds to the
principle of transfinite induction.

We may think of infinitary operators as defining trees of infinite breadth (i.e., trees
whose internal nodes may have infinitely many direct children), where BNF and its
notational variants deal with finite data structures (usually strings).

3.10 MBNF Allows Co-inductive Definitions

Eberhart, Hirschowitz and Seiller [8, p 94] write:
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“

”

We consider processes to be infinite terms as generated by the grammar:

P,Q ::= Σi∈nGi | (P|Q) G ::= a〈b〉.P | a(b).P | νa.P | τ.P | ♥.P
up to renaming of bound variables as usual. Such a coinductive definition...

We may think of co-inductive definitions as allowing us to define trees of infinite
depth (i.e. trees in which paths may pass through infinitely many nodes), where BNF
and its notational variants deal with finite data structures.

3.11 MBNF May Be Considered up to “Arbitrary” Equivalences

As well as α-equivalence and binding, the objects created by a piece of MBNF may be
considered up to various other equivalences, e.g., associativity and composition with a
0 element (as in the π-calculus [25]), equivalence up to the exchanging of labels (as in
the λ-calculus with records [27, p. 129]), equivalence up to repetition of elements (as
with set-like syntactic objects), and additional equivalences which may be defined by
the author. Tobisawa [33, p. 386] defines equivalences �s & �t:

“

”

id〈v, d〉 := vd[id],

(w↓ (M) · σ)〈v, d〉 :=

⎧
⎪⎪⎨
⎪⎪⎩

M If v = w and d = 0,

σ〈v, d − δvw〉 otherwise,
(↑w ·σ)〈v, d〉 := σ〈v, d + δvw〉

where δvw is the integer defined by

“
”

δvw :=

⎧
⎪⎪⎨
⎪⎪⎩

1 If v = w

0 otherwise.

Then �s and �t are defined inductively.

“

”

id �s id
σ �s τ if σ〈v, d〉 �t τ〈v, d〉 for any v, d

vd[σ] �t vd[τ] if σ �s τ
λv.M �t λv.N if M �t N

M1 @� M2 �t N1@�N2 if M1 �t N1 and M2 �t N2

However in order to work modulo these equivalences, he must also be working
modulo arithmetic equivalence on some computations. He must also be working with
the implicit assumption that := is a bijective transformation, that maps syntax to syntax

A
u

th
o

r 
P

ro
o

f



BNF-Style Notation as It Is Actually Used 15

preserving equivalence. Let f : A �→ B be a function from some subset of the terms
defined by the BNF, A, to some other set of terms, B, which are possibly meant to
be definable with a different BNF (with side conditions and arithmetic computations),
such that ∀a ∈ A; a := f (a) and if a := b, then b = f (a). The author wishes us to
use a convention where, two terms a, b ∈ A are equivalent in the paper if and only if
f (a), f (b) ∈ B are equivalent.

A sufficiently general notion of equivalence is not native to BNF and its notational
variants but must be defined after the grammar.

4 Related Work

There has already been some work done in the area of defining MBNF, however, to our
knowledge, no other authors have highlighted all the issues we have, or presented it as
a significant departure from BNF and its notational variants. In fact, MBNF is rarely
even given a name to distinguish it from similar notations, on the few occasions authors
do refer to it they call it “abstract syntax,” which is misleading. We have had to coin the
term MBNF to make it clear what we are talking about.

We take a look at some of the existing work related to the definition of MBNF
and talk about why this paper exposes important issues which existing work does not
address. Since MBNF has not yet been properly recognised as a notation distinct from
BNF and its extensions, which is in need of a definition, we have chosen papers dealing
with a broad set of different problems. Some of this work deals with syntactic structures
which are in some way related to the syntactic structures used by MBNF. Some of this
work focusses on comparison of BNF-style notations (which may or may not include
MBNF), but does not focus on the issues we do. One of the pieces we cite evaluates non-
MBNF syntax, but allows some functionality more commonly associated with MBNF
and produces something like MBNF as output.

Ott [31] provides a formal language for writing specifications like those written
in MBNF. The process of moving from an Ott specification to an MBNF can be per-
formed automatically. However, Ott does not offer support for interpreting MBNF with-
out requiring it to be specified in a theorem-prover friendly format. Ott focuses on trans-
lating to Coq 8.3, HOL 4 and Isabelle directly, but offers less support for those seeking
a general mathematical intuition. Ott only allows contexts with a single hole, does not
allow for hole-filling operations to appear in the clause of a production rule and cur-
rently does not support rules being used coinductively. Ott also does not handle the
common practice of using mathematical text outside of the MBNF grammar as part of
its definition.

Steele [32] covers many of the notational variants of BNF, and some MBNF. How-
ever, he is primarily interested in making an initial attempt at documenting computer
science meta-notation. He focuses on the differences between CSM and earlier versions,
such as BNF, only insofar as they help this goal, and remind us of alternative choices
that might have been better than the ones we ended up with. He does not discuss how the
underlying mathematical structure of MBNF differs wildly from BNF and its variants.

Grewe et al. [15] discuss the exploration of language specifications with first-order
theorem provers. However, they still require the reader to be able to intuitively translate
language specifications to a sufficiently formal language first.
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16 D. Quinlan et al.

Reynolds [29, p. 1-51] has the best attempt at a definition of MBNF which we could
find after looking through the books in our collection, which he calls “abstract syntax”8.
However, he only deals with context-free grammars and usually proceeds by example.

Farmer [9] deals with syntax featuring evaluation and quotation. This resembles
the kinds of entity MBNF works with. However, he is more concerned with syntax
evaluation as it stands for some algorithmic operations than syntax standing for itself
modulo some equivalence and he does not go into how syntax featuring evaluation and
quotation is meant to be combined with BNF-style notation.

Zaytsev [35] provides a comprehensive review of BNF variants and a tool for study-
ing mappings between them. He does not deal with MBNF at all nor does he claim to,
but his work highlights in detail the similarities between BNF and its extensions touched
upon in Sect. 2 as well as other variants we did not have space to cover. A comparison of
MBNF to the grammars examined in his work undelines that MBNF is not an extension
of BNF with some transformation applied to its syntax.

None of the above authors deal with MBNF grammars with very large infinite things
in them or with mixing math and MBNF. They do not even discuss this as a permissible
practice, nor the need to treat MBNF as a notation distinct from BNF and its extensions.

5 Conclusions

While MBNF bears a superficial resemblance to BNF and its variants, we have demon-
strated that it is different in the entities it works with and the operations it allows. We
conclude neither BNF nor any or its variants are suitable to express the range of mod-
ern Computer Science and Mathematical Logic, since MBNF is used frequently in these
fields and differs from BNF and its variants on a deep conceptual level. In particular,
BNF and its variants deal with strings and the trees detailing string building operations,
both of which are finite with a natural ordering. MBNF, on the other hand, deals with
the richer syntactic structures used in writing mathematics, which may be infinite rather
than finite and which are defined modulo some notion of equivalence, where it is largely
irrelevant to understanding the syntax whether or not members of that equivalence class
have a canonical order. The operations allowed in BNF and its variants are defined as
standard alongside its production rules and belong to the class of string building oper-
ations. Rather than define operations in this way, MBNF adds the concept of syntax to
the broader category of mathematical entities and the concept of the production rule to
a broader class of mathematical operators. These concepts may then be used alongside
any concept the author needs from the field of mathematics.

While some work exists which might address some aspects of MBNF, none provides
a full definition. We are not aware of another work that highlights all the differences we
have here, or that recognises MBNF as a significant departure from BNF, as opposed
to merely a syntactic variant, so this is unsurprising. We offer this paper as a reference
point for the main issues which authors aiming to define this notation need to overcome.

8 As previously noted we avoid that name, because MBNF is a concrete form.
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